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Abstract: Hepatocellular carcinoma is a common malignant tumor with high mortality. Its malignant
proliferation, invasion, and metastasis are closely related to the cellular immune function of the
patients. NKG2D is a key activated and type II membrane protein molecule expressed on the surface
of almost all NK cells. The human NKG2D gene is 270 kb long, located at 12p12.3–p13.1, and
contains 10 exons and 9 introns. The three-dimensional structure of the NKG2D monomeric protein
contains two alpha-helices, two beta-lamellae, and four disulfide bonds, and its’ signal of activation
is transmitted mainly by the adaptor protein (DAP). NKG2D ligands, including MICA, MICB, and
ULBPs, can be widely expressed in hepatoma cells. After a combination of NKG2D and DAP10 in
the form of homologous two polymers, the YxxM motif in the cytoplasm is phosphorylated and
then signaling pathways are also gradually activated, such as PI3K, PLCγ2, JNK-cJunN, and others.
Activated NK cells can enhance the sensitivity to hepatoma cells and specifically dissolve by releasing
a variety of cytokines (TNF-α and IFN-γ), perforin, and high expression of FasL, CD16, and TRAIL.
NK cells may specifically bind to the over-expressed MICA, MICB, and ULBPs of hepatocellular
carcinoma cells through the surface activating receptor NKG2D, which can help to accurately identify
hepatoma, play a critical role in anti-hepatoma via the pathway of cytotoxic effects, and obviously
delay the poor progress of hepatocellular carcinoma.

Keywords: NKG2D; ligand; signal transduction; cytokines; perforin; hepatocellular carcinoma;
oncolytic effect

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies in humans originating
from liver epithelial cells and has a high recurrence rate [1,2]. It has high mortality and global
distribution being the fifth most common cancer and the second main reason of cancer-related
mortality [3]. It has been confirmed that the incidence of HCC is high in Asia, Africa, and southern
Europe [4]. The occurrence of hepatocellular carcinoma is a complex pathological process mediated
by a variety of undesirable factors and accumulated over a long period [5]. Chronic alcoholism [6],
nitrosamine [7], and aflatoxin [8] can induce liver cancer. In particular, cirrhosis of the liver after HBV
infection can easily develop to liver cancer without active treatment [9]. The malignant proliferation,
invasion, and metastasis of HCC cells have been associated with the NK cell immune function of
the patients [10], such as the cytotoxicity of primary NK cells from the hepatoma patients against
SMMC7721 or HepG2 cells displayed a significant reduction, and also were positively associated with
the level of miR-506 and negatively correlated with the mRNA level of STAT3 [11].

NKG2D (Natural Killer group 2 member D), a key member of the C type lectin receptor family, a
lectin-like type 2 transmembrane glycoprotein, is an important activating receptor widely expressed
on the surface of NK cells, CD8+αβT cells, γδ T cells, and NK T cells [12]. Some cytokines, such as
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IL-2, IL-15, IFN-γ, etc., can significantly up-regulate the level of NKG2D on the surface of NK cells [13].
High expression of NKG2D in NK cells can further promote the activation of NK cells [14]. NKG2D
ligands include MHC class I chain related molecule (MIC) and MHC-I related molecules UL16 binding
protein (ULBP). Under normal physiological conditions, NKG2D ligands are usually at a poor or
absent expression in most normal cells, such as gastrointestinal epithelial cells and endothelial cells. It
is worth noting that NKG2D ligands are widely expressed in virus-infected cells, liver cancer, colon
cancer, lung cancer, and other common tumors. NKG2D binds to the corresponding ligands with
different affinities ranging from 6 to 9000 nM and activates downstream cascade signaling, which plays
an important role in the antiviral and anti-tumor immune response [15]. Therefore, the response of NK
cells to acute stimulation is dynamically regulated by the interaction of NKG2D on the surface of NK
cells and related ligands of cell in the local microenvironment [16].

NKG2D regarded as the best-characterized activating receptor on NK cells, and the potentialities
of hepatic infiltrating NK cells to play antitumor functions have been unclear. Its molecular mechanism
of interaction between NKG2D and ligands and in the process of the immune response to hepatocellular
carcinoma will be expressly focused in this review.

2. The Discovery of NKG2D

NKG2D, as a characteristic and novel receptor, was found on the surface of activated NK cells in the
90s of the last centuries. The DNA sequence of the single NKG2-D isolate was determined by recloning
the PCR amplification fragment in both orientations into M13mp19 and applying the single-stranded
sub-cloning method. During the DNA sequence analysis of NKG2 group on templates derived from
the original l-Gem cDNA clones by the method of asymmetric PCR in 1991, Houchins and others [17]
luckily found the dominant expression gene NKG2D, and also cloned and screened its adjacent NKG2A,
NKG2B, and NKG2C at the same time. These groups of genes encode type II membrane proteins
composed of 215–233 amino acids. The 5′ end of NKG2-D was 95% homologous with the stippled
region within the transcripts of NKG2A, NKG2B, and NKG2C. Surprisingly, NKG2C and NKG2A had
94% homology in the external (COOH-terminal) domain and 56% homology in the transmembrane
and intramembrane regions. However, there was only 21% amino acid homology between NKG2D
and the other three group genes. The peptide sequence homology results confirmed that the NKG2
peptide is a member of a common supergene family with several type II membrane proteins.

NK cells recognize target cells based on NKG2D and play a crucial role in the anti-tumor immune
response. By comparing with T cells and B cells, NKG2D expressed on the surface of NK cells is
not restricted by MHC in the activation process. Through the adhering receptor, NKG2D recognized
specifically the major histocompatibility complex class I polypeptide-related molecule A (MIC-A),
molecule B (MIC-B), and MHC-I related molecules UL16 binding proteins (ULBPs) [18,19] on the
surface of multiple tumor cells, which subsequently plays a pivotal cytotoxic effect on the tumor
cells. A variety of receptors expressed on NK cells can be divided into active receptors and inhibitory
receptors. The active receptors belong to the characteristic natural cytotoxicity receptor (NCR) family,
such as NKp46, NKp30, NKp44 [20,21], and C type lectin family receptor (NKG2D, CD94/NKG2C,
CD94/NKG2E, CD94/NKG2F, and CD161) [22], and also include active KIRs (killer immunoglobulin
receptors), such as KIR2DS1, KIR2DS4, and KIR2DL4 [23]. The inhibitory receptors mainly include
NKG2A, KIR2DL1, KIR2DL2/L3, and KIR3DL1 [24,25]. The characteristics of the activating receptor
and inhibitory receptor on the surface of NK cells are shown in Table 1 and Figure 1.
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Table 1. The characteristics of activated and inhibitory receptors of NK cells.

Functional
Classification

Structural
Classification Receptor in Human Chromosome

Localization
Number of

Exons
Receptor in

Mouse
Chromosome
Localization

Number of
Exons

Activating
receptor

NCR

NKp46 or Ly94 or Mar-1 19p13.42 9 NKp46 or NCR1 7; 7 A1 7
NKp30 6p21.32 5 \ \ \

NKp44 6p21.1 6 \ \ \

FcγRIII/CD16/FCG3/FCGR3 1q23.3 7 FcγRIII/CD16 1H3; 178.8 cM 9

Type C lectin like
receptor

(CD94/NKG2
family)

NKG2D 12p12.3-p13.1 8\9\10 NKG2D (Main) 6 F3; 6 63.44 cM 9
CD94/NKG2C 12p13.2 6 CD94/NKG2C 6; 6 F3 7
CD94/NKG2E 12p13.2 7 CD94/NKG2E 6; 6 F3 7
CD94/NKG2F 12p13.2 4 CD94/NKG2F \ \

CD161 12p13.31 6 CD161 6 F3; 6 63.09 cM 6
Ly49d
Ly49h

6 F3; 6 63.44 cM
6 F3; 6 63.44 cM

7
8

KIRs
KIR2DS1 19q13.4 11 — — —
KIR2DS4 19q13.42 8 — — —
KIR2DL4 19q13.42 8 — — —

Inhibitory receptor

Type C lectin like
receptor

CD94/NKG2A 12p13.2 9 Ly49a, c, g, i

6 F3; 6 63.44 cM
6 F3; 6 63.44 cM
6 F3; 6 63.44 cM
6 F3; 6 63.44 cM

9
7
9
9

CD94/NKG2B 12p13.2 13 — — —
PD-1 [26] 2q37.35 6 PD-1/Pdc1/Ly101 1;1D 5
Siglec-7 19q13.41 7 — — —

KIRs
KIR2DL1 19q13.42 11 — — —
KIR2DL2
KIR2DL3

19q13.4
19q13.42

9
8 — — —

KIR3DL1 19q13.42 9 — — —
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Figure 1. NK cell receptors and expression. (A) The types of receptors expressed on the surface of NK
cells. Activating receptors can be expressed on NK cells, such as NKG2D, C, NKp46, CD16, and others,
and multiple inhibitory receptors also can be expressed on NK cells, such as NKD2A, NKG2B, and
so on. (B) Balanced expression of activating receptor and inhibitory receptor. Based on the dominant
expression of inhibitory receptor, NK cells have no cytotoxic effect on normal cells with poor expression
of NKG2D ligands.

The human NKG2 receptor family includes at least seven members, such as NKG2A, B, C, D, E, F,
and H [27]. Among them, NKG2A and B belong to the member of inhibitory receptors. NKG2C, D, and
E belong to the member of activating receptors. The expression of NKD2A, B, C, E, and H receptors on
the surface of NK cells requires CD94 molecular to participate in assistance and to form disulfide-linked
heterodimers with invariant CD94 molecular [28]. It is noteworthy that the cytoplasmic domain of
human NKG2A contains two crucial immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which
can interact with SHP-1 (Src homology region 2 domain-containing phosphatase-1) and SHP-2 (Src
homology region 2 domain-containing phosphatase-2) respectively [29]. These inhibitory motifs are
composed of the specific sequence of I/VXYXXV/L in the cytoplasmic domain, which is conducive
to further tyrosine phosphorylation of ITIMs after binding of receptor ligands [30]. SHP-1 tyrosine
phosphatase can be recruited to dephosphorylate tyrosine residues, and which can activate cascade
signaling molecules and transmit inhibitory signals. NKG2A mediated SHIP-1 signaling pathway
plays a key role in mediating the occurrence and progression of hepatocellular carcinoma and other
malignant tumors [31]. The overexpression of SHIP-1 can inhibit the proliferation, migration, and
invasion of hepatoma cells. Conversely, knockdown of SHP-1 can significantly enhance the malignant
proliferation of hepatocellular carcinoma.

Due to the absence of the ITIMs motif, MKG2C can be blocked to inhibit signal transmission
and can transmit the activated signal in the form of disulfide-linked heterodimers with the invariant
CD94 molecular. A lot of LAK cells (lymphokine-activated killer cells) derived from C57BL/6 were
successfully prepared from C57BL/6J, BALB/cJ, and C57BL/6T murine in the experimental studies
of Ho et al. [32]. By comparing the amino acid sequences of human NKG2D and human CD94, the
protein sequence was deduced from the expressed sequence tag (EST) database, and one clone with
high homologous to human NKG2D and two homologous clones from human CD94 were identified
by the probes with the EST clone inserts. Two positive clones with 2.1 and 1.1.3 were screened from the
cDNA library of C57BL/6J LAK cells by the EST probe hybridization to murine NKG2D (mNKG2D)
and murine CD94 (mCD94). The positive cDNA clone with a 2.1 cell line encodes a type II integral
membrane protein in homology to human NKG2D and murine NKG2D (NKR-P2) was 60% and 81%,
respectively. However, the amino acid homology of type II integral membrane protein encoded by a
positive cDNA clone in the 1.1.3 cell line in human NKG2D and NKR-P2 was 77% and 55%, respectively.
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3. Chromosome Localization of NKG2D

3.1. Chromosome Localization of NKG2D in the Mouse

As early as 1996, Dissen et al. [33] had verified that the genetic locus of the NK-mediated
alloreactivity (NKa) induced by NK cells were located on the autosomes. It was an important
dominant gene in the natural killer gene complex (NKC) region of the mouse, which could regulate the
antimicrobial activity of allogeneic lymphocytes and NK cells. The NKC on the mouse chromosome 4
was identified (Figure 2A) by linkage analysis and pulsed-field gel electrophoresis, which could include
the NK cell receptor protein 1 (NKR-P1) and Ly-49 multigene families plus the NKG2D homologue of
the mouse.

Figure 2. Chromosome localization of NKG2D. A: Mouse-derived NKG2D location on chromosome 4
and B: human-derived NKG2D location on chromosome 12.

3.2. Chromosome Localization of NKG2D in Human

The human KLRK1 gene is located in 12p12.3-p13.1 of the chromosome with its genome size of
approximately 270 kb, and encodes type II membrane protein with a molecular weight of 42 KDa [34].
In 2012, Imai et al. [35] had found that the NKG2D expressed on the surface of NK cells and CD8+T cells
in the peripheral blood of 732 cases of atomic-bomb survivors were analyzed by the method of single
nucleotide polymorphisms (SNPs), and confirmed that NKG2D in human located on chromosome 12p
(Figure 2B). These SNPs had formed two crucial haplotypes such as NKG2D hb-1 and NKG2D hb-2.
It was noteworthy that the low-activity-related LNK1 and high-activity-related HNK1 as two major
haplotype alleles had been caused by NKG2D hb-1. Both haplotypes significantly correlated with the
natural cytotoxic activity of NK cells and CD8+ T lymphocytes. HNK1/HNK1 haplotype could be
more meaningful than LNK1/LNK1 in revealing cancer risk reduction. A case-control study based on
the cohort study had demonstrated that the risk of cancer was significantly decreased in patients with
expression of HNK1/HNK1 haplotypes than those of LNK1/LNK1. The mean fluorescence intensity
(MFI) of NKG2D expression on NK and CD8+ T cells and NKG2D haplotypes significantly increased in
the order of LNK1/LNK1, LNK1/HNK1 and HNK1/HNK1 (P = 0.003), which was consistent with the
increasing order of natural cytotoxic activity. The individual haplotype markers of haplotype-tagging
single nucleotide polymorphisms (htSNPs) showed that the main homozygote, heterozygote, and
small homozygous genotype were in sequence (P = 0.02–0.003), and had obvious individual differences
in the cytotoxic reaction to tumor cells in vivo.
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3.3. The Difference Expression of NKG2D between Humans and Mice

NKG2D, also known as killer cell lectin-like receptor K1 (KLRK1), has a functional single nucleotide
polymorphism (SNPs) [36], which has a gene length of 37793 bases and is located at 10416219–10454012
bp of the negative chain of chromosome 12. The data from the ENTREZ database show that it contains
12 exons. A synonymous and nonsynonymous substitution at two nucleotide positions have been
identified in three alleles of human KLRK1, which may be greatly limited polymorphism. The limited
polymorphism of homologous gene KLRK1 also has been confirmed in mice. KLRK1 orthologous
genes existed in all genomes of mammalian and marsupial and are highly conserved during evolution
(Figure 3). As an active receptor, NKG2D can be expressed in NK cells, CD8+T cells, and other
immunoreactive cells in humans and mice, but the expression in CD4+T cells is usually absent [37].
The differential expression of NKG2D in humans and mice is shown as shown in Table 2.

Figure 3. The gene structure of human NKG2D. The gene structure of human NKG2D is composed of
10 exons and 9 introns. Exons 2–4 encode the intracellular and transmembrane domain. Exons 5–8
encode the domain, which is prominent in the extracellular and can combine with a ligand.

Table 2. The differential expression of NKG2D in humans and mice.
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†: According to the type of TCR, T cells can be divided into αβ+ T cells and γδ+ T cells. On the basis of the
expression of the delta chain of TCR on the surface of γδ T cells, it can be further divided into four subgroups:
Vδ1γδ T cells, Vδ2γδT cells, Vδ3γδ T cells, and Vδ5γδT cells [40]. Furthermore, in the light of the different functions
of γδ T cells, they can be divided into regulatory γδ T cells (γδ Treg cells) [41,42], IL-17 producing γδ T cells (γδ T17
cells) [43], IFN-γ producing γδ T cells (IFN-γ+ γδ T cells) [44], human MutS homologue 2 (hMSH2) specific γδ T
cells [45], and IL-6 secreting γδ T cells [46].

4. Interaction between NKG2D and Ligands

MICA, MICB, and ULBPs are currently recognized as NKG2D specific ligands [47]. Take MICA
as an example, its genetic structure is shown in Figure 4. NKG2D binds specifically to the different
ligands with different affinity [48]. The affinity of NKG2D to corresponding ligands in humans is
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ULBP1, MICA, and MICB from high to low [49], but the affinity of ULBP2 to ULBP4 is still unclear.
However, the affinity of NKG2D to its ligands in the mouse is RAE1δ, RAE1α, RAE1γ, RAE1β,
H60, and MULT1 from high to low, but the affinity between NKG2D and its ligand RAE1ε has not
been proved [50]. Surprisingly, the NKG2D of one species can bind to the NKG2D ligands of other
species [51], such as mouse-derived NKG2D can also bind to the human-derived ULBP1 and ULBP2.
Moreover, human-derived NKG2D also can be combined with the pig-derived NKG2D ligands.

Under the co-culture of NK cells and tumor cells that can express NKG2D ligands, the silent NK
cells only show low levels of anti-tumor effects, which have suggested that the cytotoxicity of NK
mediated by NKG2D may further require the participation of other signals. The hepatic liver infiltrating
NK cells in tissues of human primary liver cancer and colorectal cancer (CRC) liver metastases were
compared from the data of Easom et al. [52], their results showed that NK cells with high expression of
CXCR6+CD69+ and NKG2D were widely expressed in tissues of HCC and liver colorectal metastases.
However, the phenotype of NK cells was different in local hepatocellular carcinoma and the uninvolved
distant liver margins. IL-15 could directly promote the anti-tumor activity of NK cells against HCC
cell lines and hepatoma cells directly extracted from liver cancer tissues in vitro. The activation
characteristics of CD8+/CD4+ T cells and NK cells induced by IL-15 made full use in studies of Hu et
al. [53] and a novel molecule (called P22339) based on IL-15 was ingeniously constructed through a
rational structure-based design. This study found that it could significantly inhibit the growth and
metastasis of tumor in the rodent model both in vitro and in vivo, and also could activate the T and
NK cells of the cynomolgus monkey, which showed great potential for cancer immunotherapy.

Figure 4. The gene structure of MICA. The gene structure of MICA contains 5 introns and 6 exons.
Among them, exon 1 encodes the prepeptide, exons 2–4 encode three extracellular globular domains,
exon 5 encodes the transmembrane domain, and exon 6 encodes the cytoplasmic tail structure.

As a crucial activation receptor, NKG2D can specifically bind to DAP10 via the induced fit theory
and further induce phosphorylation [54]. The meaning of induced fit theory is shown that when
two molecules recognize and combine with each other, molecular flexibility plays a key role in the
induced-fit effect to complete self-assembly [55]. DAP10, a kind of DNAX-associated protein 10, is
related to the YxxM motif. The charged amino acid residues in the transmembrane (TM) region of
the NKG2D homologous dimer are linked to the TM residues of one single DAP10 via the two salt
bridges so as to form a hexamer structure (Figure 5). The direct measurement of chemometrics shows
that a NKG2D homologous dimer is tightly linked to four chains of DAP10. Selective mutations in
one of the base TM residues in NKG2D can lead to an absence of two chains in DAP10, which also
strongly suggesting that arginine in each TM sequence can be used as a site for the interaction of
DAP10 dimers. This mutation can significantly reduce the possibility of the formation of NKG2D
dimer, which is harmful to the formation of the hexamer structure [56]. The binding of NKG2D to
a single DAP10 ligand can lead to phosphorylation of its four chains, which may be related to the
sensitivity of the NKG2D receptor signal transduction, especially in the case of a low level of DAP10.
DAP10 can form a homologous dimer with disulfide bonds [57], and also with a key YxxM motif in the
cytoplasm, which can bind to the p85 is the regulatory subunit of phosphoinositide-3 kinase (PI3K)
after phosphorylation, so as to activate the signal transduction pathway of PI3K [58].
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It has been also reported that the YxxM motif may be defined as the DAP10 functional region
with a SH2 (Src homology 2 protein) structure, a highly conserved area, which has a TxxM motif
similar to CD28 fragments in cytoplasm, and also can recruit 1,4,5- three phosphoric inositol
(inositol-1,4,5-triphosphosate, IP3), and further bind to P85 subunits of phosphatidylinositide 3-kinase
(PI-3K), and activate the downstream growth factor receptor-bound protein 2 (Grb2). The Grb2
molecule can synchronously combine with the protein of Shc and Sos so as to form the Shc-Grb2-Sos
complex and then activate Sos. The activated Sos proteins bind with the Ras protein on the plasma
membrane and further activate the Ras protein, so that the cascade reaction of the downstream signal
is triggered [59]. After NKG2D binding to the ligands, the combination of Grb2 with the Vav of
guanine nucleotide exchange factor (GEF) can make tyrosine phosphorylated at the amino terminus
of the SLP76 (Src homology 2 domain containing leukocyte protein of 76000) protein. Tyrosine after
phosphorylation can be combined with the SH2 domain of Vav1 to form a complex consisting of a
variety of adapter proteins, and then activate the JNK kinase and play a pivotal cytotoxic activity. It
can also release granulase through the signal pathway of phospholipase C gamma 2 (PLCã2) and exert
multiple cytotoxicities [60].

Figure 5. The interaction between NKG2D and its ligands. When NKG2D binds to its ligand,
the transmembrane charged amino acid residues can be linked to TM residues of DAP10, and
induce the phosphorylation of the YxxM motif in the cytoplasm, and then activate the downstream
phosphoinositide-3 kinase (PI3K) signal pathway.

SLP76 with a molecular weight of about 76 kD is a tyrosine phosphine protein with an SH2
domain [61]. Its amino terminal contains a PEST (Proline-Glutamate-Serine-Threonine rich) domain
and several tyrosine residues, which as an important tyrosine phosphorylation sites. Its central region
contains a large number of proline domains, while carboxyl terminus contains a SH2 domain [62]. The
characteristics of the proline rich domain and multiple phosphorylation sites in SLP76 proteins are
easy to directly bind to the SH3 domain of the other joint protein Grb2 to form a complex consisting of
a variety of adapter proteins, which can be able to transmit extracellular signals to the Ras protein. The
activated Ras is further combined with the amino terminal of serine/threonine protein kinase Raf1,
which can phosphorylate extracellular signal regulated kinase (ERK), and eventually lead to oxidative
stress and activation of transcription factors such as NF-kappa B, and also triggers a series of potent
cytotoxic effects.
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5. Activation of NKG2D Promotes the Activity of NK Cells Against Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) as a common malignant tumor has some significant characteristics
of expansive growth, exogenic growth, and invasive growth, which makes it easy to infiltrate the
surrounding tissue space, blood vessels, and lymphatic vessels, and also actively penetrate the
capillary walls into the bloodstream and metastasize along with the blood vessels [63] and lymphatic
channels [64]. In addition, hepatocellular carcinoma can also be spread by seeding [65]. The activation
of NKG2D receptors can promote the release of multiple active proteins from NK cells, such as
perforin and granzymes, and can also induce the expression of tumor necrosis factor (TNF) ligand
interferon-gamma (IFN-γ) to induce apoptosis of hepatocarcinoma and is beneficial to clean up the
tumor (Figure 6). An exciting novel research results also had been shown that the NK cells with positive
CD56bright located in human hepatic sinuses had effective cytotoxicity against SNU398 hepatoma cells
through multiple signaling pathways (such as high expression in NKG2D, NKp46, TRAIL, FasL, and
others), which were very helpful for the immunotherapy of hepatocellular carcinoma [66].

Figure 6. NKG2D on activated NK cells play crucial inhibitory effects against hepatocellular carcinoma.
The activated NK cells can express NKG2D, release multiple cytokines, secrete granzyme, express
FasL, TRAIL, promote the target cells dissolve, and play effective anti-hepatoma effects in many ways.
Both HBV particles and soluble ligand sMICA produced by hepatoma cells can effectively inhibit NK
cell activation.

5.1. TNF-alpha Secreted by NK Cells Exerts Anti-hepatocarcinoma Activity by Activated NKG2D

TNF-alpha (TNF-α) is a small molecule and secretory glycoprotein produced by activated
macrophages, NK cells, and so on. It not only widely participates in the immune defense and
inflammatory response of cell activation [67], survival, proliferation, necrosis, and apoptosis, but
also plays multiple antitumor effects via the way of inducement of tumor cells swollen and lysis [68].
Radiofrequency ablation (RFA) is an effective and low risk treatment for hepatocellular carcinoma, and
is especially suitable for patients with liver cancer, which are not suitable for operation. A total of five
New Zealand white rabbits aged between two to three months, weighing 2.5–3.0 kg were randomly
selected and established as an animal model of hepatocellular carcinoma in the novel studies of Mo et
al. [69]. Two weeks later, the expression level of NKG2D receptors on NK cells in the white rabbits
were all detected by flow cytometry and the levels of IFN-γ and TNF-α were tested by ELISA on
basis of hematoxylin and eosin (H&E) staining of the liver tissue on the slices. The exciting results
showed that the number of NK cells in the rabbit tumor model decreased significantly (P < 0.01).
After the treatment of RFA, the number of NK cells and the expression of NKG2D receptors increased
significantly and reached the peak value at the end of the 1st week after the treatment of RFA. The
levels of IFN-gamma and TNF-alpha also increased significantly during the same period, and the peak
value appeared at the first weekend and lasted until the fourth week under the treatment of RFA. These
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results had been suggested that RFA could significantly enhance the immunotherapeutic effects of NK
cells on hepatocellular carcinoma through the up-regulation of NKG2D expression.

The regulation role of NKG2D receptors on NK cells in hepatocellular carcinoma and precancerous
lesions was analyzed by Zekri et al. [70]. The levels of the active NK cells (CD56+CD161+), the
activated NK cells (CD56+CD314+), and the inactive NK cells (CD56+CD158+) from the peripheral
blood of the patients with liver cancer, liver cirrhosis, and chronic hepatitis were regarded as the major
detection indices and comparatively analyzed in detail. The results showed that NKG2D expression
was significantly down-regulated in NK cells, and without NKG2D expression was found in nearly
63% of HCC cases. The secretion of IL-2, IFN-alpha, and IFN-gamma also decreased significantly,
but the levels of TNF-alpha-R2 (soluble tumor necrosis factor receptor type II), IL-10, and IL-1 beta
increased significantly in HCC patients. It had been suggested that NKG2D could up-regulate
the expression of TNF-alpha-R2 and promote the secretion of TNF-alpha to inhibit the malignant
proliferation of hepatocellular carcinoma cells. Inhibition of TNF-alpha expression can promote the
recurrence and metastasis of hepatocellular carcinoma. Xu et al. [71]. found that long-term use of
Indomethacin could induce the expression of PD-1 and PD-L2, and inhibit the secretion of TNF-alpha
and IFN-gamma through TRIF/NF-kappa B axis and JAK/STAT3 axis in a dose-dependent manner
in vivo and in vitro, and further promote intrahepatic recurrence and extrahepatic distant metastasis
of hepatocellular carcinoma. When the expression of PD-1 and PD-L2 was blocked, the decrease of
TNF-alpha and IFN-gamma induced by Indomethacin could be easily reversed. It was suggested that
Indomethacin should be used cautiously when cancer pain occurred in patients with hepatocellular
carcinoma to prevent recurrence and malignant metastasis of hepatocellular carcinoma caused by the
down-regulation of TNF-alpha and IFN-gamma triggered by the over-use of Indomethacin.

5.2. IFN-gamma Secreted by NK Cells Exerts Anti-hepatocarcinoma Activity by Activated NKG2D

In order to clarify that NKG2D could promote the secretion of IFN and play an inhibitory role in
hepatocellular carcinoma cells, the detailed experimental research data on Wu et al. [72] had been found
that the natural killer cell dysfunction induced by monocytes/macrophages in local hepatocellular
carcinoma tissues was mediated by the interaction of CD48/2B4. On the basis of comparative
observation of NK cell infiltration and accumulation in a human normal liver (distal normal tissues
of hepatic hemangioma), liver of chronic hepatitis (liver transplantation), non-tumorous liver, and
paired intratumoral tissues, the survival of patients was predicted. The low level accumulation and
infiltration of NK cells and less secretion of TNF-α and IFN-γ were discovered in 294 cases with
untreated and advanced hepatocellular carcinoma. There was a positive correlation between the
NK cells dysfunction and the high infiltration of monocytes/macrophages in the local peritumoral
stroma. The intense expression of the CD48 protein in monocytes was a key factor to induce NK
cell dysfunction in cancer focus. It had been suggested that the progression and immune escape of
hepatocellular carcinoma were closely related to the decrease of the NK cell number and function
(TNF-α and IFN-γ) in the tumor microenvironment. Lasfar et al. [73] took BNL mouse as a hepatoma
model and found that IFN-alpha (IFN-α) could induce NK cell activation, significantly up-regulate the
expression of NKG2D, and increase the secretion of IFN-gamma (IFN-γ). IFN-lambda (IFN-λ) could
sensitize the hepatocytes of BNL hepatoma mice, and the combination of IFN-α and IFN-lambda could
significantly enhance the targeted lysis of NK cells to hepatoma cells. The mortality of BNL hepatoma
cells was decreased significantly after the application of anti-NKG2D monoclonal antibody, which
suggested that the expression of NKG2D receptors on NK cells blocked by a monoclonal antibody might
inhibit the secretion of IFN-γ and decrease the cytotoxicity effect on BNL hepatoma cells. However,
the results by using flow cytometry staining to detect 30 HCC patients from Zhang et al. [74] had
shown that there were a large number of CD11b-CD27-(DN) NK cell subsets infiltrating in the focal
tissues of hepatocellular carcinoma. The subsets of CD11b-CD27-(DN) NK cells with low cytotoxicity
and deficient IFN-gamma resulted in the dysfunction of NK cells in patients with HCC, which was
positively correlated with the malignancy degree and size of tumors, and negatively correlated with
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the survival period of the patients. It was suggested that the poor prognosis of the patients with
hepatocellular carcinoma could be positively associated with CD11b-CD27-(DN) NK cells infiltrating
with insufficient secretion of IFN-gamma secretion in the focal tissues.

Recently, Xu et al. [75] have explored the role of pro-inflammatory response as another novel
perspective in the malignant progression of tumors and the tumor immune escape. Under the
inducement of frankincense and myrrh (FM), the effects of CD8+NKG2D+ T cells enriched from human
peripheral blood were observed on hepatoma cell lines HCKM3 and Hepa 1-6. It was found that FM
could significantly inhibit the signal transduction of NF-kappa B and STAT3 in HCC cells and further
inhibit the activation of CD8+NKG2D+ T cells at a dose of 60 mg/kg. In HCC-bearing mice, FM at
non-toxic doses (0.5 mg/mL) could not inhibit the tumor cells growth in immune-damaged mice and
could significantly inhibit the growth of tumor cells in immunocompetent mice. The prolongation of
the life span in HCC tumor bearing mice was based on the secretion of a large amount of IFN-gamma
in the tumor microenvironment (TME) in immune competent mice. When the neutralizing antibodies
were injected intraperitoneally to deplete CD8+ T cells or NK cells, the cytotoxicity to hepatocellular
carcinoma was significantly weakened. On this basis, Hwang et al. [66] further explored the phenotype
and function of NK cells in human hepatic sinusoids and their cytotoxicity to hepatocellular carcinoma
cells. It was found that NKG2D, NKP46, TNF-related apoptosis-inducing ligand (TRAIL), and Fas
ligand (FASL) were highly expressed in hepatic intrasinusoidal (HI) CD56bright NK cells, which had
little degranulation effect on Huh7 cells, but could secrete more IFN-γ to produce strong cytotoxicity
on Huh7 cells. Interestingly, few significant changes in cytotoxicity of HI CD56bright NK cells could be
observed after a blockade of PD-L1. It had been suggested that HI CD56bright NK cells might be the
most effective functional cells for immunotherapy of hepatocellular carcinoma.

5.3. FasL Expressed on NK Cells Exerts Anti-hepatocarcinoma Activity by Activated NKG2D

Factor associated suicide (Fas) belongs to type I transmembrane glycoproteins with a molecular
weight of 36 kDa, which can widely express a variety of virus-infected cells and tumor cells. Meanwhile,
factor associated suicide ligand (FasL) is a type II transmembrane glycoprotein with a molecular
weight of about 36–43 kDa, and is mainly expressed in activated T cells and NK cells [76]. As the
interconnection between Fas and its ligand FasL, the cytotoxicity of tumor cells can be achieved through
the pathway of Fas-FasL axis. Early growth response 3 (EGR3), as a novel zinc finger transcription
factor, is a newly discovered tumor suppressor gene, which can inhibit the growth of hepatocellular
carcinoma, gastric cancer, and other cancer cells by up-regulation of Fas ligand [77]. Zhang et al. [78]
found that the low levels of EGR3 were significantly discovered in hepatocellular carcinoma tissues
and various hepatoma cell lines (PLC/PRF/5, HCC-LM3, Huh7, and HepG2), but could be explored in
human normal hepatic cell lines (L02). The experimental results of nude mouse models showed that
the expression of FasL in xenograft tumor tissues with high expression of EGR3 was also significantly
increased. Both EGR3 overexpression plasmid and FasL siRNA were co-transfected into hepatocellular
carcinoma cells to silence the FasL gene obviously, which could hinder the anti-proliferation and
pro-apoptotic effects. It was suggested that EGR3 could enhance the inhibition against hepatoma cells
by up-regulation of FasL. NK-like (NKL) cells and isolated human peripheral blood NK cells were
respectively transfected with chemically synthesized RNA-30C analogues and RNA-30C inhibitors in
the research of Ma et al. [79]. Flow cytometric analysis revealed that the exogenous miR-30c mimics
could effectively enhance the expression of membrane NKG2D and CD107a on the surface of NKL
cells, and also could significantly enhance the cytotoxicity of NKL cells against SMMC-7721 cells via
up-regulation of NKG2D, and also could trigger the high levels of FasL expression on both NKL cells
and NK cells from peripheral blood. The signal transduction of FasL-associated death domain (FADD)
via the apoptosis cascade could ultimately lead to apoptosis of SMMC-7721 tumor cells.

Adriamycin (ARG) has been currently recognized as a multifunctional chemotherapeutic drug
with anti-inflammatory, anti-viral, anti-cancer, and other functions [80]. The data from Lu et al. [81]
showed that apoptosis in HepG2 cells and Smmc7721 cells could be induced by Adriamycin via
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activation of the Caspase-8 signaling pathway, up-regulation of Fas/FasL expression, and increasing the
secretion of TNF-alpha. The apoptotic effect of the former was significantly stronger than that of the
latter. This indicated that Fas/FasL-related signal transduction pathways might play an important role
in the anti-cancer process. Oncolytic viruses (OVs) have double functions of direct cytotoxicity and
induction of effective anti-tumor immune responses [82]. The research reports from Chen et al. [83]
showed that the intratumoral injection of measles virus vaccine strain Edmonston (MV-EDM) could
induce the expression of specific ligand MICA and MICB on the surface of hepatoma cells, and thereby
could significantly enhance the cytotoxicity of CD8+NKG2D+ T cells to hepatocellular carcinoma. It
could also enhance the expression of FasL in CD8+NKG2D+ cells, but had no effect on the expression
of Fas in hepatoma cells. These results suggested that the NK cells with activated NKG2D receptors
could overexpress FasL, and activate Fas-mediated apoptotic signals, and then remarkably enhance its
anti-tumor effects.

5.4. Perforin Secreted by NK Cells Exerts Anti-hepatocarcinoma Activity by Activating NKG2D

Perforin, also known as C9-related protein or cytolysin, is a glycoprotein with a molecular weight
of 67 kDa, which exists in cytotoxic granules of NK cells and cytotoxic T lymphocytes. The mature
perforin molecule is composed of 534 amino acid residues with a molecular weight of 56–75 kDa and
an isoelectric point (IP) of 6.4 [84]. Li et al. [85] observed the differential expression of NK cells in
tumorous tissue infiltrating lymphocytes (TILs) and non-tumorous tissue infiltrating lymphocytes
(NILs) and PBMCs of patients with HCC by multicolor fluorescence activated cell classification analysis.
It was found that NK cells in TILs and NILs were only 6.324 ± 1.559 and 14.52 ± 2.336, respectively.
The abundance level of NK cells was significantly reduced and three other types of cells with positive
Foxp3+ were explored in local tumorous tissues, which resulted in the decrease of IFN-γ and perforin
secretion. The abundance of NK cells decreased significantly in local tumors, but three other types of
cells with positive Foxp3+ were found, which resulted in the decrease of IFN-γ and perforin secretion.
However, no similar results were observed in PBMCs of patients with hepatocellular carcinoma. The
research had suggested that NK cell phenotypes were differentially expressed in local tumor tissues
and peripheral blood of patients with hepatocellular carcinoma, and hypofunctional NK cells in local
cancer lesions were difficult at playing an anti-cancer role.

The NK cells of CD56+CD16+ subtype account for about 90%–95% of the total number of NK cells
in peripheral blood, and have high cytotoxic activity by secreting high levels of cytotoxic granular
proteins, such as perforin. The correlation between the serum granulin–epithelin precursor (GEP) and
NK cell activity in patients with HCC in the data of Cheung et al. [86] had been demonstrated that
the level of GEP in HCC tissues was significantly higher than that in non-tumor liver tissues, and
was not related to the number of NK cells in the peripheral blood of patients with HCC. However, it
was negatively correlated with the expression of NKG2D and CD 69 on the surface of NK cells. The
immunohistochemical staining showed that the expression of GEP was in a type of high and low
in HCC tissues, and the number of NK cell infiltration was significantly decreased in the high GEP
expression group. It was noteworthy that perforin production and cytotoxicity of NK cells returned
to the same level as that of healthy NK cells after GEP inhibition in HCC cells. It was suggested
that inhibition of GEP in hepatocellular carcinoma cells could prevent further damage of NK cell
function in patients. When the GEP monoclonal antibody A23 was co-cultured with hepatocellular
carcinoma cells in vitro, NK cells could be reactivated, the production of GEP and soluble ligand
sMICA production were all reduced, so that the expression NKG2D was up-regulated, IFN-gamma
and perforin production were significantly increased, and the cytotoxic effect was ultimately increased.

The latest study of 236 patients with liver cancer came from Sun et al. [87] had shown that CD96+NK
cells failed to secrete enough interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α).
The expression levels of perforin 1 (PRF1) and granzyme B (GZMB) were significantly decreased,
which was positively correlated with the deterioration of the disease and negatively correlated with
disease-free survival (DFS) and overall survival. Blocking the interaction of CD96-CD155 in vitro could



Biomolecules 2020, 10, 301 13 of 21

specifically increase the cytotoxicity of NK cells on HepG2 cells. These results had been suggested that
anti-hepatocellular carcinoma could be achieved by inhibiting the activity of CD96 molecule of NK
cells and promoting the secretion of IFN-γ, TNF-α, PRF1, and GZMB from NK cells.

5.5. NKG2D Signaling Induces High Expression of CD16 on NK Cells Exerts Anti-hepatocarcinoma Activity

CD16, also known as Fc gamma RIII(FcγRIII), is a type III gamma receptor and a group
of differentiated antigens expressed on the surface of NK cells, neutrophils, monocytes, and
macrophages [88]. NK cells are congenital lymphocytes that mediate cytotoxic responses to viral
infection and/or tumor cells. CD16 is a specific molecule expressed on the surface of NK cells and
an important marker for identification to NK cells [89]. In humans, CD16 exists in the form of Fc
gamma RIIIa (CD16a) and Fc gamma RIIIb (CD16b), and they have 96% homology in the extracellular
immunoglobulin binding region. Most peripheral blood NK cells are CD56+CD16+ effector cells, only
a small part of which belongs to CD56+CD16− cells. Their function is regulated by a delicate balance
between inhibitory and activating receptors, in which the CD16 low affinity receptor binds to the Fc end
of IgG1 and mediates NK cells to recognize target cells through the Fab end of IgG1, so that the strong
cytotoxic effects can be achieved [90]. This phenomenon is also called antibody-dependent cellular
cytotoxicity (ADCC). The recent studies have found that the shedding of CD16 facilitates the formation
of immune synapses in NK cells, enhances NK cells motility, and promotes the binding of CD16 to the
target cells. Srpan et al. [91] observed retroviral transduced NK92/CD16 cells under a microscope. It
was found that the repetitive activation of the Fc type III receptor (CD16) could reduce the secretion of
perforin in an individual NK cell. Repeated stimulation of NKG2D could also reduce the secretion of
perforin single NK cell, but the single stimulation of CD16 could not rescue the situation. Activation
of CD16 could trigger the assembly of lysokinase, while inhibition of the shedding of CD16 was not
conducive to the separation of NK cells from target cells. It had been suggested that the shedding of
CD16 not only contributed to the formation of immune synapses and cell survival of NK cells, but also
played a positive immune response to target cells.

Lee et al. [92] successfully amplified a large number of the cytotoxic natural killer cells by the use
of radiation irradiation of autologous peripheral blood mononuclear cells and induction of anti-CD16
monoclonal antibody. It was found that this method could effectively amplify NK cells and obtain
high purity and activating NK cells with less T cell contamination. The amplified NK cell surface
activating receptor CD107A was significantly up-regulated and could secrete more IFN-γ, and had
highly cytotoxicity to many kinds of cancer cells in vitro and in vivo. Subsequently, Chen et al. [93]
explored the effects of CD16 overexpression in NK cells induced by monoclonal antibodies against the
tumor embryo protein GPC3 (glypican-3) target to HCC. The results of immunohistochemistry (IHC)
showed that GPC3 and CD16 could be expressed on tumor cells and NK cells of peripheral blood,
respectively. The codrituzumab targeted drugs could successfully induce high expression of GPC3 and
CD16, which was beneficial to improve the condition of patients. If the levels of GPC3 and/or CD16
decreased, the curative effects would be reduced. It had demonstrated that GPC3 and CD16 could
be used as a novel compound biomarker to evaluate the curative effect of patients with liver cancer.
The activating NKG2D could induce NK cells to express CD16 at a high level and further enhance the
targeted cytotoxicity against cancer [94]. It was noteworthy that the fusion protein of NKG2G/NKG2DL
had two-way regulatory functions [95]. On the one hand, it could directly up-regulate the expression
of NKG2DL on the surface of hepatoma cells, to be recognized by NK cells. On the other hand,
the up-regulation of NKG2D on the surface of NK cells also might significantly enhance the ADCC,
degranulation, and other biological effects of NK cells, and played a crucial role in inhibiting the
proliferation of hepatoma cells.

5.6. TRAIL Expressed on NK Cells Exerts Anti-hepatocarcinoma Activity by Activating NKG2D

The tumor necrosis factor-related apoptosis inducing ligand (TRAIL), also known as the
apolipoprotein 2 ligand (APO2L), is a type II membrane protein with relative molecular mass
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of 32.5 kDa, containing three functional parts of the cytoplasm region (14aa), transmembrane region
(26aa), and extracellular domain (241aa), which belong to the member of the tumor necrosis factor
superfamily [96]. Its carboxyl terminal is located in the extracellular domain with a typical beta
sandwich structure formed by several beta sheets, which are regarded as the major functional group
with highly conserved. The amino terminal is located in the extracellular domain without a signal
peptide sequence. TRAIL is specifically bound to the related receptor through a subunit structure
composed of homologous trimers in the C terminal of the extracellular domain. The multiple tumor
cells and transformed cells can be induced to apoptosis and inhibit through the pathway of caspase,
death receptor, and mitochondria-related apoptosis [97]. It is exciting that the apoptosis induced by
TRAIL in normal tissue cells of the body have not been confirmed.

As early as 2012, Ohira et al. [98] were surprised to find that liver mononuclear cells (LMNCs)
extracted from perfusion fluid of deceased donor liver transplantation contained a higher percentage
of NK cells than those of PBMCs from the same donor. Under stimulation by IL-2, NK cells were
activated and the level of TRAIL was significantly increased. Compared with PBMCs, IL-2-stimulated
LMNCs had stronger cytotoxicity to K562 target cells (P < 0.01), and could further reduce the risk
of graft-versus-host disease (GVHD). These results suggested that the transfer of IL-2-activated NK
cells from the perfusion fluid of deceased donor liver transplantation could be a novel treatment for
hepatocellular carcinoma via the pathway of up-regulating the expression of TRAIL. On the basis of the
successful construction of human interleukin-15 gene-modified NKL cells (NKL-IL15) in the research
report of Jiang et al. [99] the female BALB/c xenograft nude mice (six weeks old) were used as an
experimental animal model to confirm its quite strong inhibitive action to the growth of transplanted
human hepatocellular carcinoma. The cytotoxicity effect of NK cells was measured by MTT, and the
expression levels of TRAIL, TNF-α, IFN-γ, FasL, CD107a, perforin, and granzyme B from NKL cells
were detected by the ELISA method. The results showed that NKL-IL15 cells could secrete more
granular enzymes B, IFN-γ, TNF-α, and others, through the pathway of high expression of NKP80
and TRAIL, which had stronger cytotoxicity against HepG-2 cells than ordinary NKL cells. On the
other hand, the secreted IFN-gamma and TNF-alpha could further induce the high expression of
NKG2D ligand in hepatoma cells so as to enhance the sensitivity of NKL-IL15 cells to target cells. It
had been suggested that IL-15 could significantly enhance the antitumor effects of NK cells through a
multi-channel [100].

5.7. Important Issues Concerning the Role of NKG2D in the Immune Response against Hepatocellular
Carcinoma

NK cells can be enriched in the microenvironment of the liver. The expression of NKG2D, an active
receptor, plays a critical role in the innate immunity of NK cells against the malignant transformation of
hepatocellular carcinoma [101]. The data of Cai et al. [102] showed that the number of CD56dimCD16+

NK subsets displayed a dramatic reduction in peripheral blood of HCC patients, and also demonstrated
a significant reduction in local tumor regions than that in nontumor areas. Both these peripheral and
tumor-infiltrating NK cells exhibited the poorer capacity to produce a cytotoxic ability and IFN-γ
production. It is worth noting that hepatoma cells also can escape the innate immunity of NK cells
mediated by NKG2D via the way of down-regulation of NKG2DL. Pollicino et al. [103] showed
that HBV could significantly inhibit the expression of MICA in the HepG2.2.15 hepatoma cell line.
However, by inhibiting HBV replication in HCC cells in transgenic mice, the expression of MICA in
HCC cells could be restored, and NK cells could be induced to play a cytotoxic effect on the target cells.
Consequently, a type of tumor-specific expression pattern of HBV might have existed in HCC, and NK
cells could specifically recognize HCC cells through the MICA-NKG2D axis.
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5.8. Targeted Stimulation of NKG2D Improves the Therapeutic Effect of NK Cells on Hepatocellular Carcinoma
Immunotherapy

Targeted stimulation of NKG2D is a novel strategy to improve the immunotherapeutic effects
of NK cells on patients with hepatocellular carcinoma. Kamiya et al. [104] used K562-mb15-41BBL
cell line as a stimulant to obtain a large number of NK cells activated in the peripheral blood of
healthy adult volunteers in vitro. The high expression of NKG2D-CD3ζ-DAP10 could significantly
enhance NK-cell cytotoxicity against the HCC line. Therefore, when the same donor was injected
with NKG2D modified NK cells, the tumor growth was significantly reduced and the overall survival
rate was significantly improved. The data had demonstrated that the activated and expanded NK
cells after genetic modification with NKG2D-CD3ζ-DAP10 could effectively kill HCC cells. Recently,
Han et al. [105] successfully constructed a novel antibody-ligand fusion rG7S-MICA (also known as
bi-specific antibody, BsAb), which was composed of an anti-CD24 single-chain variable fragment
(scFv) and extracellular domains of MICA. The rG7S-MICA had a high affinity with the antibody and
could effectively enrich NK cells to the tumor-bearing site of liver cancer in nude mice, and could
enhance the anti-tumor activity by promoting the release of IFN-γ and TNF-α from NK cells via the
MICA-NKG2D/Fc-FcR pathway. The most exciting feature was that it could also significantly enhance
the anti-tumor effect of Sorafenib in vivo. Therefore, up-regulation of the level of NKG2D on the
surface of NK cells in the peripheral blood and tumor tissues of patients with hepatocellular carcinoma
could effectively improve the prognosis and prolong the overall survival rate of patients.

Another recent study of NKG2D-based CAR-T cells from Sun et al. [106] showed that the NK group
2 member D ligands (NKG2DLs), such as MICA or ULBP2 were overexpressed in hepatoma cell lines
SMMC-7721 and MHCC97H. The CAR-T cells with extracellular domains containing human NKG2D,
4-1BB, and CD3 ζ signal domain (BBZ) had effective kill effects on hepatoma cell lines SMMC-7721
and MHCC97H cell lines with high expression of NKG2DL in vitro and in vivo, but had ineffective
cytotoxic effects on SMMC-7721 or Hep3B cell lines with negative NKG2DL. This will provide a novel
and effective treatment for HCC patients with positive expression of NKG2DL in the future.

An amazing and novel authoritative study from Sheppard [107] and others had been shown
that NKG2D could unexpectedly promote the growth of hepatoma cells in a model of hepatocellular
carcinoma. The growth of the tumor was compared in great detail both in NKG2D-deficient mice and
NKG2D-sufficient mice. The memory CD8+T cells increased recruitment to the liver cancer lesions
and increased the inflammatory reaction in the local microenvironment, which was beneficial to the
malignant proliferation of the hepatocytes and promoted tumorigenesis. The growth of hepatoma cells
could be achieved through an inflammation-cancer transformation pathway. This suggested that there
might be another unusual molecular mechanism of the NKG2D/NKG2D ligand signaling pathway in
the development of hepatocellular carcinoma, which needed further study in the future.

6. Conclusions

In summary, NK cells can be enriched in the human liver and have the potent antitumor ability
through overexpression of NKG2D. NKG2D is the most important activating receptor on the NK cell
surface with quite a complex genetic structure and multiple protein functional sites. The specific
binding of NKG2D to the high expression of MICA, MICB, and ULBP on the surface of hepatoma
cells can trigger multiple signaling pathways, such as phosphatidylinositol 3-hydroxy kinase (PI3K),
phospholipase C Gamma 2 (PLCã2), c-Jun-NH(2)-terminal kinase (JNK), and others, which also further
promote the anti-tumor effects of NK cells by secreting cytokines, enhancing ADCC effects, and initiates
the apoptosis process [108]. NKG2D ligands can be expressed individually and collectively on the
surface of liver cancer cells. However, the affinity of different ligands to NKG2D on the surface of NK
cells is significantly different. How to realize the preferential combination of NKG2D and high-affinity
ligands and precisely enhance the sensitivity of NK cells to hepatoma cells will become the focus of
research and attention in the future.
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