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Here we describe and provide diffusion magnetic resonance imaging (dMRI) data that was acquired in
neural tissue and a physical phantom. Data acquired in biological tissue includes: fixed rat brain (acquired at
9.4 T) and spinal cord (acquired at 16.4 T) and in normal human brain (acquired at 3 T). This data was
recently used for evaluation of diffusion kurtosis imaging (DKI) contrasts and for comparison to diffusion
tensor imaging (DTI) parameter contrast. The data has also been used to optimize b-values for ex vivo and
in vivo fast kurtosis imaging. The remaining data was obtained in a physical phantom with three orthogonal
fiber orientations (fresh asparagus stems) for exploration of the kurtosis fractional anisotropy. However,
the data may have broader interest and, collectively, may form the basis for image contrast exploration
and simulations based on a wide range of dMRI analysis strategies.
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Background & Summary
Diffusion weighted MRI (dMRI) is highly sensitive to tissue microstructure, which makes it important as
a tool in research and diagnostics. Traditional dMRI analysis relies on the diffusion tensor model1,2 where
the diffusion signal is approximated with a Gaussian phase distribution. The microstructure of biological
tissues, however, influences the diffusion process and causes the spin phase distribution to deviate from
normal. This deviation is partially described by including the kurtosis term in the cumulant expansion3.
The diffusion kurtosis imaging (DKI) framework4 captures this deviation and is seen as an indirect
microstructural marker. DKI is an increasingly popular method to increase the sensitivity of dMRI to
microstructure. In particular, the orientationally averaged kurtosis—the mean kurtosis (MK)—has been
found to possess promising clinical potential. In an animal model of stroke, MK was found to improve
the visualization of the ischemic lesion5 compared to mean diffusivity (MD) and to display different
temporal dynamics than MD6,7. In human stroke, MK was also found to increase8–11. MK's potential
value has also been reported in several other neurological applications: Parkinson’s disease12, epilepsy13,
gliomas14,15, chronic mild stress16, attention deficit hyperactivity disorder (ADHD)17, traumatic brain
injury18 and review in19, and normal development20,21.

Despite its potential, the exploration and application of DKI in everyday clinical imaging is held back
by its large data requirement (causing long acquisition times) and computationally heavy postprocessing.
In an effort to remove these limitations, strategies for fast kurtosis imaging have recently been
proposed22–24. These strategies employ nine distinct diffusion encoding directions acquired at two
different b-values to efficiently estimate the mean kurtosis using a definition based on the kurtosis tensor,
W. In the same theoretical framework, the directional dependency of the kurtosis—the kurtosis fractional
anisotropy (KFA)25—may be defined22,26 in a manner which is mathematically analogous to the
fractional anisotropy (FA)27 known from diffusion tensor2,28 imaging (DTI). A compact scheme for KFA
estimation by proxy was explored in a recent study25 where its contrast was also compared to
conventional DTI and DKI contrasts. The data provided here allows users to perform both traditional
DKI analysis and fast kurtosis analysis from data sets acquired in fixed rat brain and in human brain. One
potential use of this data is for testing analysis software, postprocessing algorithms or b-value
optimization, thus supplementing other publicly available data sets e.g. those presented in (refs 29,30)
(data available at: cmic.cs.ucl.ac.uk/wmmchallenge/ and www.massive-data.org/). Furthermore, we
provide high resolution dMRI data from rat spinal cord and a physical phantom which may be used to
explore DKI contrasts and as a basis for simulations. The data was used in previously published
analysis22,25. The data acquisition details are provided below. Details on data availability, formats, and
organization are provided in the Data Records section and Table 1.

Methods
All animal work was performed in accordance with relevant guidelines and regulations concerning
animal experiments. All animal experimental protocols were approved by the Danish Animal
Experiments Inspectorate (Dyreforsøgstilsynet). Human data acquisition was performed in accordance
with the Declaration of Helsinki. All human experimental protocols were approved by the local
ethics committee for research (De videnskabsetiske Komitéer for Region Midtjylland). Informed consent
was obtained from all human subjects (one) prior to scanning. The data is made available raw, meaning
that no pre-processing (smoothing, coregistration, spatial filtering, or normalization) was applied in any
of the data sets. Throughout the method descriptions, SNR was calculated as the average signal in a
homogenous region in the object imaged divided by the standard deviation of the signal in a background
region, corrected for Rayleigh distribution in a standard manner31. Unless otherwise stated reported
SNR levels were evaluated at b= 0.

Subjects Protocol Data File name

Fixed rat
spinal cord

Diffusion MRI at 16.4 T Data is provided in nifti format with b-values and difusion gradient vectors in text format.
The data is also provided in the matlab.mat file format: ratSC.mat
This matlab file contains raw dMRI data (ratSC_DWI_data), corresponding effective b-values (effective_b) and gradient table
(DWI_encoding_directions), and masks for all slices (masks)

Rat_spinal_cord.zip

Fixed rat
brain

Diffusion MRI at 9.4 T Data is provided in nifti format with b-values and difusion gradient vectors in text format.
The data is also provided in the matlab.mat file: rat_brain.mat
This matlab file contains raw dMRI data (rat_brain_data), corresponding b-values (nominal_bvalues and effective_b, the latter includes
b-value contributions from imaging gradients) and gradient table (DWI_encoding_directions_pr_b_value).

Rat_brain.zip

Physical
phantom

Diffusion MRI at 9.4 T
Structural scan

Data is provided in nifti format with b-values and difusion gradient vectors in text format.
The data is also provided in the matlab.mat file format:
phantom_data.mat
This matlab file contains raw dMRI data (phantom_data), corresponding b-values (effective_b), gradient table (DWI_encoding_directions),
and structural scan (structural_data).

Phantom_data.zip

Normal
human brain
1 volunteer

Diffusion MRI at 3 T
T1 weighted anatomical data

Diffusion MRI data is provided in both dicom and nifti format with b-values and difusion gradient vectors in text format.
The structural T1 scan is also provided as dicom and nifti.
The data set is also provided in the matlab.mat file: human_brain.mat
This matlab file contains raw dMRI data (human_brain_data), corresponding b-values (effective_b), and gradient table
(DWI_encoding_directions). Anatomical data can be found in the variable 'T1_anat'.

Human_brain.zip

Table 1. Overview of the data contained in Data Citation 1.
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MRI data obtained in fixed rat spinal cord
An adult male Wistar rat was euthanized and exsanguinated during intra-aortic perfusion fixation with
isotonic saline containing heparin (10 IUml−1), followed by 4% paraformaldehyde in phosphate-buffered
saline (PBS) (pH 7.4). A section of spinal cord including the cervical enlargement was then dissected out
and stored in 4% PFA for at least 6 weeks prior to imaging. The spinal cord segment was washed in PBS
for 24 h prior to MR scanning to improve signal by removal of excess fixative. For imaging, the tissue was
placed in a 5 mm NMR tube. Imaging was performed on a Bruker Biospec 16.4 T (Bruker Biospin,
Germany) spectrometer equipped with microimaging gradients with a strength of 3 T/m. Data was
acquired using a 5 mm saddle coil. DWI data acquisition was performed using a standard DW spin echo
sequence. A total of 17 b-values equally distributed from 0-15 ms μm−2 were acquired. At each b-value,
data was acquired along 9 gradient directions, so that the gradient directions at non-zero b-values in
combination form a 144 point spherical design32. Imaging parameters were: TE= 15.3 ms, TR= 2500 ms,
diffusion timings δ/Δ= 2/8 ms, 3 averages. Acquisition time per b-value: 3 h 36 min. Twenty-five image
slices were acquired at a resolution of 23 μm x 23 μm×120 μm, matrix size 192 × 192. Notice that an
artifact caused by radio frequency feed-through (contamination) is present outside of the object. SNR is
rather low in this data set (~7 at b= 0) but the high spatial resolution of the data set in combination with
the large range of b-values makes it applicable for DTI/DKI contrast exploration, and as a foundation for
simulations based on DTI/DKI fits. The symmetry of the spinal cord also allows for averaging data across
several slices to increase SNR. Down sampling and smoothing may extend the applicable b-value range
even further. The raw, full data set is provided.

MRI data obtained in fixed rat brain
This specimen was obtained using the same fixation protocol as above. After perfusion fixation the brain
was removed and immersion fixed in fresh 4% paraformaldehyde solution for at least 6 weeks. Prior to
imaging, the brain was washed in PBS for 24 h to improve signal by removal of excess fixative. Data was
acquired using a Bruker Biospec 9.4 T (Bruker Biospin, Germany) MRI system equipped with a 15 mm
quadrature coil. DWI data acquisition was performed using a standard DW spin echo sequence. A total of
15 b-values ranging from 0–3 ms μm−2 in steps of 0.2 ms μm−2 were acquired. At each b-value, data was
acquired along 33 gradient directions. These directions were obtained by combination of a 3-dimensional
24-point spherical 7-design32 and the nine directions identified for fast estimation of mean kurtosis
in ref. 22. Imaging parameters were: TE= 23.3 ms, TR = 4 s, diffusion timings δ/Δ= 4/14 ms, 2 averages.
Fifteen image slices were acquired at a resolution of 100 μm×100 μm x 500 μm, matrix size 128 × 128.
SNR was approximately 75 at b= 0 evaluated using the mean signal across all tissue.

MRI data collected in a physical phantom
A physical phantom with fiber bundles equally distributed along the x̂, ŷ, and ẑ directions was
constructed. This phantom was used to mimic one imaging voxel with complex fiber distribution while at
the same time allowing us to resolve each fiber direction separately. For this, a phantom was built using
fresh asparagus stems. Stems were cut into 8 mm long sections and placed inside a cubic plastic container
in a 3 × 3 design. The container was then filled with room temperature demineralized water and glass
tools were used to remove air bubbles. Immediately after construction, the phantom was brought to the
magnet. For scanning, the phantom was placed in an in-house built sample holder made from PE foam
allowing the sample to be held tightly in place inside the MR coil. In this manner, sample movement
(shaking) during acquisition was eliminated thereby avoiding image artifacts caused by bulk water
motion. Imaging was performed on a horizontal 9.4 T Bruker Biospec system using a 40mm quadrature
coil. This coil is intended for mounting on an animal bed, but for these scans it was mounted in the
magnet bore using a coil holder developed in-house. The scan protocol included an anatomical/structural
scan and a DKI acquisition. The structural data was acquired with a FLASH sequence (TE= 5.4 ms,
TR= 350 ms) in seven 1 mm thick slices with an in-plane resolution of 100 μm×100 μm, matrix size
280 × 280. Diffusion data was acquired using a standard diffusion weighted spin echo sequence. Data was
recorded in the same seven slice planes as the structural data but with a lower in-plane resolution of 427
μm×427 μm, matrix size 64x64. Imaging parameters were TE= 70.6 ms, TR= 2700 ms, diffusion timings
δ/Δ= 6/60 ms, 4 averages. Fifteen encoding directions were obtained at b-values of 0, 0.5, 1.0, 1.8, 2.5, 3.5
ms μm2. The encoding directions were obtained from a 15 point spherical design32. The first slice is
influenced by susceptibility effects near the water air surface. Therefore, we recommend to only analyze
slices 2–7 as done in ref. 25.

Human MRI data
Human data was acquired in one normal volunteer using a Siemens Trio 3 T equipped with a 32 channel
head coil and a double spin echo DW EPI sequence. Motion of the subject's head during acquisition was
avoided by padding inside the coil. DWI data was recorded at b= 0 ms μm−2, and along 33 directions at
b-values from 0.2–3 ms μm−2 in steps of 0.2 ms μm−2. The encoding scheme was constructed as a
combination of a 24 point spherical design32 and the nine directions identified for rapid kurtosis
estimation in ref. 22. CSF suppression (inversion recovery) was employed as recommended in ref. 33.
Imaging parameters were TR= 7200 ms, TE= 116ms, TI= 2100ms, 19 consecutive slices were acquired

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160072 | DOI: 10.1038/sdata.2016.72 3



at isotropic resolution of 2.5 mm, matrix size 96 × 96, phase encoding direction A.-P. SNR~ 39 at b= 0
evaluated using the mean signal across all tissue types.

Anatomical data is also provided. This data consists of a 1 mm isotropic T1 weighted 3D MPRAGE
acquired in the sagittal orientation, matrix size 256 × 256 × 176. Scan parameters were: TE= 3.7 ms,
TR= 2430ms, Inversion time (TI)= 960 ms, Flip angle= 9°, 2 averages.

Data Records
The MRI data acquired in fixed rat spinal cord is provided raw (no smoothing or registration has been
performed). The data is available in Rat_spinal_cord.zip which contains dMRI data and corresponding
b-values and gradient table (Data Citation 1). Details are provided in Table 1.

The raw MRI data acquired in fixed rat brain can be found in Rat_brain.zip which contains dMRI data
and corresponding b-values and gradient table (Data Citation 1). Details are provided in Table 1.

The raw MRI data acquired in the physical phantom is bundled in Phantom_data.zip which contains
dMRI data with corresponding b-values and gradient table, and a structural scan in the same slice
positions (Data Citation 1). Details are provided in Table 1.

The raw MRI data acquired in human brain can be found in human_brain.zipt which contains dMRI
data with corresponding b-values and gradient tables, and a structural scan (Data Citation 1). Details are
provided in Table 1.

Usage Notes
All data is provided as matlab files (.mat) and in the nifti format. The human data is also provided as
dicom files. The DWI data is provided raw so no preprocessing has been applied to any of the data sets.
This allows users to employ their preferred pre- and postprocessing combination and assess data quality
e.g. drift effects, SNR etc. directly. The data is stored either as a 4D matrix with ordered with spatial
dimensions first: x, y, slice, diffusion encoding. In these cases the diffusion encoding order corresponds to
the accompanying vector of effective b-values (in ms μm−2) and gradient encoding directions
(as normalized cartesian vectors). In case of a 5D data matrix the structure is x,y,slice,gradient encoding
direction,b-value with the order of encoding directions and b-values given by the corresponding vectors.
For Bruker data method files are available on request (contact corresponding author).
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