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Abstract

MS/MS experiments generate multiple, nearly identical spectra of the same peptide in various 

laboratories, but proteomics researchers typically do not leverage the unidentified spectra 

produced in other labs to decode spectra generated in their own labs. We propose a spectral 

archives approach that clusters MS/MS datasets, representing similar spectra by a single 

consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and 

unidentified spectra in the same way and maintaining information about spectra of peptides shared 

across species and conditions. Thus archives offer both traditional library spectrum similarity-

based search capabilities along with novel ways to analyze the data. By developing a clustering 

tool, MS-Cluster, we generated a spectral archive from ~1.18 billion spectra that greatly exceeds 

the size of existing spectral repositories. We advocate that publicly available data should be 

organized into spectral archives, rather than be analyzed as disparate datasets, as is mostly the case 

today.

Introduction

Recent years have witnessed a dramatic increase in the volume of MS/MS data generated in 

proteomics laboratories. Analyzing these increasing amounts of data has become a 

computational challenge, raising the need for improved algorithms.

Mass spectrometry is currently a rather introverted discipline. Researcher A working on, let's 

say the mouse proteome, has little interest in spectra generated by researcher B who is 
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working on the human proteome. Indeed, since it is not clear how a mouse researcher can 

benefit from spectra generated by a human researcher, A would rarely bother to analyze 

spectra generated by B. As a result, there is little motivation to share spectra between 

different labs. This widespread introversion is particularly troublesome since 75–85% of 

spectra in a typical MS/MS experiment remain unidentified and thus are essentially 

discarded. Could a particular unidentified spectrum that showed up in spectral data sets 

generated by 10 different laboratories working on tumor proteomes be a potential fusion 

peptide representing a cancer biomarker, even though the spectrum was discarded time and 

again because none of the labs was able to interpret it? Would it be beneficial to answer the 

question whether a newly generated spectrum (identified or not) has been seen before by 

other researchers during the last decade, and under what circumstances? Answering these 

questions requires a different way of analyzing mass spectrometry data.

The most widely-used method in MS/MS analysis is the identification of peptides using a 

database search. MS/MS spectra are compared with peptides derived from a database of 

known protein sequences and the resulting Peptide-Spectrum Matches (PSMs) are evaluated 

using various scoring methods. As large numbers of confident PSMs are accumulated, it 

becomes worthwhile to organize them as spectral libraries1,2, which may serve as an 

additional method for peptide identification. Spectral libraries rely on the reproducible 

nature of MS/MS data to compare query spectra with the set of previously identified PSMs. 

While spectral library searches are fast and accurate3,4, they are not able to identify spectra 

of peptides that are not discovered in standard database searches. However, if identified 

spectra proved to be useful in the spectral library framework, could we utilize unidentified 

spectra in a similar way?

We present spectral archives, an approach for detecting and grouping similar spectra, both 

identified and unidentified, across multiple data sets. Like spectral libraries1,2, spectral 

archives can be used to perform accurate spectrum similarity-based identifications. 

However, archives also extend libraries, making it possible to analyze peptides that would 

typically remain below the radar with traditional database searches, opening new 

opportunities in areas like proteogenomics or biomarker discovery (see Supplementary Note 

1 for further discussion on the relationship between archives and libraries). We believe that 

spectral archives could change the introverted nature of proteomics by motivating the 

seemingly unrelated researchers A and B to share their data, since doing so improves the 

quality of the interpretations of both of their spectral datasets. We argue that publicly 

available datasets should be organized into spectral archives, rather than be analyzed as 

disparate datasets, as is the case today. While clustering billions of spectra may look like an 

intractable problem, here we demonstrate the feasibility of constructing large spectral 

archives and their use for data analysis.

Spectral archives are generated by clustering spectra. Like libraries, clustering algorithms 

rely on the notion that MS/MS datasets contain multiple, nearly identical, spectra of the 

same peptides5–8. Each spectrum in the archive is associated with an identifier describing 

the experiment ID, file number, scan number, organism from which the sample was taken, 

the condition (e.g., healthy vs. diseased), experimental settings, etc. All spectra in each 

cluster are represented by a single consensus spectrum that typically has higher quality than 
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individual spectra. Archives can grow by merging an existing archive with a new spectral 

dataset. All new spectra that get added to the archive (and all changed consensus spectra) 

can be searched against a protein database, if one is available, and any confident 

identifications are assigned to the clusters in the archive. Adding more spectra to the cluster 

typically increases the signal-to-noise ratio of the cluster's consensus spectrum since the 

randomly distributed noisy peaks are often canceled out in the consensus spectrum8.

Spectral archives, unlike libraries, include all mass spectra, both identified and unidentified. 

Though including unidentified clusters in a library-like search does not directly contribute to 

peptide identifications, it can ultimately have an indirect contribution. One way in which this 

can happen is by association of unidentified spectra with newly added identified spectra. For 

example, peptides expressed in low abundance in one lab can generate low-quality spectra. 

Such a spectrum might get inserted into an archive and remain unidentified until arrival of a 

new spectrum of the same peptide identified in another lab (e.g., the peptide was highly 

expressed or the spectrum was acquired on a more accurate instrument). Assume that at this 

stage the new spectrum, which is confidently identified, gets added to an unidentified cluster 

in the archive. Then, by virtue of their cluster membership, all spectra in the cluster now 

gain an identification. As an archive grows and includes many spectra of overlapping 

peptides, it becomes feasible to make more peptide identifications using advanced methods 

like spectral networks9.

Construction of community-wide spectral archives, however, requires clustering billions of 

spectra generated by many laboratories. Existing software tools allow clustering of several 

million5–7 to tens of millions8 of spectra. Here we describe our MS-Cluster algorithm which 

is capable of processing billions of spectra (see “Clustering algorithm” in online Methods 

and Supplementary Note 2 for more details about the algorithm's implementation).

We also report the construction of a spectral archive from over a billion mass spectra that 

were acquired at the Pacific Northwest National Laboratory between 2001 and 2009. This 

data includes samples taken from a diverse set of more than 100 organisms, using various 

ion-trap based platforms. Beyond demonstrating the feasibility of constructing large archives 

and their basic utility for run-of-the-mill peptide identification, we present new applications 

that become possible because a diverse collection of data sets can be analyzed as a whole. 

For instance, archives have the ability to identify clusters of spectra that come from different 

organisms. Besides indicating that such spectra are interesting (since they are likely to 

represent a peptide conserved over multiple species), this fact can be used to reduce the 

effective protein database size, leading to new confident spectral identifications. We also 

show that short peptides (shorter than 7 amino acids) can be confidently identified, which is 

not possible with the Target-Decoy Approach10 (TDA).

Results

Constructing Spectral Archives

We tested the MS-Cluster algorithm on ~1.18 billion spectra acquired at the Pacific 

Northwest National Laboratories from samples from over 100 organisms (referred to 

henceforth as the PNNL dataset - see Supplementary Table 1 for more details). MS-Cluster 
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organized the PNNL dataset into ~299 million clusters (Fig. 1a and Supplementary Table 2), 

a fourfold reduction compared to the number of spectra generated originally. During 

clustering, the algorithm performed ~3.1×1013 similarity computations which required 

~9,200 CPU hours.

While ~92% of the clusters contain a single spectrum, most of the spectra (52%) belong to 

clusters of multiple spectra. A quarter of the clusters that contained multiple spectra have 

spectra from multiple organisms (Fig 1b, Supplementary Table 2). Of these, approximately 

58% came from exactly two different organisms. While a large cluster with spectra from 

many organisms is likely from contaminants (e.g., keratin, trypsin, etc.) or standard proteins 

added for calibration purposes, clusters with spectra from a small number of organisms 

likely originate from a peptide common to the different organisms.

Peptide Identifications With Spectral Archives

To evaluate whether spectral archives can increase peptide identifications, we selected a 

subset of 14.5 million spectra of Shewanella oneidensis, and constructed an archive with 

them as follows. The dataset was broken into five sets of ~2.9 million spectra. We 

incrementally added each set of spectra to the archive according to the following procedure: 

preprocessing the new spectra (including quality filtration), clustering the new data and 

merging it with the existing archive, searching the new and modified clusters, and updating 

the archive with the identifications (see online methods for more information). Table 1 

summarizes the results of these experiments. At each stage we compared the number of 

protein and unique peptide identifications made searching the clusters in the archive with the 

number that could be obtained with a regular database search of the individual spectra. The 

archive consistently yielded ~5% more unique peptide identifications and ~2% more protein 

identifications, compared to a regular database search. The False Discovery Rate (FDR) of 

Cluster-Peptide Matches (CPM) in the archive was updated at each stage to maintain a rate 

of 2% for the entire archive (simply repeatedly adding batches of CPMs at 2% FDR would 

ultimately give a higher FDR than 2% for the entire archive8).

With the archive we also identified many more spectra (through their cluster membership). 

At different stages, the archive was able to identify 50–75% more spectra through cluster 

membership than a regular database search. Our results demonstrate that the fourfold 

reduction in the number of clusters (as compared to the original number of spectra) does not 

lead to lost peptide identifications due to clusters mixing spectra of more than one peptide. 

In practice, MS-Cluster rarely generates such mixed clusters. We ran experiments with 

several data sets of 1 million spectra; first, we searched their spectra against a database (at 

2% FDR), then clustered the data and checked the clusters with identified spectra to see how 

many clusters had spectra with different peptide annotations. On average, only ~ 1.5% of the 

clusters were mixed in that way and only ~2% of the peptides identified in the database 

search were mapped to mixed clusters (data not shown).

Archives Synergize Interpretation Across Labs And Tissues

Spectral archives combine and synergize data originating from different experiments. 

Unidentified spectra from one dataset can be identified via their membership in clusters with 
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higher quality spectra generated in other experiments involving other tissues or organisms. 

To demonstrate this synergy we used two spectral datasets: 9.9 million spectra from human 

plasma (Plasma dataset generated at PNNL) and 7 million spectra from the human HEK293 

kidney cell line11 (generated at UCSD). We searched these datasets individually against the 

human IPI sequence database (v3.68) at 2% peptide level FDR. We then created an archive 

from both datasets, which enabled us to make additional peptide annotations through cluster 

membership (e.g., an identified spectrum from the HEK dataset lent its annotation to an 

unidentified spectrum in the Plasma dataset, and vice versa). To establish a confident 

peptide identification, we required that spectra exhibit a similarity to the cluster consensus 

with a p-value of 0.01 or less (see Supplementary Note 3 for more details on p-value 

computations).

Since samples come from very different tissues (kidney stem cells vs. plasma), there is 

modest overlap in protein identifications (only 40% of proteins identified in the Plasma 

dataset are also identified in the HEK dataset, see Table 2). However, by using the archive 

we were able to add a large number of identifications to both sets (an additional 954 peptide 

and 114 proteins to the HEK dataset and another 584 peptides and 207 proteins to the 

Plasma dataset). While it may appear counter-intuitive that using spectra from kidney stem 

cells boosts the number of protein identifications in a very different plasma sample by 15%, 

we remark that many “unrecognizable” spectra from plasma exhibit strong similarity to 

reliably identified spectra from kidney stem cells (and vice versa). In particular, many 

additional identifications belong to proteins that are differentially expressed between two 

samples (as evaluated by spectral counts).

Identification of Peptides Conserved Across Species

One of the benefits of spectral archives is that the additional information associated with the 

spectra can be used for more targeted analysis. If a cluster contains spectra from different 

organisms, we can assume that the corresponding peptide belongs to the intersection of their 

proteomes, a much smaller search space to consider. Since E-values of peptide 

identifications are proportional to the database size, a PSM that appears statistically 

insignificant in a standard MS/MS search often becomes statistically significant in a search 

against smaller intersection proteome (see12 for the relationship between the database size 

and FDR).

To test the effectiveness of using intersection proteomes, we analyzed the set of 14.5 million 

Shewanella oneidensis spectra (Sone) along with 0.95 million spectra from Shewanella 

frigidimarina (Sfri) and 0.77 million spectra from Shewanella putrefaciens CN-32 (Sput). 

We also created intersection databases for peptide sequences common to the six-frame 

translation of the genomes of Sone and Sfri, Sone and Sput and their intersection proteomes 

(see Supplementary Note 4).

We evaluated three approaches of searching and identifying peptides from the Sone spectral 

dataset (Fig. 2). The first (“No clustering”) searched all (Sone) spectra against the Sone 

database. The second (“Clustering - single species”) clustered Sone spectra and searched all 

clusters against the Sone database. The third (“Clustering - multiple species”) clustered Sone 

spectra with Sfri and Sput spectra and searched all clusters containing Sone spectra against 
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their appropriate database (clusters with only Sone spectra were searched against the Sone 

database, clusters with spectra from Sone and Sfri were searched against the intersection of 

Sone and Sfri, etc.)

The most unique peptide identifications were made with the third method (43,974 vs. 43,405 

with clustering and 40,680 with the regular database search). Interestingly, we observed a 

large difference between the set of peptides identified exclusively with and without 

clustering (3,206 vs. 5,931). This, again, illustrates the overall positive effect clustering has 

on the database search scores. Note that the 858 peptides that were identified only by the 

third method typically had borderline scores, which given the smaller search space of the 

intersection proteome became sufficient to make a database identification at a fixed peptide-

level FDR of 2%.

Short Peptide Identification

Proteomes of every two species share many short peptides. While manual interpretation of 

short peptides is easier than interpretation of longer peptides, there is currently no software 

designed for sequencing short (5–6 amino acid) peptides. Moreover, it is not clear how one 

can evaluate the accuracy of identification of short peptides. In Supplementary Note 5 we 

discuss some of the problems encountered when sequencing short peptides and demonstrate 

that spectral archives can be utilized to bootstrap generation of a training set of spectra of 

short peptides, provide false discovery rates for their identifications, and enable confident 

identification of nearly 27,000 short peptides (4–6 amino acids), the largest currently 

available set of spectra of short peptides. Our dataset represents the first large spectral 

library for identification of short peptides and a training set for developing de novo 

sequencing approaches aimed at short peptides.

Discussion

The existing MS/MS data analysis methods are usually adequate for basic analysis purposes. 

Database searches have been extensively optimized for identifying unmodified peptides 

from databases of protein sequences. Spectral libraries have proven very useful for 

identifying previously observed peptides in samples from well studied tissues and 

organisms. However, there are scenarios in which existing methods fall short. We believe 

that spectral archives can be the cornerstone in the solution of some of these problems, 

paving the way for new spectral analysis methods.

Standard database searches are not well suited for identifying unexpected protein forms such 

as proteins with rare PTMs, mutations, alternative splicing variants, etc. Consequently, even 

when the sample comes from a well-annotated species, a majority of the spectra remain 

unidentified13. While in principle they might be detected using alternative identification 

methods such as “blind” searches for PTMs14, mutation-tolerant searches15–17, searches of 

six-frame translations of genomes18–21, de novo peptide sequencing22–26, spectral 

networks9, and even searches for fusion peptides27, in practice, it is difficult to perform such 

computationally-intensive analyses on a large-scale. The question arises, which of these 

billions of unidentified spectra are interesting candidates for further studying?
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One way to single out interesting spectra is to examine large unidentified clusters that are 

more likely to represent highly expressed peptides (see Supplementary Note 6). Once we 

rule out the possibility that the spectra belong to a contaminant28, we can apply additional 

experimental approaches to identify the spectrum (e.g., different fragmentation techniques or 

multistage mass-spectrometry) or perform a targeted computational analysis (e.g., search for 

unexpected PTMs).

There are several ways the meta-information associated with the spectra can assist in 

reducing a large number of unidentified spectra in to a small list of interesting clusters 

(however, note that the potential applications outlined below are not implemented in the 

current version of MS-Cluster and require the user to perform additional processing steps as 

needed). In one scenario, we could take note of clusters that contain unidentified spectra 

from samples of related organisms; these might originate from an unannotated protein, or 

include spectra of a conserved peptide with an atypical post-translational modification. In a 

different scenario, we might have an archive with spectra generated from samples of both 

healthy and cancerous tissues. An interesting biomarker is one where there is a significant 

imbalance in the healthy/cancer cluster composition, compared to the ratio observed in the 

entire archive. Biomarkers could be detected by scanning all the clusters in the archive, 

whether they are identified or not (not unlike in MS-imaging studies where the identity of a 

biomarker is often unknown29), and detecting any cluster with a significant composition 

imbalance. In this way, we can extract a short list of “interesting” clusters that warrant a 

detailed examination. Note that since cancer often involves abnormal genomic events 

(mutations, translocations, etc.), these biomarker peptides are unlikely to be present in the 

protein database, and thus will not be identified in a traditional MS/MS database search.

While we advocate that publicly available MS/MS data should be organized in spectral 

archives to facilitate better sharing and exploration of the data, we acknowledge that there 

are limitations to the size of archives that can be generated by our method. Though we 

demonstrated the feasibility of creating archives for billions of spectra, an attempt to cluster 

a trillion spectra with MS-Cluster is likely to fail. Despite recent algorithmic advances in 

clustering30, we are not aware of any clustering projects (across all areas of science and 

engineering) that extend beyond a few billions data points (such as clustering all Internet 

pages). Two characteristics of MS-Cluster currently present bottlenecks for clustering larger 

datasets: quadratic running time and the limited discrimination power of the dot-product (as 

the dataset size increases, one needs a more stringent threshold for combining spectra into 

clusters). Therefore, when organizing MS/MS data in archives, it might be beneficial to 

focus on published datasets or datasets from repositories that are more likely to include 

higher quality spectra and have interesting meta-information.

While we propose spectral archives as a platform for processing data from various 

laboratories, our experimental data was generated at a single location (PNNL). This was 

mainly due to the logistics of acquiring such a huge dataset and specific programmatic needs 

at PNNL. However, we believe the fact that this data was generated over a long period 

(eight years) using different instrumental platforms and experimental protocols introduced 

comparable (or even greater) variance into the data compared to a scenario where the data 

was generated in different laboratories using similar experimental setups.
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The MS-Cluster software for constructing spectral archives is freely available for academic 

and not-profit uses. The source code along with documentation and instructions for creating 

spectral archives is available for download from http://proteomics.ucsd.edu/Software/

MSClustering.html.

We created a web-server that allows users to upload their own spectra and query the PNNL 

archive in order to retrieve the consensus spectra from the archive that are most similar to 

their query (along with information on the organisms that contributed the spectra to the 

retrieved clusters). Its URL is http://proteomics.ucsd.edu/LiveSearch.

Online Methods

Datasets and Database Search

We collected ~approx 1.18 billion MS/MS spectra from over 100 organisms (referred to as 

the PNNL dataset). This data set was compiled by pooling the ion trap spectra that have 

been generated at the Richard Smith laboratory at PNNL in 2001–2009. The data was 

mostly generated on LCQ, LTQ, LTQ-FT and LTQ-Orbitrap instruments. The data 

contained spectra acquired from samples of ~100 different organisms. The largest datasets 

came from human, mouse, Shewanella oneidensis. For a complete list of the datasets used in 

our experiments see Supplementary Table 1. Before clustering, the data was filtered to 

remove low quality spectra (~50% of the data).

Some of the experiments described below focused on a subset of the PNNL dataset, 

consisting of ~14.5 million spectra from Shewanella oneidensis MR-1, ~0.95 million spectra 

from Shewanella frigidimarina, and ~0.77 million spectra from Shewanella putrefaciens 

CN-32 previously analyzed in31,32 (henceforth referred to as Sone, Sfri, and Sput, 

respectively). In order to identify peptides in the Shewanella samples, we searched the 

spectra against their respective genomes along with a set of sequences of common 

contaminants.

We relied on the InsPecT database search tool33 for peptide identification (release 

20081014, using the default search parameters (precursor mass tolerance 2.5 m/z units, 

fragment ion tolerance 0.5 m/z units). Searches were performed using a shuffled decoy 

database with 2% FDR.

Filtering Low-Quality Spectra

Not all mass spectra acquired by a mass spectrometer contain a detectable peptide signal that 

is likely to lead to peptide identification. Some spectra represent non-peptide materials or 

feature poor fragmentation making them “unidentifiable” by MS/MS database searches. 

These spectra often lack typical “peak ladders” (consecutive peaks with a mass differences 

corresponding to the masses of amino acids). Excluding such spectra from the analysis is 

often beneficial and can lead to increased identification rates and savings in running 

time34–38.

We developed a quality filtering approach that was originally designed for the PepNovo 

algorithm23. It is based on training logistic regression models for classification between 
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“good” spectra (that contain a peptide signal) vs. “bad” (noisy spectra). Training spectra are 

collected from database search results against a database containing both target protein 

sequences and random decoy sequences; good spectra were selected from the high-scoring 

confident identifications and for bad spectra we used spectra whose best id was a low-

scoring hit to the decoy database. Each spectrum gets converted to a feature vector with 

various attributes such as: Peak distribution features - number of peaks, number of strong 

peaks (e.g., ten times grass level), number of weak peaks (grass level), number of peaks in 

first half of spectrum, etc.; Peak intensity features - proportion of intensity in strong peaks, 

weak peaks (grass level); Peak ladder features - proportion of peaks that have other peaks 

that are an amino acid's mass distance, the longest ladder of peaks with amino acid mass 

differences; Complementary peak features - number of complementary b/y-ion pairs.

Note that grass level is selected so that two thirds of the peaks in the spectrum are above that 

level. These regression models achieve high classification rates (over 99% accuracy on the 

training data). In practice it is recommended to start with a low quality threshold to 

determine that only a small proportion of the good spectra are filtered out. Typically using a 

threshold of 0.05 filters out approximately 50% of the original set of acquired spectra. At 

this filtration level only about 2% of the identifiable spectra get filtered out. Note that even 

though some of the good spectra get thrown out, ultimately the fact that many low-quality 

spectra get excluded from the analysis often leads to an increase in the number of 

identification at a given FDR8.

Clustering Algorithm

While the clustering algorithm we used follows the algorithmic approach laid out in8, we 

had to completely rewrite it and modify its design to be able to process very large datasets 

while maintaining clustering quality. These changes enabled faster in-memory data 

processing, achieving 3× speedup compared to the older algorithm. More importantly, the 

new algorithm has reduced memory requirements and improved memory management, 

which extend the dataset size that can be processed from tens of millions to several billion 

spectra.

Our clustering algorithm involves an initial filtration step to remove low quality spectra 

using a regression model that relies on features that distinguish spectra of non-peptide 

material or poorly fragmented peptides (described above in “Filtering Low-Quality 

Spectra”). Typically 40%–55% of the spectra are discarded at this stage.

Following that, we use a bottom-up heuristic hierarchical clustering approach to join similar 

spectra that are likely to have originated from the same peptide. Each cluster of spectra is 

represented by a single consensus spectrum that contains the peaks shared by different 

spectra in the cluster (see below “Constructing Consensus Spectra” for more details on the 

creation of the consensus spectrum). Clustering reduces the number of spectra that need to 

be analyzed (yielding up to a tenfold reduction8) and results in “cleaner” consensus spectra 

with increased signal-to-noise ratio. Clustering often yields 5–10% more peptide 

identifications, at a given false discovery rate, compared to the number of peptides identified 

without using it8. See Supplementary Note 2 for more details about the running time of MS-

Cluster.
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We note that our current implementation focuses on ion-trap data. Using our algorithm with 

other types of instruments that display significantly different fragmentation patterns can 

require retraining of models for optimal results (namely spectrum quality models and 

empirical distributions of spectral similarities).

Spectral Similarity

In order to cluster mass spectra we need to determine the similarity between them. We use 

the normalized dot-product, which has previously been found to work well1,4,5,6,39–42. To 

calculate the normalized dot-product of two mass spectra S and S', we first reduce each 

spectrum to a vector. Since the computation of the spectral similarity is a major part of the 

clustering algorithm, restricting the dimensionality of these vectors can reduce the running 

time. To construct such vectors we first select the k highest intensity peaks from S and S' (we 

assume that S and S' have similar precursor masses). Joining these two sets of masses yields 

a set of masses M={m1,…,mt}, where k ≤t≤2k. M may contain less than 2k masses because 

the spectra may share some of their peaks which will produce duplicate masses and each 

pair of duplicate masses is only represented once (masses within 0.5 m/z units are considered 

duplicates). Finally, we reduce the spectrum S to a vector s=s1,…,stby assigning to each si 

the intensity found at mass mi in S if mi was one of the top k peaks in S, otherwise 0 is given 

to that position. Similarly, we fill s' using the intensities of the peaks in S'. In our 

experiments we found that for these similarity computations it is optimal to set k=(Precursor 

m/z)/50. Increasing k to larger values did not improve the performance of the similarity 

measure and in fact with larger values of k, we started to note a certain decrease in 

performance.

Once spectra S and S' are converted to vectors, their normalized dot-product is given by

The normalized dot-product takes values between 0 (when spectra do not share any selected 

peaks) and 1. Dot-products were initially used for measuring similarity between mass 

spectra of chemical compounds, whose mass spectra typically contain a small number of 

peaks1. Directly applying this measure to spectra of peptides can yield suboptimal results 

since a small number of strong peaks in the spectrum can dominate the outcome of the 

spectral similarity computation. Scaling peak intensities has been shown to improve the 

quality of the similarity computations1. One method that has been suggested is to scale a 

peak's intensity according to the square root of the intensity1,42,43. The scaling method we 

found most suitable for spectral clustering was to first normalize the peak intensities to bring 

the total spectrum's intensity to 1000 and then fill the dot-product vectors with 1+ln(si), 

where ln(si) is the natural logarithm of the selected peak i's normalized intensity.
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Constructing Consensus Spectra

A common approach for creating a representative spectrum for a cluster is to use a 

consensus spectrum3–6,8,9,42, which is generated by aggregating the spectra in the cluster. 

Our method for creating a consensus spectrum involves several steps:

Spectra merging - Given the cluster's spectra, we create a single merged peak list for all the 

spectra, and sort the list according to the peaks' masses. The list is then scanned and when a 

pair of consecutive peaks in the list have a mass difference below a specified tolerance, the 

peaks are consolidated to a single peak with a mass that equals the weighted average of the 

joined peaks' masses and an intensity that equals the sum of the joined peaks' intensities. The 

two peaks are replaced by the new consolidated peak and the scanning process continues 

from the new peaks (this way during a single scanning multiple peaks can be consolidated 

into one). To increase the accuracy of the peak joining, the process is repeated several times 

with an increasing tolerance threshold (the final threshold we used was 0.33 m/z units). This 

is done to avoid erroneous peak merging due to isotopic peaks.

Intensity Normalization - To increase the signal-to-noise ratio in the spectrum, we take 

advantage of the fact that peaks corresponding to genuine fragments are likely to appear in 

many of the cluster's spectra. Thus for each peak i in the consensus spectrum, we take note 

of ni the number peaks from the original spectra that were merged to create peak i (each 

spectrum can contribute at most 1 to the count ni) and also to N, the total number of spectra 

in the cluster. We then compute the probability of pi observing ni peaks from a total of N 

spectra at random according to the binomial probability model (using a probability of 

observing a random peak of 0.1 which is a typical probability for low-resolution spectra). 

Each peak's intensity is then multiplied by p. This action has the effect of greatly reducing 

the intensity of spurious peaks that only appear in a small number of spectra.

Peak Filtering - After normalization, the peaks are scanned using a sliding window of width 

200 m/z units, keeping the top ten peaks in each such window.

Along with the mass and intensity of each peak, the consensus spectrum also stores the 

number of spectra in which each peak appeared (ni) and the cluster size (N). Therefore, 

while maintaining spectral archives we do not need to store the peak lists of the individual 

spectra in each cluster, but we are still able to create consensus spectra by merging spectra 

and normalizing intensities as described above.

Creating and Updating Spectral Archives

Spectral archives are created by the MS-Cluster algorithm. An additional command line 

argument can be supplied to the program to instruct it to create an archive. When creating an 

archive, the program outputs the clusters in a binary file format in increments of 1 m/z unit 

(i.e., spectra with the same nominal precursor m/z value are stored in a single file). Storing 

the data this way makes it easier to process and search the archive. In addition, the program 

also outputs text based files for managing the archive. Thus, the time required to generate an 

archive is practically the same as the time required to cluster the dataset.
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Spectral archives are intended to be continuously updated as additional spectra become 

available. Adding a new batch of spectra to the archive is done by first clustering the new 

data and creating an archive for it, and then merging the main archive with the newly 

generated one. Since these steps require the processing of all the data in the archive, it is 

more efficient to add spectra in large batches.

Besides storing peak information for the clusters, the archive can be used to store peptide 

identifications (for clusters that were searched against a database). This is done by adding 

text-based files that map clusters (using their unique cluster id) to peptide sequences and 

protein names. This identification information is added to the archive search results when 

query spectra are compared with the archive. If additional meta information is used, it can 

also be kept as text files along with the archive. Since peptide identifications and meta-

information involve using outside resources and might have an arbitrary structure, the 

management and updating of this information is not performed by the clustering algorithm 

and is the responsibility of the user.

Constructing a Spectral archive of the PNNL dataset

Clustering was performed with default parameters: precursor m/z window of 2 m/z units, 

peak tolerance of ε=0.34 m/z units, and a probability for mixed clusters p=0.05 that gave a 

good tradeoff between cluster sizes and the number of peptide identifications that were 

obtained. A precursor m/z window of 2 m/z units forces that algorithm to consider every pair 

of spectra with precursor m/z values within 2 m/z units. This wide 2 m/z unit window was 

used to demonstrate the robustness of the algorithm even with low resolution precursor mass 

measurements. High-resolution precursor mass measurements would greatly reduce the 

number of spectra pairs that need to be compared, making the clustering faster and more 

accurate, and would also allow us to use lower similarity threshold for joining spectra. 

Another way to reduce the number of compared spectra is to consider the spectra's 

normalized elution times44 and only cluster together spectra with elution times that fall 

within a specified window.

Due to the large computational time involved in creating the archive for over one billion 

spectra, we relied on a standard Linux-based computational grid to perform this task. We 

split the 1.18 billion spectra in the PNNL dataset into 35 batches according to the precursor 

m/z of the spectra. Each batch was run on a single computing node of a large Linux-based 

computational grid at the Center for Computational Mass Spectrometry at UCSD (each node 

with at most 6 GB of RAM). The whole clustering job required approximately 430 CPU 

days to complete.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Clustering of the PNNL dataset. 581 million spectra from the PNNL dataset that passed 

quality filtration were assigned into 299 million clusters of different sizes. (a) While most 

spectra form multi-clusters (i.e., clusters containing at least two spectra), most clusters 
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consist of a single spectrum. (b) A breakdown of the clusters according to the number of 

organisms whose spectra participated in each cluster for each of 21.5 million multi-clusters.
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Figure 2. 
Identification of peptides across different species. The diagram compares the number of 

peptide identifications made with the Shewanella oneidensis (Sone) data using three 

methods: No clustering: standard MS/MS search, single-species clustering followed by 

MS/MS search, and multi-species clustering followed by MS/MS search. Results were 

processed to maintain a 2% FDR.
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Table 2

Clustering HEK293 and Plasma datasets. The table shows the number of peptide and protein identifications 

made in each of the individual datasets, and the identifications made with the combined archive: the number of 

ids that were common to both datasets and the number that were added to each dataset because its spectra 

were joined into clusters with identified spectra from the other dataset.

Num. peptides Num. Proteins

HEK 293 61,380 8,066

Plasma 18,473 1,498

Common to both 1,003 600

Ids added to HEK using archive 954 114

Ids added to Plasma using archive 584 207
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