
RESEARCH ARTICLE Open Access

Molecular analyses of triple-negative breast
cancer in the young and elderly
Mattias Aine1, Ceren Boyaci2, Johan Hartman3, Jari Häkkinen1, Shamik Mitra4, Ana Bosch Campos1,
Emma Nimeus1,5, Anna Ehinger1,6, Johan Vallon-Christersson1, Åke Borg1 and Johan Staaf1*

Abstract

Background: Breast cancer in young adults has been implicated with a worse outcome. Analyses of genomic traits
associated with age have been heterogenous, likely because of an incomplete accounting for underlying molecular
subtypes. We aimed to resolve whether triple-negative breast cancer (TNBC) in younger versus older patients
represent similar or different molecular diseases in the context of genetic and transcriptional subtypes and immune
cell infiltration.

Patients and methods: In total, 237 patients from a reported population-based south Swedish TNBC cohort
profiled by RNA sequencing and whole-genome sequencing (WGS) were included. Patients were binned in 10-year
intervals. Complimentary PD-L1 and CD20 immunohistochemistry and estimation of tumor-infiltrating lymphocytes
(TILs) were performed. Cases were analyzed for differences in patient outcome, genomic, transcriptional, and
immune landscape features versus age at diagnosis. Additionally, 560 public WGS breast cancer profiles were used
for validation.

Results: Median age at diagnosis was 62 years (range 26–91). Age was not associated with invasive disease-free
survival or overall survival after adjuvant chemotherapy. Among the BRCA1-deficient cases (82/237), 90% were
diagnosed before the age of 70 and were predominantly of the basal-like subtype. In the full TNBC cohort, reported
associations of patient age with changes in Ki67 expression, PIK3CA mutations, and a luminal androgen receptor
subtype were confirmed. Within DNA repair deficiency or gene expression defined molecular subgroups, age-
related alterations in, e.g., overall gene expression, immune cell marker gene expression, genetic mutational and
rearrangement signatures, amount of copy number alterations, and tumor mutational burden did, however, not
appear distinct. Similar non-significant associations for genetic alterations with age were obtained for other breast
cancer subgroups in public WGS data. Consistent with age-related immunosenescence, TIL counts decreased
linearly with patient age across different genetic TNBC subtypes.

Conclusions: Age-related alterations in TNBC, as well as breast cancer in general, need to be viewed in the context
of underlying genomic phenotypes. Based on this notion, age at diagnosis alone does not appear to provide an
additional layer of biological complexity above that of proposed genetic and transcriptional phenotypes of TNBC.
Consequently, treatment decisions should be less influenced by age and more driven by tumor biology.
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Introduction
Triple-negative breast cancer (TNBC; defined by ER, PR,
and HER2/ERBB2-negativity) is a clinically defined sub-
group of breast cancer, constituting approximately 10–
15% of cancers in Western countries. TNBC is over-
represented among younger women, African-American
women, and women with inherited mutations in high-
penetrance breast cancer susceptibility genes [1, 2].
TNBC tumors are highly heterogeneous on the molecu-
lar level, involving differences in genetic features, germ-
line alterations (e.g., BRCA1 mutations), DNA repair
deficiency, epigenetic alterations, gene expression pat-
terns, but also morphological features [3–9]. Several of
these features have been associated with prognosis and/
or therapy response in TNBC patients. Despite the over-
representation in younger women, large registry studies
have suggested that young age (< 40 years) is not an in-
dependent risk factor in women with TNBC when ad-
justed for other prognostic variables [10–14], in contrast
to other breast cancer subgroups [15].
Previous studies have attempted to address the mo-

lecular landscape of breast cancer in the context of pa-
tient age [16–21], with the recent study by Ma et al.
focusing specifically on TNBC [19]. Overall in breast
cancer, results concerning specific molecular traits or
patterns associated with age at diagnosis appear hetero-
geneous. This may in part be due to inconsistent age
group definitions between studies and that highly se-
lected cohorts have often been used for molecular ana-
lyses. Concerning the latter, analyses have often not
been performed within a relevant clinical subgroup or
molecular phenotype, or that appropriate adjustments
for other important clinical or molecular disease param-
eters have not been performed. As an example of the lat-
ter, an initial study by Anders et al. [21] reported
transcriptional differences in breast cancer associated
with patient age that subsequently disappeared when
later correcting for clinical and proposed molecular sub-
types [17]. Considering these common confounding fac-
tors, a more complete understanding of whether age at
diagnosis in breast cancer is intrinsically linked to spe-
cific genetic, epigenetic, and transcriptional differences
requires studies to be performed in representative
population-based cohorts that account also for the rele-
vant underlying genetic and transcriptional phenotypes
of TNBC.
In the current study, we aimed to resolve whether

TNBC in younger versus elderly patients represent simi-
lar or different molecular diseases in the context of pro-
posed genetic and transcriptional TNBC subtypes. To
this end, we used comprehensive whole-genome sequen-
cing (WGS) data, RNA sequencing (RNAseq), and in
situ immunohistochemistry data from 237 TNBC pa-
tients recruited from a population-based study in south

Sweden [9]. To further generalize specific findings, we
also analyzed an additional 560 reported WGS analyzed
cases representative of all molecular breast cancer
subtypes.

Methods
Ethics approval and consent to participate
All included patients were enrolled in the Sweden Can-
cerome Analysis Network – Breast (SCAN-B) study
(ClinicalTrials.gov ID NCT02306096) [22–24], approved
by the Regional Ethical Review Board in Lund, Sweden
(Registration numbers 2009/658, 2010/383, 2012/58,
2016/742, 2018/267, and 2019/01252) as previously de-
scribed [9]. All patients provided written informed con-
sent prior to enrollment. All analyses were performed in
accordance with local and international regulations for
research ethics in human subject research.

Unselected population-based TNBC cohort
A previously reported unselected population-based TNBC
cohort comprised of 237 patients analyzed by RNAseq
and WGS formed the study material [9]. The cohort is
hereafter referred to as SCAN-B. Clinicopathological char-
acteristics for included patients versus stratified age at
diagnosis (10-year intervals, < 40, 40–50, 50–60, 60–70,
70–80, and ≥ 80 years) are summarized in Table 1. The
analyzed patient cohort has previously been shown to be
representative of the underlying healthcare population
from which it was recruited based on comparison with the
Swedish national breast cancer quality registry (NKBC)
[9].

Copy number and mutational analyses
From existing WGS data [9], we extracted calls of copy
number alteration, tumor ploidy, loss of heterozygosity
(LOH), breast cancer driver gene mutation calls, and
genome-wide mutational and rearrangement signatures
[3, 9]. DNA promoter hypermethylation status for BRCA1
and RAD51C were obtained from [9]. BRCA1-null,
BRCA2-null, and PALB2-null status was defined as either
a somatic or germline loss of function variant with LOH,
or a loss of function germline mutation only [9]. BRCA1
deficiency was defined as either BRCA1-null or BRCA1
promoter hypermethylation, as these are mutually exclu-
sive and impart an identical genomic phenotype in TNBC
[25]. As estimates of homologous recombination defi-
ciency (HRD), we used the WGS-based HRDetect [26]
and the copy number based HRD score (genomic scars)
[27] classifications available from [9]. In addition, we cal-
culated weighted genomic instability index scores [28],
and mutant-allele tumor heterogeneity scores [29] as out-
lined in original studies.
Mutational signatures were refitted for specific group

analyses using all substitutions with a PASS filter flag
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Table 1 Patient characteristics and clinicopathological variables of the study cohorts

All
patients

Patients
< 40 years

Patients
40–50 years

Patients
50–60 years

Patients
60–70 years

Patients
70–80 years

Patients
≥ 80 years

Statistical difference
between age groupsE

N 237 28 24 55 53 40 37

ER IHC % (1–10%) A 12.3% 10.7% 16.7% 9.3% 15.1% 10.3% 13.5% p = 1.0

Tumor size > 20 mm 49.4% 46.4% 37.5% 40.0% 50.9% 42.5% 78.4% p = 0.09

Grade 3 (%) 87.9% 96.3% 100% 94.3% 78.4% 80% 86.5% p = 0.29

Median Ki67% 70 87 78 70 70 58 60

Node positive (%) 34.6% 37.0% 29.2% 32.1% 34.0% 37.5% 37.8% p = 1.0

Adjuvant chemotherapy (%) 72.8% 100% 100% 94.5% 84.9% 59.0% 0% p = 4e−15

Outcome

Death events (%) 26.6% 17.9% 0% 12.7% 32.1% 27.5% 62.2% p = 3e−6

IDFS events (%) 32.5% 25.0% 12.5% 16.4% 39.6% 35.0% 62.2% p = 0.0007

Distant metastases (%) 20.7% 21.4% 8.3% 14.5% 28.3% 20.0% 27.0% p = 1.0

BRCA1-germline (%) B 8.0% 28.6% 4.2% 12.7% 1.9% 5.0% 0% p = 0.003

BRCA1 status

BRCA1-null C (%) 10.5% 32.1% 4.2% 16.4% 7.5% 5.0% 0% p = 0.006

BRCA1 hypermethylation (%) 24.1% 50.0% 41.7% 21.8% 28.3% 10.0% 5.4% p = 0.001

BRCA1 wildtype D 65.4% 17.9% 54.1% 61.8% 64.2% 85% 94.6% p = 2e−8

HRD status p = 1e−6

HRDetect-high (%) 58.6% 92.9% 83.3′% 67.3% 60.4% 27.5% 35.1%

HRDetect-intermediate (%) 5.5% 0% 4.2% 5.5% 1.9% 5.0% 16.2%

HRDetect-low (%) 35.9% 7.1% 12.5% 27.3% 37.7% 67.5% 48.6%

PD-L1 positivity (%) 51.8% 65.4% 54.5% 62.7% 46.0% 40.0% 44.1% p = 1.0

TILs (%) p = 1.0

< 30% 61.5% 46.2% 40.9% 51.0% 73.5% 76.5% 69.7%

30–50% 17.8% 19.2% 31.8% 24.5% 10.2% 11.8% 15.2%

> 50% 20.7% 34.6% 27.3% 24.5% 16.3% 11.8% 15.2%

PAM50 subtypes (%) p = 0.001

Basal-like 79.9% 100% 95.7% 94.3% 73.5% 57.1% 63.9%

HER2-enriched 14.7% 0% 4.3% 1.9% 16.3% 28.6% 36.1%

Luminal A 1.3% 0% 0% 0% 2.0% 5.7% 0%

Luminal B 0.4% 0% 0% 0% 0% 2.9% 0%

Normal-like 3.6% 0% 0% 3.8% 8.2% 5.7% 0%

TNBC subtypes (%) p = 0.22

BL1 20.2% 14.3% 26.1% 26.4% 20.4% 14.7% 16.7%

BL2 9.9% 10.7% 8.7% 11.3% 10.2% 5.9% 11.1%

IM 20.2% 25.0% 21.7% 28.3% 14.3% 17.6% 13.9%

LAR 13.0% 0% 0% 3.8% 16.3% 23.5% 30.6%

M 18.4% 17.9% 21.7% 18.9% 20.4% 8.8% 22.2%

MSL 6.3% 7.1% 13.0% 1.9% 4.1% 17.6% 0%

UNS 12.1% 25.0% 8.7% 9.4% 14.3% 11.8% 5.6%

IntClust10 subtypes p = 0.07

1 0.9% 0% 4.3% 0% 0% 0% 2.8%

10 64.7% 89.3% 87.0% 79.2% 57.1% 40.0% 44.4%

3 2.2% 0% 4.3% 1.9% 2.0% 5.7% 0%
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from the original study [9] using the latest version of
the SigFit algorithm [30] with default parameters, except
for using 8000 iterations. Only the signatures reported
in our original WGS study [9] were refitted. Tumor mu-
tational burden was calculated as the sum of somatic
substitutions and indels per Mb sequence. Publicly avail-
able mutational and copy number data from 560 breast
cancers of all subtypes analyzed by WGS and RNAseq
were obtained from Nik-Zainal et al. [3]. This cohort is
hereafter referred to as Nik-Zainal.

Gene expression analyses
Processed RNA sequencing data (fragments per kilo-
base million, FPKM) for 232 SCAN-B cases, including
gene expression subtype classifications of PAM50
using a nearest centroid classifier (n = 224 obtained
from [31]), IntClust 10 (n = 224) [32, 33], and re-
ported TNBC subtypes (n = 223) [6, 34] were obtained
from [9, 31]. Supervised Significance Analysis of Mi-
croarrays (SAM) analysis was performed on FPKM
data for the 232 cases after: (i) offsetting all FPKM
values with + 0.1, (ii) log2 transformation, and (iii)
mean-centering. Pathway analysis was performed
using the PANTHER Classification System (http://
pantherdb.org/geneListAnalysis.do) and the overrepre-
sentation test application. Default settings were used,
and gene ontology terms with a false discovery rate
(FDR) adjusted Fisher’s exact test p < 0.05 were con-
sidered significant. Principal component analysis was
performed using the R swamp package (ver 1.5.1) and
all available refseq genes [35]. RNAseq-based immune
cell deconvolution was obtained for 230 cases using
CIBERSORTx [36] as described [25].

PD-L1 and CD20 immunohistochemistry and tumor-
infiltrating lymphocyte scoring (TILs)
PD-L1 immunohistochemistry using the SP-142 anti-
body (Roche) was performed on a tissue microarray in-
cluding 218 SCAN-B tumors (two 1 mm cores / tumor)
on a Ventana instrument (Roche) according to the
manufacturer’s recommendations. PD-L1 assessment

was performed according to antibody instructions on
immune cells by a board-certified breast cancer path-
ologist, using a ≥ 1% cut-off for positivity. Cases nega-
tive in both TMA cores were set to score 0. CD20
immunohistochemistry was performed on TMA slides
using the CD20 L26 clone (Dako/Agilent cat no
M0755) with a 1:500 dilution incubated 30 min at room
temperature. Deparaffinization and antigen retrieval
was performed using the Dako PT-Link buffer. Staining
was performed using the Dako Envision™ Flex K8010
kit in an Autostainer Plus (Dako/Agilent) instrument.
Scoring was performed by a breast cancer pathologist
into four groups (0,1,2,3) based on presence of stained
cells from low to high.
Tumor-infiltrating lymphocytes (TILs) were scored on

available whole section formalin-fixed paraffin-
embedded hemotoxylin and eosin-stained slides by a
board-certified breast cancer pathologist and summa-
rized as a percentage per sample. Scoring was performed
according to the international consensus scoring recom-
mendations of the International Immuno-Oncology Bio-
marker Working Group on Breast Cancer (www.
tilsinbreastcancer.org). When multiple slides were avail-
able, per patient scores were averaged. All pathology
scorings were performed blinded to downstream
analyses.

Neoantigen prediction
NeoPredPipe [37] was used to predict putative neoanti-
gens with substitution mutation calls provided by CaVE-
Man (https://cancerit.github.io/CaVEMan/) and HLA
typing done with Polysolver [38] as input, as detailed in
Glodzik et al. [25].

Survival analyses and statistical methods
Survival analyses were performed in R (ver 3.6.0) using
the survival package with overall survival (OS), invasive
disease-free survival (IDFS), or distant relapse-free inter-
val (DRFI), as endpoints defined according with the
STEEP criteria [39]. Hazard ratios were calculated
through univariable Cox regression and verified to fulfill

Table 1 Patient characteristics and clinicopathological variables of the study cohorts (Continued)

All
patients

Patients
< 40 years

Patients
40–50 years

Patients
50–60 years

Patients
60–70 years

Patients
70–80 years

Patients
≥ 80 years

Statistical difference
between age groupsE

4 25.0% 3.6% 4.3% 17.0% 30.6% 40.0% 44.4%

5 0.9% 0% 0% 0% 2.0% 2.9% 0%

8 0.4% 0% 0% 0% 0% 2.9% 0%

9 5.8% 7.1.% 0% 1.9% 8.2% 8.6% 8.3%

Proportions calculated excluding missing data. Groups are defined as, e.g., ≥ 40 and < 50
AProportion of cases with an ER IHC staining of 1–10%, which is classified as ER-negative in Sweden
BGermline alteration according to WGS analysis
CBRCA1-null: germline and/or biallelic inactivation of BRCA1 determined by WGS
DPatients that are not defined as BRCA1-null or show somatic BRCA1 promoter hypermethylation based on available data for the study
EChi-square test, with multiple testing correction by Bonferroni adjustment (n = 18 tests)
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assumptions for proportional hazards. Survival curves
were compared using Kaplan-Meier estimates and the
log-rank test. Survival analyses were performed using
the 149 eligible cases (62.8%) from the 237-sample co-
hort treated with standard-of-care adjuvant chemother-
apy according to national guidelines (in 96% of cases a
FEC-based [combination of 5 fluorouracil, epirubicin,
and cyclophosphamide] treatment ± a taxane). Full de-
tails on the exclusion criteria for outcome analysis and
individual patient treatments are available in [9]. Trends
of decreasing or increasing estimates versus age at diag-
nosis were tested using linear regression modeling with
age as a continuous variable. All p values reported from
statistical tests are two-sided if not otherwise specified.
Box-plot elements corresponds to (i) center line =me-
dian, (ii) box limits = upper and lower quartiles, and (iii)
whiskers = 1.5× interquartile range.

Data availability statement
Genomic data used in the current study is available in
open repositories as described in the original studies.

Results
An outline of the study, including performed analyses
and sample group sizes, is shown in Fig. 1.

Clinicopathological differences between young and old
TNBC patients
In the SCAN-B cohort (n = 237), the median age at diag-
nosis was 62 years with a range of 26–91 years. Clinico-
pathological and molecular characteristics for cases are
summarized in Table 1 for patients stratified into six age
groups based on 10-year intervals; < 40, 40–50, 50–60,
60–70, 70–80, and ≥ 80 years. No statistical difference in
ER immunohistochemistry levels (< 1% stained cells ver-
sus 1–10% stained cells) was observed between the six
age groups (chi-square test p = 0.91, Table 1). This find-
ing was supported by ESR1 gene expression levels
(FPKM) that did also not show significant differences
between the six groups (Kruskal-Wallis test p = 0.34,
Additional file 1A). Similarly, no statistically significant
difference in ESR1 FPKM levels versus age groups were
found in patient subgroups defined by HRD status
(HRDetect-high or low/intermediate) (Additional file 1A).
In contrast, Ki67 immunohistochemistry levels, as well
as Ki67 (MKI67) mRNA expression, were overall higher
in younger patients with a decreasing trend with increas-
ing age (Kruskal-Wallis p = 4e−05 and p = 0.0009, re-
spectively, Additional file 1B-C). When considering the
genetic background of HR deficiency (HRD), this de-
crease in Ki67 gene expression was, however, only statis-
tically significant in HRDetect-low/intermediate patients
(Kruskal-Wallis p = 0.03, linear regression p = 0.09, Add-
itional file 1D-E). There was no statistical difference in

the estimated tumor cell content by WGS between the
six age groups that could explain the RNAseq observa-
tion (Kruskal-Wallis p = 0.15, Additional file 1F). Overall,
analysis of the molecular and clinicopathological features
listed in Table 1 revealed that the strongest associations
with the stratified age groups were related to BRCA defi-
ciency, HRD, and PAM50 subtypes.

Age at diagnosis is not associated with outcome after
adjuvant chemotherapy in TNBC
To test the association of age at diagnosis with outcome
after adjuvant standard-of-care chemotherapy, we ana-
lyzed the 149 treated SCAN-B patients using OS, IDFS,
and DRFI as clinical endpoints. Three different clinical
endpoints were assessed to provide the most compre-
hensive view, as both OS and IDFS include death from
other causes, for which higher age is a risk factor. For
this patient subset, the median age at diagnosis was 56
years (range = 27–76 years). Univariate Cox regression
analysis using patient age (years) as covariate did not re-
veal significant hazard ratios for any of the three clinical
endpoints (Table 2). This non-significant finding was re-
peated also in HRD-high (HRDetect-high) patients, as
well as HRD-low (HRDetect-low/intermediate) patients
(Table 2). Univariate Cox regression using the six age
groups did also not show any statistically significant re-
sults when tested using all chemotherapy-treated pa-
tients (all Cox regression p values > 0.05 for all clinical
endpoints).

Age at diagnosis in TNBC subgroups defined by BRCA1
and DNA repair deficiency
Younger patients showed higher proportions of BRCA1
germline alterations, BRCA1-null tumors, and
HRDetect-high tumors (a proxy for HRD) (Table 1).
Strikingly, in patients < 40 years, 82.1% had a BRCA1-de-
ficient phenotype (BRCA1-null tumor or somatic BRCA1
promoter hypermethylation). In older patients, only 4.6%
of patients ≥60 years had a BRCA1-null tumor, while
16.2% showed BRCA1 promoter hypermethylation. For
patients ≥ 70 years, corresponding values were 2.6% and
7.8%. We have previously shown the genomic equiva-
lency of the phenotypes associated with BRCA1 inactiva-
tion by DNA methylation or mutations [25]. The higher
proportion of hypermethylated cases in older patients
would suggest that a HRD phenotype brought on by epi-
genetic silencing represents a more long-tailed process
compared to the same phenotype induced by germline
alterations. However, clinical testing in known breast
cancer families may bias this view. Among the 237
SCAN-B patients, 46 patients had undergone clinical
germline screening with nine BRCA1 positive cases.
WGS analysis identified 10 additional cases with germ-
line BRCA1 alterations and also six cases with biallelic
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Fig. 1 Study scheme. a Analyses performed in the SCAN-B TNBC cohort together with investigated main sample groups. b Analyses performed in
the external Nik-Zainal et al. [3] cohort together with investigated main sample groups. In both panels, sample size numbers for patient groups
refer to the largest set of patients available for at least one of the specified analyses. Specific sample size numbers are provided in the detailed
results and the “Methods” section. References to the main figures and tables presenting results are provided for each analysis. HRD+: HRDetect-
high, HRD-: HRDetect-low, TILs: tumor-infiltrating lymphocytes, TMB: tumor mutational burden, CNA: copy number alteration, Lum A: Luminal A,
Lum B: Luminal B
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somatic inactivation [9]. Due to small sample groups, it
could not be determined whether clinically screened pa-
tients with germline BRCA1 alterations had different
clinicopathological characteristics or different variant
distribution compared to germline cases detected by
WGS. While BRCA1 germline-screened patients were
notably younger (potentially due to participation in
screening programs or presence of other unknown risk
factors not known to this study), hypermethylated pa-
tients had similar age at diagnosis as BRCA1 germline
and somatic patients detected by WGS (Add-
itional file 1G). This suggests a potentially similar intrin-
sic pace of tumor development for hypermethylated and
mutation inactivated cases deserving validation in larger
cohorts. Figure 2a shows the cumulative summary of
BRCA1 inactivated cases by mutation or hypermethyla-
tion versus age. It illustrates that 80% of detected BRCA1
alterations occur before the age of 65, and 90% of alter-
ations in patients ≤ 69 years. Similarly, for patient subsets
defined by DNA repair deficiency, patients with HRD-
high tumors (assessed by HRDetect) showed a trend to-
wards a younger age at diagnosis compared to non-HRD
patients (Fig. 2b).

Transcriptional breast cancer subtypes versus TNBC
patient age
To investigate the impact of patient age on the overall tran-
scriptional variation in TNBC, we first performed an un-
supervised principal component analysis, including different
clinicopathological and molecular variables, and 19,102
refseq genes from 232 SCAN-B cases with matching gene
expression data and classifications (Fig. 2c). Neither when
used as a continuous variable (years) or stratified into six age
groups could age strongly capture transcriptional variation in
the cohort. In contrast, we found that specific gene expres-
sion subtypes in the PAM50, IntClust 10, and TNBC
(TNBCtype) classification schemes differed significantly be-
tween age groups (Table 1) and appear to capture true tran-
scriptional variation (Fig. 2c). Cumulative subtype plots
versus patient age further illustrate that non-basal-like
(PAM50), IntClust 4 (IntClust 10), and the luminal androgen
receptor (LAR) (TNBCtype) subtypes are predominantly ob-
served in older TNBC patients, increasing rapidly in patients
aged 60 or more (Fig. 2d–f). Consistently, the LAR subtype

has been previously associated with higher age at diagnosis
and expression of, e.g., the androgen receptor (AR) [6, 19].
Across age groups for all SCAN-B patients, AR gene expres-
sion increased with higher age (Kruskal-Wallis p= 0.025),
but the increase in expression was restricted to HRDetect-
low/intermediate cases when the analysis was substratified
(Kruskal-Wallis p= 0.07) (Additional file 1H). A similar re-
sult was obtained when using a six-gene (AGR2, SLC44A4,
TBC1D9, FOXA1, GATA3, and CA12) breast cancer steroid
response module [40] (Kruskal-Wallis p= 0.01 across all pa-
tients, p= 0.94 in HRDetect-high patients, and p = 0.02 in
HRDetect-low/intermediate patients) (Additional file 1I). Ex-
clusion of LAR classified cases in HRDetect-low/intermediate
cases further reduced the association for both AR gene ex-
pression and the steroid response module with patient age
(Additional file 1H-I). Additionally, within the 29 LAR sub-
typed samples, there was no statistical trend of changes in
AR mRNA expression with stratified patient age (Kruskal-
Wallis p= 0.41) (Additional file S1H).
In summary, we found that while a higher age at diag-

nosis was significantly associated with steroid response
module and AR expression as well as a non-HRD
phenotype, these observations are likely driven by these
samples belonging to the LAR molecular subgroup ra-
ther than age per se.

Age at diagnosis does not by itself represent a distinct
gene signature in TNBC
To test whether an age-related gene expression signal
exists in TNBC, we performed a supervised multiclass
SAM analysis using the stratified age groups as class la-
bels and the top 10,000 most variable refseq genes in the
cohort as input. At a false discovery rate (FDR) of p =
0.01, 1179 genes were differentially expressed between
the groups. Of these, 528 had a maximum median
absolute difference in log2 expression > 1 across all
groups, but only 76 had an absolute log2 expression dif-
ference > 2, indicating that the significant transcriptional
alterations detected between groups are in the lower
fold-change range. Pathway enrichment analysis of the
528 genes identified almost exclusively cell cycle-related
gene ontology biological processes (Additional file 2).
This is consistent with the previous observation of dif-
ferent Ki67 expression levels across the age groups.

Table 2 Results of univariate Cox regression survival analysis in patients treated with adjuvant chemotherapy

Subset of patients N OS IDFS DRFI

All patients 149 HR = 1.04, 95% CI = 0.996–1.078,
p = 0.08

HR = 1.02, 95% CI = 0.991–1.05,
p = 0.18

HR = 1, 95% CI = 0.967–1.036, p = 0.98

HRDetect-high 99 HR = 1.046, 95% CI = 0.989–1.106,
p = 0.12

HR = 1.008, 95% CI = 0.968–1.049,
p = 0.71

HR = 0.977, 95% CI = 0.928–1.028,
p = 0.365

HRDetect-low/intermediate 50 HR = 1.0, 95% CI = 0.938–1.067,
p = 0.99

HR = 1.003, 95% CI = 0.954–1.055,
p = 0.90

HR = 0.983, 95% CI = 0.928–1.042,
p = 0.565

OS overall survival, IDFS invasive disease-free survival, DRFI distant relapse-free interval, HR hazard ratio, CI confidence interval
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Hierarchical clustering of all 1179 age-associated genes
across samples illustrated that the association with age
groups appeared weak (Fig. 2g). To test this, we cut the
dendrogram at the level of six sample clusters and tested
the associations with our stratified age categories as well
as proposed gene expression subtypes (PAM50,
TNBCtype) and genetic subtypes (HRDetect). The analysis
revealed a stronger overall association with the molecu-
larly defined entities rather than patient age, even though
the genes were preselected for their association with the
latter (Fig. 2g, Additional file 1 J-L). Extending the analysis
beyond transcriptomic and genetic subtypes, the clusters
defined by age-related gene expression also differed with
respect to differences in the tumor microenvironment,
illustrated by estimates of tumor cell content from WGS
and in silico estimated proportions of stromal and
immune cell content by CIBERSORTx (Fig. 2h).

Immune cell landscape, tumor mutational burden, and
expressed neoantigens in TNBC with respect to age at
diagnosis
To analyze the immune cell landscape in the context of
age at diagnosis, we used a combination of in silico de-
convolution of RNAseq data based on the CIBERSORTx
method, in situ analyses of PD-L1 and CD20 protein ex-
pression, whole-slide hemotoxylin and eosin-stained TIL
infiltration estimates, and neoantigen expression and
tumor mutational burden (TMB) estimates from WGS.
Analyses were performed in the complete SCAN-B co-
hort, HRDetect-high cases only, HRDetect-low only, and
PAM50 basal-like cases (other molecular subtypes were
not large enough to allow 10-year age binning).
For CIBERSORTx, which estimates proportions of six

cell types (epithelial, macrophage, stroma, T and B cell,
and endothelial), stratified age group testing (Kruskal-
Wallis test) combined with linear regression modeling
for trend (increase/decrease) showed that only the esti-
mated B cell proportion per sample appeared to decrease
with patient age in tested subgroups (albeit with a non-
significant trend for HRDetect-low/intermediate cases)
(Fig. 3a). To test whether these observations could be

validated in situ, we performed CD20 immunohistochem-
istry and scored 200 of the 237 cases into four groups (0,1,
2,3) based on staining patterns. With the exception of
HRDetect-low/intermediate cases, the proportion of cases
with the highest score (bin = 3) decreased with increasing
patient age for all patients, HRDetect-high, and PAM50
basal-like patients (Additional file 1M).
To further analyze mRNA expression of different im-

mune cell marker genes, we clustered 102 genes related to
23 immune cell types (as previously defined in [25]) in the
232 SCAN-B cases with gene expression (Fig. 3b). This
analysis demonstrated the heterogeneity of immune cell
expression across stratified age groups, HRDetect defined
groups, and the PAM50 subtypes. For B cell-associated
genes in Fig. 3b, 83% were differentially expressed between
age groups in the total cohort (n = 232 samples, Kruskal-
Wallis FDR p < 0.05) supporting the CIBERSORTx and
CD20 immunohistochemistry results.
No systematic differences in PD-L1 class (≥ 1%) or ac-

tual PD-L1 IHC scores (% stained cells) between age
groups were observed (n = 218 evaluable cases, chi-
square test p = 0.16, Kruskal-Wallis p = 0.20, respect-
ively) (Additional file 1 N). Similar non-significant re-
sults were found in HRDetect-high, HRDetect-low/
intermediate, and PAM50 basal-like cases separately
(p > 0.05 for both tests in subgroups) (Additional file 1
N). We observed a decreasing trend of TILs assessed
from whole-slide sections with age at diagnosis (n = 213,
Kruskal-Wallis p = 0.001 and linear regression modeling
p = 0.0001) (Fig. 3c). This trend remained significant
when stratifying TIL evaluable cases into HRDetect-high
(n = 126, p = 0.008 and p = 0.001, respectively) and
PAM50 basal-like (n = 165, p = 0.051 and p = 0.001, re-
spectively), but not in HRDetect-low/intermediate cases
(Fig. 3c). To further analyze the difference in immune
cell infiltration, we compared tumor mutational burden
and expressed neoantigens modeled from somatic sub-
stitutions versus patient age. For tumor mutational bur-
den, there was no consistent change in the number of
substitutions and indels per Mb sequence between age
groups that was matched with a significant trend

(See figure on previous page.)
Fig. 2 Patient age versus BRCA1 deficiency and gene expression subtypes in TNBC. a Cumulative proportion of patients with BRCA1 deficiency
(BRCA1 hypermethylation or BRCA1-null tumors) and non-BRCA1-deficient patients versus age at diagnosis. Red triangles indicate age at diagnosis
for 50%, 80%, and 90% of BRCA1-deficient patients. b Cumulative proportions of patients in HRDetect groups versus age at diagnosis. c Principal
component analysis of gene expression data for 232 SCAN-B cases using 19,102 RefSeq genes and different molecular and clinicopathological
factors, including age at diagnosis (years: Age) and stratified age groups (10-year intervals: Age groups). d Cumulative proportions of PAM50
subtypes versus age at diagnosis. e Cumulative proportions of IntClust 10 subtypes versus age at diagnosis. f Cumulative proportions of
TNBCtype subtypes versus age at diagnosis. g Heatmap of 1179 genes differentially expressed between six 10-year interval age groups in 232
SCAN-B cases. Hierarchical clustering of cases (columns) and genes (rows) were performed using Pearson correlation as distance metric and
ward.D linkage on mean-centered log2 transformed data with an offset of 0.1. The six top clusters were identified and labeled. MKI67: Ki67.
Steroid response: Scores according to the steroid response metagene [40]. h From left to right: Estimations of tumor cell content from WGS
(ASCAT method), epithelial, stromal, B cell lymphocyte, and endothelial cell proportions from CIBERSORTx versus the hierarchical clusters in g. For
age group definitions, “[” equals ≥, “)” equals <, and “]” equals ≤ for the value specified next to it

Aine et al. Breast Cancer Research           (2021) 23:20 Page 9 of 19



Fig. 3 (See legend on next page.)

Aine et al. Breast Cancer Research           (2021) 23:20 Page 10 of 19



(increase/decrease) in any of the tested patient groups
(groups: all patients, HRDetect-high, HRDetect-low/
intermediate, and PAM50 basal-like, all Kruskal-Wallis
p > 0.05 and linear regression modeling p > 0.05, Add-
itional file 1O). Similarly, no significant results were
obtained for the number of expressed neoantigens per
sample when modeled using the NeoPredPipe pipeline
for the same patient groups (Additional file 1P).

Difference in copy number alterations and driver
mutations between young and elderly TNBC patients
To analyze the copy number landscape of TNBC with
respect to age at diagnosis, we first calculated and com-
pared (i) the fraction the of genome affected by copy
number gain or loss, (ii) the fraction the of genome af-
fected by LOH, (iii) weighted genome integrity index es-
timates [28], (iv) mutant-allele tumor heterogeneity
scores [29], and (v) the individual components of the
HRD score algorithm (LST, AI, HRD) [27]. With excep-
tion of the HRD score, there was no statistical difference
for the different estimates in (i) all SCAN-B patients, (ii)
HRDetect-high cases only, (iii) HRDetect-low cases only,
or (iv) PAM50 basal-like cases when stratified by age
groups (Kruskal-Wallis p > 0.05, linear regression model-
ing for trend p > 0.05, Additional file 1Q-T). For the
HRD score components, decreasing trends with age were
observed across all cases as well as the PAM50 basal-like
group (Additional file 1 U). These observations can,
however, be explained by that these patient groups are
mixtures of HRD-high and HRD-low cases as previously
shown [9].
Overall, age at diagnosis does not appear associated

with the overall amount of copy number alterations in
TNBC tumors. Illustrations of this are shown in Fig. 4a
for HRDetect-high patients younger than 50 years (n =
46) versus HRDetect-high patients older than 70 years
(n = 24) and in Additional file 3A-B, both showing simi-
lar copy number landscapes between the groups. Con-
sidering the previously described association of older age
at diagnosis with the LAR gene expression subtype
(Fig. 2, Table 1, and [6]), we compared the copy number
landscape between older SCAN-B patients (> 70 years),

LAR-classified SCAN-B patients, and reference popula-
tions of luminal B and basal-like-classified cases from
Nik-Zainal et al. [3]. Both the > 70-year cohort and the
LAR-classified patients showed more copy number simi-
larities with basal-like tumors than luminal B-like cases
(Additional file 3C).
Finally, we analyzed whether the frequency of reported

amplifications and driver mutations in breast cancer [3]
differ between the age groups in the total SCAN-B co-
hort. With higher age, trends of increasing amplification
frequencies of CCND1, CCNE1, EGFR, and increasing
mutation frequency of PIK3CA mutations were ob-
served, while frequencies of MCL1 amplifications and
TP53 mutations decreased (Fig. 4b, c). The alterations
are however also significantly associated with HR status
as well as PAM50 and TNBC subtypes (Fig. 4d, e). Un-
fortunately, the low number of amplified samples per
age group precluded robust age stratified analysis within,
e.g., HRD phenotypes.

Mutational and rearrangement signatures versus patient
age
To provide a composite view on clinical characteristics,
gene expression subtypes, driver alterations, HRD status,
and mutational and rearrangement signatures, we
merged data for the 237 SCAN-B cases, subdivided by
HRDetect and BRCA status and ordered by age at diag-
nosis (Fig. 5a). Interestingly, Fig. 5a illustrates that con-
cordance between HRD algorithms appear to decrease in
patients without BRCA1/2 deficiency. For instance,
across all 237 cases, agreement in HRD classification
(high/low) between HRDetect and HRD score [27] was
83%, 94% in BRCA1/2-deficient cases, but only 74% in
patients with no known BRCA1/2 deficiency. This differ-
ence is likely due to the tuning of the methods’ cut-offs
and that the WGS-based HRDetect method captures
additional levels of information compared to the copy
number based HRD score. For patients with no known
BRCA1/2-deficiency, HRD agreement varied between 65
and 81% across age groups (median = 75%, standard
deviation 6%).

(See figure on previous page.)
Fig. 3 Immune cell landscape of TNBC with respect to age at diagnosis. a CIBERSORTx estimated B cell proportions per sample versus stratified
age groups in all cases (left), HRDetect-high, HRDetect-low, and PAM50 basal-like cases (right). Top axes indicate group sizes. Two-sided p values
calculated using Kruskal-Wallis test. Linear regression modeling showing p value and slope coefficient (k) when using B cell proportion and
continuous age in the model. b Heatmap of 102 immune cell marker genes in 232 SCAN-B cases using Pearson correlation and ward.D linkage.
Hierarchical clustering of cases (columns) and genes (rows) was performed using Pearson correlation as distance metric and ward.D linkage on
mean-centered log2 transformed data with an offset of 0.1. c TIL percentage estimated from whole-slide hemotoxylin and eosin-stained sections
versus stratified age groups in all cases (left), HRDetect-high, HRDetect-low, and PAM50 basal-like cases (right). Top axes indicate group sizes.
Two-sided p values calculated using Kruskal-Wallis test. Linear regression modeling showing p value and slope coefficient (k) when using TIL
percentage and continuous age in the model. For age group definitions, “[” equals ≥, “)” equals <, and “]” equals ≤ for the value specified next to
it. In panels a and c, separate results of a sensitivity analysis for trend are reported in red due to very small sample numbers across the full
stratified age range
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Fig. 4 Copy number alterations versus age at diagnosis in TNBC. a Copy number landscape of HRDetect-high patients < 50 years at diagnosis
versus > 70 years at diagnosis. b Difference in amplification frequency of CCND1, CCNE1, EGFR, and MCL1 with age groups when analyzed in the
total SCAN-B cohort. Two-sided p values calculated using chi-square test for trends in proportions. c Difference in mutation frequency of PIK3CA
and TP53 with age groups when analyzed in the total SCAN-B cohort. Two-sided p values calculated using chi-square test for trends in
proportions. d Proportions of amplified cases for CCND1, CCNE1, EGFR, and MCL1 according to HRDetect classification. e Proportions of mutated
cases for PIK3CA and TP53 according to HRDetect (left), PAM50 (center), and TNBCtype (right) classifications. For age group definitions, “[” equals
≥, “)” equals <, and “]” equals ≤ for the value specified next to it
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We next dissected the different mutational and re-
arrangement signatures shown in Fig. 5a in detail versus
the patient age at diagnosis. For mutational signatures,
we refitted substitutions from the original study using
the SigFit algorithm [30] to account for the fact that the
original signature fitting was made by the optimized
HRDetect algorithm [9]. For the two mutational signa-
tures, 1 and 5, proposed to be associated with age at
diagnosis [42], a significant linear trend of increasing sig-
nature proportions with age at diagnosis was observed
across all SCAN-B cases (linear regression p = 0.007 for
signature 1 and p = 2e−6 for signature 5, Add-
itional file 4A). To explore the underlying genetic phe-
notypes, we focused on BRCA1-deficient cases as
prototypical examples of HR-deficient tumors and
HRDetect-low/intermediate cases as their polar opposite.
The need to stratify HRDetect-high tumors is clear from
Fig. 5a, as BRCA1-deficient, BRCA2/PALB2/RAD51C-de-
ficient, and cases without known HRD inactivation
mechanism have clearly different genetic phenotypes
concerning mutational and rearrangement signatures.
For both tested subgroups, we did not find differences
in proportions of mutational signatures, rearrangement
signatures, or indel types showing a significant trend
across the stratified age groups (Kruskal-Wallis p > 0.01)
(Fig. 5b and Additional file 4B-D). These non-significant
results were further supported by linear regression mod-
eling of proportions as a function of age (p > 0.01) (Add-
itional file 4E-F). The significance of the underlying
genetic phenotype(s) was further evident when perform-
ing the same analyses for the PAM50 basal-like, IntClust
10, and TNBCtype gene expression subtypes (mainly the
BL1 subtype). Here, typical features of HRD [26], such
as the proportion of deletions with junctional microho-
mology, mutational signature 3 proportions, and re-
arrangement signature 3 proportions, decreased with
increasing patient age (Additional file 4G-I). However,
these observations may be explained by the PAM50
basal-like, IntClust 10, and TNBCtype basal-like (BL1
and BL2) gene expression subtypes being mixtures of
both HRD-high and HRD-low cases as shown in [9] and
of the four genetic subtypes in Fig. 5a as shown in Add-
itional file 5A. Similar to the total cohort (Fig. 2c), age at
diagnosis did not capture transcriptional variation in the

individual four genetic subtypes based on unsupervised
principal component analysis (Additional file 5B). More-
over, the pattern of later onset of non-basal expression
subtypes (Fig. 2d, e), and the LAR subtype (Fig. 2f) in
the total cohort was reflected with sufficient numbers
only in HRD-negative tumors when substratified (Add-
itional file 5C). In contrast, in HRD-positive tumors the
different TNBCtype subtypes did not appear to differ
concerning their cumulative age distributions
(Additional file 5D).

Mutational and rearrangement signatures are not
associated with age at diagnosis in molecular subtypes of
breast cancer
To further address the question of differences in muta-
tional and rearrangement signatures versus age at diag-
nosis in breast cancer in general, we utilized the Nik-
Zainal et al. cohort comprising 560 WGS analyzed cases.
The cohort includes 163 TNBCs and 320 ER-positive
and HER2-negative (ER+/HER2−) tumors, and 255 of
560 cases had available PAM50 subtypes (55 basal-like,
10 HER2-enriched, 74 luminal A, 111 luminal B, and five
normal-like cases). Based on group sizes, we focused on
TNBC and ER+/HER2− tumors (stratified by HRDetect
to account for underlying genetic HRD-high or low/
intermediate phenotypes), as well as basal-like, luminal
A and B subtype-classified cases.
When comparing the different signature proportions

stratified by age groups (statistically evaluated by
Kruskal-Wallis’s test) or using linear regression model-
ing of signature proportions as a function of age, only
three significant observations were made across the pa-
tient subgroups after Bonferroni correction for multiple
testing (summarized in Additional file 6 and shown in
detail in Additional file 7A). Significant associations were
all based on linear regression modeling, with corre-
sponding age group stratifications not reaching signifi-
cance after adjustment for multiple testing
(Additional file 7A). Significant associations included an
increase of insertions with patient age in PAM50 basal-
like cases and increases of mutational signature 5 pro-
portions with age in PAM50 basal-like and luminal A
cases. For the two mutational signatures (signatures 1
and 5) previously associated with age at diagnosis [42],

(See figure on previous page.)
Fig. 5 Composite view of molecular and genetic phenotypes versus age at diagnosis in TNBC. a Integrative view of gene expression subtypes
(PAM50 basal-like, LAR, IntClust 4, 10), HRD classification, BRCA1, BRCA2, PALB2, RAD51C, MCL1, CCND1, CCNE1, EGFR, PIK3CA, and TP53 alterations,
mutational signatures (S1-S26), rearrangement signatures (RS1-RS6), patterns of insertion, and deletions versus age groups stratified by an
underlying BRCA1 deficiency, BRCA2 deficiency, and HRDetect classification. BRCA1-null, BRCA2-null, and PALB2-null imply biallelic loss of the gene
based on WGS. b Illustration of signature patterns in BRCA1-deficient tumors (light gray) and HRDetect-low/intermediate cases (white) stratified by
age for proportion of insertions (left), rearrangement signature 6 (RS6, center), and mutational substitution signature 3 (S3, right, refitted by SigFit).
RS6 is characterized by clustered rearrangements typically found in cases with driver amplifications, while S3 is associated with BRCA1/2 deficiency
[41]. Top axes indicate group sizes. Top axes indicate group sizes. Two-sided p values are calculated by Kruskal-Wallis test per group. For age
group definitions, “[” equals ≥, “)” equals <, and “]” equals ≤ for the value specified next to it

Aine et al. Breast Cancer Research           (2021) 23:20 Page 14 of 19



signature 5 appeared most consistent with increasing
proportions with higher age across tested subgroups
(Additional file 7B). Based on the copy number data
available for the Nik-Zainal cohort, we could also con-
clude that the proportion of the tumor genome affected
by copy number gain or loss and the proportion of
the genome affected by LOH did not differ for the differ-
ent patient subsets listed in Table 2 in an age-related
fashion. This held true irrespective of whether the ana-
lysis was performed using stratified age groups or linear
regression modeling (Additional file 7C).

Discussion
In the current study, we tested the hypothesis that
TNBC in young and old breast cancer patients repre-
sents different molecular entities in the context of
underlying genomic phenotypes, based on integration of
multiple layers of genomic profiling by state-of-the-art
sequencing techniques and in situ analysis of immune
cell infiltration, CD20, and PD-L1 expression.
Above all, our study demonstrates the importance of

analyzing age-related alterations in TNBC, as well as
breast cancer in general, in the context of underlying
genomic phenotypes. Considering the molecular hetero-
geneity of TNBC, this may appear self-evident, but has
not previously been reported in a population-based co-
hort comprehensively profiled on as many levels as in
the current study. In TNBC, the importance of a com-
prehensive approach is particularly highlighted by the
genetic phenotypes caused by DNA repair deficiency,
foremost BRCA1/2-deficiency that confers a characteris-
tic HRD phenotype. Despite the size of the current study
some limitations are apparent for specific subgroup ana-
lyses. This applies primarily to HRDetect-low/intermedi-
ate patients where the stratified group sizes for younger
patients (< 50 years) are small and care needs to be taken
in interpretation of their characteristics. To address this,
sensitivity analyses are provided for features reported in
Additional file 1 and Fig. 3a, c. In this study we show
several examples for which trends appear significantly
associated with age at diagnosis in general and even
within/between molecular subtypes, but where substrati-
fied analyses reveal that the significance is restricted to a
specific genomic phenotype. One such example is the
Ki67 proliferation marker, for which levels have been re-
ported to be lower in elderly patients [14, 19]. This is in
agreement with our findings in the full SCAN-B cohort,
but when stratified by HRD status, the decrease appears
restricted to HRD-low/intermediate cases and not to
HRD-high or BRCA1/2-deficient cases. Other examples
include genome-wide mutational and rearrangement sig-
natures, HRD score [27] components indicative of large-
scale transitions and allelic imbalance, specific copy
number alterations, and driver mutations. For these

features, trends of increasing/decreasing proportions
may be observed in the total cohort and even across dif-
ferent transcriptional subtypes (PAM50, IntClust10, and
TNBCtype) if one does not acknowledge that these rep-
resent mixtures of genetic phenotypes.
For mutational and rearrangement signatures, tumor

mutational burden, mutant-allele tumor heterogeneity
scores [29], and the fraction of the genome affected by
copy number alterations, patient age did not appear as-
sociated with consistent decreasing/increasing trends
when accounting for the genetic background of the
tumor. Thus, for these genome-wide characteristics,
TNBC tumors appear shaped by specific mutational pro-
cesses like DNA repair deficiency rather than age at
diagnosis. A similar conclusion was reached in ER-
positive disease based on analysis in the Nik-Zainal data-
set. Moreover, despite the apparent lack of HR defi-
ciency (as defined by [26, 27]) in older TNBC patients
(including LAR subtype cases), these still resembled
basal-like breast cancer more than, e.g., ER-positive lu-
minal B disease with respect to genome-wide copy num-
ber alterations (Additional file 3), albeit with an increase
of amplification drivers and PIK3CA mutations as previ-
ously noted [19]. Concerning the latter, the small num-
ber of affected cases unfortunately precludes a
conclusive statement of whether such specific alterations
are associated with age at diagnosis within a specific
genetic or transcriptional TNBC subtype. The clearest
exceptions for mutational signatures involved the two
signatures previously associated with patient age at diag-
nosis (mutational signatures 1 and 5 often referred to as
“clock” signatures) [42]. In both SCAN-B and the Nik-
Zainal WGS data, signature 5 showed the most trend-
like pattern of increasing mutational proportion with pa-
tient age. Interestingly, trends (estimated by regression
coefficients) for both signatures appeared different
across molecular subgroups, raising the question of
whether the replicative “clock” has different rates in
breast cancer subgroups, or alternatively is affected by
conditions like replication stress.
While younger TNBC patients predominantly present

with a typical basal-like transcriptional subtype (PAM50:
basal-like, IntClust10: cluster 10), exceptions exist
(Table 1). With increasing patient age, non-basal-like
subtypes gain in proportion, illustrated by the LAR sub-
type originally proposed by Lehmann et al. [6] and the
IntClust10 cluster 4 subtype proposed by Curtis et al.
[32] (Fig. 2). Still, these non-basal-like subtypes only rep-
resent a subset of elderly patients as also noted by Ma
et al. [19] (Table 1). The heterogeneity in gene expres-
sion subtype classification across age groups was further
illustrated by both unsupervised and supervised analyses.
The latter identified a weaker gradient-like signal of
tumor proliferation consistent with Ki67 differences [14,
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19] and findings by Ma et al. [19]. However, when age-
related differentially expressed genes were used to clus-
ter samples, the obtained clusters recapitulated the pri-
mary biological subdivision of HRD-positive and basal-
like TNBCs from HRD-negative, less-proliferative, and
non-basal-like tumors (Fig. 2g). Moreover, it is mainly
within the HRD-low/intermediate genetic phenotype
that a steroid/androgen-driven transcriptional subtype
appears in a subset of elderly patients, which also coin-
cided with differences in tumor microenvironment cell
composition (e.g., higher stromal content, Fig. 2h).
While TNBC-specific subtypes (e.g., [4, 6, 43, 44]) have
been associated with tumor and microenvironment char-
acteristics [5, 45], it remains unclear if these sub-
types are all tumor intrinsic or whether the observed
differences are more reflective of the tumor microenvir-
onment. Taken together, our results demonstrate that
age at diagnosis by itself does not define the transcrip-
tional or genetic landscape of TNBC.
An observation that appeared more consistent also in

different genetic backgrounds was a trend of decreasing
TIL counts with patient age (Fig. 2 and Add-
itional file 5E). The analysis is however limited by a low
number of cases in certain age groups and thus requires
additional validation especially for subgroups defined by,
e.g., HRD status. This observation has been reported be-
fore in both TNBC and, e.g., lobular breast carcinoma
[46, 47]. Interestingly, in our cohort, the TIL decrease
was not mirrored by clear linear decreases of lymphocyte
PD-L1 expression, tumor mutational burden, number of
expressed neoantigens, or an immune-associated tran-
scriptional signature in unsupervised and supervised
gene expression analyses. Immune infiltration in breast
cancers has been suggested to be T cell predominant
[48] and with prognostic associations [49]. But the
underlying causes of the infiltration and the heterogen-
eity between tumors remains largely unknown. Loi et al.
identified increasing TIL levels with high histological
grade in TNBC suggesting genomic instability as a pos-
sible trigger [47, 50]. However, in our data, older
HRDetect-high patients with generally lower TIL levels
had no signs of a less unstable genome compared to
younger patients, and no trends of different in silico esti-
mated T cell proportions in all patients or analyzed sub-
groups were observed. A weaker trend of decreasing B
cell proportions, based on in silico deconvolution of
RNAseq data and in situ immunohistochemistry analysis
of CD20 expression, with increasing patient age was ob-
served. This observation warrants confirmation in larger
materials, especially for subgroups based on HRD status
due to small sample sizes. Moreover, how this B cell
trend is associated with the TIL decrease in tumor tissue
remains to be further examined. Notably, age-related
immunosenescence characterized by a decrease in cell-

mediated immune function as well as reduced humoral
immune responses, including reduction of mature B
cells, is well-established in healthy human subjects [51].
The clinical significance of patient age in TNBC remains

controversial [10–14]. In our cohort, long-term outcome
after adjuvant chemotherapy was not associated with age at
diagnosis. It needs to be acknowledged that elderly patients
in our cohort often did not receive adjuvant chemotherapy
due to national guidelines and regional practice at the time,
representing a potential source of bias. Based on that the
genetic features of, e.g., BRCA deficiency and HRD (which
both appear prognostic after adjuvant chemotherapy treat-
ment [9, 25]) do not change with age, it may be argued that
withholding treatment based on age alone could for some
patients at least be reconsidered. Moreover, for a subset of
HRD-negative elderly patients with mainly the LAR subtype
alternative therapies like anti-androgens may be considered
[52, 53]. In contrast, while young age at diagnosis is
strongly associated with HRD (Table 1), it appears particu-
larly important to identify young/middle aged patients
without an HRD phenotype, as these may derive greater
benefit from other types of treatment than conventional
chemotherapy. In this context, our observation of a greater
discrepancy between HRD methods for particularly non-
BRCA1/2-deficient patients becomes a relevant issue to
consider for the choice of HRD classification method in a
diagnostic setting (Fig. 5a).
From a genetic perspective, TNBC represents at mini-

mum two types of disease, a DNA repair-deficient dis-
ease with genetic scars strongly associated with BRCA1/
2 deficiency and a basal-like phenotype, and a second
entity in which there is a larger heterogeneity concern-
ing transcriptional subtypes [9]. For genetic subtypes (il-
lustrated by the decline of BRCA1 deficiency), a switch
is apparent at 60–70 years of age coinciding with the
median age of diagnosis of ER+ disease. Considering
previous studies, it has been hypothesized that molecular
differences between younger and older women may be
more related to the differences in the tissue microenvir-
onment of a pre-menopausal and post-menopausal pa-
tient rather than intratumoral biological differences [15].
A limitation is however that we are currently unable to
assess at which time and in which cell type a tumor
forms, representing an intriguing but challenging re-
search area. Moreover, strong associations with specific
microenvironmental, transcriptomic, and genetic pheno-
type in addition to patient age for certain subgroups,
e.g., the LAR subtype, make definitive conclusions re-
garding causality challenging. An additional caveat with
a population-based cohort such as ours is the influence
of screening, particularly if biased towards specific high-
risk groups such as families with known hereditary risk
factors for breast cancer. In most cases however, excep-
tions exist wherein features of old patients’ tumors
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present in a young patient and vice versa, arguing in
favor of the primacy of tumor-intrinsic rather than
patient-level characteristics in tumor evolution.

Conclusions
Our study demonstrates that in TNBC, age at diagnosis
alone does not appear to provide an additional layer of
biologic complexity above that of proposed genetic and
transcriptional phenotypes. It may thus be argued that
decisions regarding treatment regimens should be less
influenced by age and more driven by actual tumor biol-
ogy that needs to be carefully assessed through modern
molecular diagnostics.
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