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Borane catalysed ring opening and closing cascades
of furans leading to silicon functionalized synthetic
intermediates
Chinmoy K. Hazra1,2, Narasimhulu Gandhamsetty1,2, Sehoon Park1,2 & Sukbok Chang1,2

The conversion of renewable biomass resources to synthetically valuable chemicals is highly

desirable, but remains a formidable challenge in regards to the substrate scope and reaction

conditions. Here we present the development of tris(pentafluorophenyl)borane–catalysed

conversion of furans via ring-opening and closing cascade processes to afford silicon-

functionalized synthetic chemicals under transition metal-free conditions. The furan

ring-opening with hydrosilanes is highly efficient (TON up to 2,000) and atom-economical

without forming any byproduct to give rise to a-silyloxy-(Z)-alkenyl silanes. Additional

equivalents of silane smoothly induce a subsequent B(C6F5)3-catalysed cyclization of initially

formed olefinic silane compounds to produce anti-(2-alkyl)cyclopropyl silanes, another

versatile synthon being potentially applicable in the synthesis of natural products and

pharmacophores.
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P
roduction of furans and their subsequent transformations
have received a great attention1,2. This research activity
can be attributed to the relevance of furan derivatives to

the renewable biomass. Thermal dehydration of glucose or
fructose, the most abundant monosaccharides, in the presence
of acid catalysts provides important nonpetroleum chemicals
including furfural and 5-hydroxymethylfurfural (HMF)3–6. These
compounds are considered to be versatile platform chemicals
with high potential utility in organic synthesis and industrial
applications to give rise to a diverse range of furans and their
derivatives. In fact, a number of catalytic transformations of
furans or their congeners to valuable chemicals have long
been developed in both academia and industry7–9. Among
the precedents, however, the ring-opening reactions of furans
are relatively less highlighted10–12 when compared with the
derivatization of furans maintaining the ring skeleton13–15. One
notable example of the ring-opening of furans is the production
of levulinic acid via an acid-catalysed hydration of HMF
(Fig. 1a)16,17. Recently, Gordon and coworkers showed that a
sequential catalysis involving ring-opening hydrolysis of
chain-extended HMF derivatives followed by hydrode-
oxygenation using a combination of acid and metal catalyst can
produce linear alkanes18. In addition, while a borane catalyst
system was proved to be applicable in the transformations of
carbohydrates, it was also employed for the ring-opening of
furan derivatives. For instance, Gagné et al. found that B(C6F5)3

catalyses the deoxygenation of carbohydrate-based polyols
with hydrosilanes to give chiral-alcohol synthons19 or hydro-
carbons20,21 with remarkable chemoselectivity. Njardarson et al.
employed B(C6F5)3 catalyst for the reduction of 2,5-dihydro-
furans using hydrosilanes to obtain silyl(homo)allyl ethers, which
was proposed to form via a hydrosilylative C�O bond
cleavage22. On the other hand, Ashley et al. reported that
hydrogenation of furan derivatives under the frustrated
Lewis pairs catalysis using (B(C6Cl5)(C6F5)2) delivers reduced
tetrahydrofuran compounds23. Despite of such progresses on
furan transformation reactions, there have been no developments
thus far for the selective conversion of furans to ring-opened
products bearing a sp3 C� Si bond at ambient conditions.

Described herein is the development of a boron-catalysed
cascade silylative transformation of furans (I) involving selective
ring-opening and closing processes, thus allowing for the sequential
formation of two types of new silylated products of a-silyloxy-(Z)-
alkenyl silanes (II) and trans-(2-alkyl)cyclopropyl silanes (IV)
(Fig. 1b). In this transformation, several aspects are especially
notable: First, while the B(C6F5)3-catalysed hydrosilylation of
olefins is known24, the sp3 C�O and sp2 C¼C bonds in the
initially ring-opened a-silyloxy-(Z)-alkenyl silanes (II) remain
unreacted. Second, the subsequent ring-closing of II is readily
enabled simply by additional equivalent of hydrosilane leading to
silylcyclopropanes (IV) without the need to isolate the ring-opened
compounds II. Third, the observed high regio and stereoselectivities
in both the initial ring-opening and subsequent cyclopropanation
processes are an outcome of kinetic differentiation within the
borane catalytic cycle. In addition, both types of products obtained
from the present furan conversion are synthetically highly valuable
compounds possessing sp3 C� Si bonds25–27. Also, a broad range
of furan congeners derived from 5-hydroxymethylfurfural are
successfully applied for the selective cascade hydrosilylation to yield
silicon-functionalized products (Fig. 1c).

Results
Discovery of new cascade transformations of furans. When
2-methylfuran was treated with 1.0 equiv. of PhMe2SiH in the
presence of B(C6F5)3 (5.0 mol%) in dichloromethane solvent, a

new product, a-silyloxy-3-pentenyl silane Z-2a, was observed to
form in 10 min at � 78 �C along with unreacted 1a in a 1:1 ratio
(Fig. 2a; see Supplementary Fig. 1). Subsequent addition of 2.0
equivalents of PhMe2SiH into the above reaction mixture
brought about exclusive formation of silylated cyclopropane as a
single stereoisomer (anti-3a) in 74% yield over 16 h in addition to
(PhMe2Si)2O byproduct 4 (Fig. 2a; see Supplementary Fig. 2).
These results indicate that the kinetic barrier for the
B(C6F5)3-catalysed ring-opening hydrosilylation of 1a to Z-2a is
much lower than that of the ring-closing process from Z-2a to
anti-3a. Consistent with this interpretation, we were able
to confirm that 1a was quantitatively converted to Z-2a with 2.0
equivalents of PhMe2SiH, while the use of 3.0 equiv. of the
silane led to the exclusive formation of anti-3a together with
stoichiometric byproduct 4 (Fig. 2b).

To gain more insight into the kinetics of each step of the
cascade hydrosilylation processes, we monitored the reaction
progress by 1H NMR spectroscopy (Fig. 2c,d; see Supplementary
Fig. 3). A precooled mixture of B(C6F5)3, 1a, and PhMe2SiH
(1:50:200) in CD2Cl2 at � 70 �C was found to give Z-2a in a
quantitative NMR yield over 3.5 h. On further warming up to
25 �C, Z-2a started to subsequently undergo a ring-closing
process to afford silylated cyclopropane anti-3a (53% NMR
yield in 7 h). These results clearly indicate that the furan
transformation proceeds via sequential reductive pathways, which
are strongly governed by kinetic factors. Moreover, the initial
rates for each process in the hydrosilylation cascade of
2-methylfuran were determined to be 1.14� 10� 4 M s� 1

(for the ring-opening at � 70 �C) and 3.06� 10� 5 M s� 1 (for
the cyclopropanation at 25 �C) (Fig. 2d; Supplementary Fig. 3).

Substrate scope of the B(C6F5)3-catalysed cascade silylative
reduction of furans. With the preliminary results on the
2-methylfuran conversion in hand, we carried out additional
optimization studies (Supplementary Tables 1–3) and
investigated the substrate scope of this catalysis. 2-Alkyl or
2-arylfuran derivatives employed in this study were easily
prepared via the Pd-catalysed Suzuki–Miyaura cross-coupling
reaction of (2-furanyl)boronic acid with the corresponding alkyl
or aryl halides (Supplementary Methods, GP1). In the present
cascade transformation of furans, several notable features were
revealed: (i) only equimolar amounts of hydrosilanes are needed
to enable the ring-opening process, thus indicating that the
conversion is atom-economical; (ii) the reaction is highly
stereoselective in that one isomeric products are formed; (iii) the
subsequent cyclopropanation process can be carried out without
isolation of ring-opened intermediates, a-silyloxy-(Z)-homo-
allylsilanes; (iv) again, the ring-closing process is highly stereo-
selective affording anti-products exclusively; and (v) the overall
procedure is convenient and easy to scale up with high catalyst
turnovers (B2,000).

We were pleased to observe that the optimized conditions were
readily applicable to a broad range of furan derivatives to give
a-silyloxy-(Z)-homoallylsilanes (Table 1; Conditions A).
Substrates with aliphatic substituents on the furan C-2 were all
compatible with the B(C6F5)3-catalysed (2.0 mol%) ring-opening
process at ambient temperature. Analytically pure a-silyloxy-(Z)-
homoallylsilane products (Z-2aB2d) were obtained in high
yields and with excellent stereoselectivities (Z/E: 499/1, as
measured by crude 1H NMR experiments). The reaction of
aryl-substituted furans proceeded with a similar level of selectivity
and efficiency irrespective of the electronic properties of the aryl
moiety (Z-2eB2k, Z/E: 499/1, 83–92%). Gratifyingly, potentially
reactive functional groups (Z-2lB2n) were tolerated under the
reaction conditions, while reactions of the furan substrates
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bearing sterically bulky substituents were also smooth
(Z-2oB2q). In addition, substrates having multiple furan rings
(1rB1t) were readily employed for the current process to afford
the corresponding multi-functionalized C-2 or C-3 symmetrical
products (2rB2t). Interestingly, the newly generated multiple
double bonds are all in (Z)-form, strongly suggesting that the
ring-opening process is highly stereoselective.

We next turned our attention to the formation of silylated
cyclopropanes based on the above mechanistic insights (Fig. 2). A
brief optimization study led us to establish the one-pot reaction
conditions that do not need to isolate a-silyloxy-(Z)-homoallylsi-
lanes compounds. The key in this triple cascade hydrosilylation
process was the amounts of hydrosilanes employed: while
dimethylphenylsilane was most effective, the use of slightly
excessive this silane (4.0 equivalents) was found to be optimal
for high product yields. Under these conditions, a range of furan
substrates were smoothly converted to the desired 2-alkylcyclo-
propyl silanes with excellent anti-diastereoselectivity in the
presence of B(C6F5)3 catalyst (Table 1; Conditions B). Anti-
diastereoselectivity was confirmed by NMR analyses
(Supplementary Figs 114–122). Furans substituted with alkyl
groups at the 2-position smoothly underwent the triple hydro-
silylation cascade with PhMe2SiH (4.0 equiv.) to afford the
corresponding products (anti-3a, 3bB3f, diastereomeric ratio;

499/1; the diastereoselectivity was measured by 1H NMR of the
crude reaction mixture). Likewise, 2-arylfurans with varying
electronic properties were converted to anti-(2-arylmethyl)cyclo-
propyl silane in high yields (anti-3gB3m).

Furans bearing multi-substituted phenyl and polyaromatic
moieties were also competent substrates for this hydrosilylation
cascade (anti-3nB3p). Interestingly, multiple furans connected
through a benzene core were smoothly converted to the
corresponding products bearing bis- or tris-cyclopropyl groups
(3qB3r, respectively), still displaying an anti-stereochemical
relationship in each newly generated cyclopropane. It should be
mentioned that Stephan, Hashmi, and coworkers recently showed
that a stoichiometric reaction of B(C6F5)3 with 1,6-enynes proceeds
via initial cyclopropanation and then formal 1,1-carboboration28.
In addition, Erker et al. reported that HB(C6F5)2 can mediate a
conversion of allyldimesitylphosphanes to phosphinomethyl-
substituted cyclopropane derivatives under frustrated Lewis pair
conditions in a stoichiometric manner29.

Structural diversity with other furans and benzofurans. In
addition to 2-substituted furans, furan and other regioisomeric
derivatives were observed to undergo the selective ring-opening
reactions at ambient temperature to give structurally diverse
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products bearing sp3 C� Si bonds (Table 2). Unsubstituted furan
was reacted with PhMe2SiH under the borane catalysis, leading to
(Z)-a-hydroxy allylsilane upon treatment of the reaction mixture
with methanol solution of K2CO3 (Z-5, Table 2). 3-Substituted
furan was also reactive toward the silylative reduction, furnishing
an allylsilane having both silyloxy and aryl moieties at the C1 and
C2-positions (Z-6). It was interesting to see that disubstituted
furan underwent the ring-opening process via slightly modified
pathway (see Supplementary Discussion 2). For instance,
2,3-dimethylfuran was reacted under the same conditions to
eventually provide g-silylketone product (7) after treating the
catalytic reaction mixture with tetrabutylammonium fluoride
(nBu4NF) in one pot (7, 73% over two steps). In a similar
manner, 2,5- dimethylfuran was doubly hydrosilylated to afford
the corresponding g-silylketone (8) upon treatment of nBu4NF
(8, 75% over two steps). The present procedure was also
applicable to the silylative reduction of benzofurans. Reactions of
benzofuran or 2-substituted benzofurans with hydrosilane in the
presence of borane catalyst selectively proceeded to provide a
range of 2-alkyl-substituted phenols (9B12) having a sp3 C� Si
bond in high yields again after treating the methanol solution of
K2CO3.

Mechanistic experiments and proposed catalytic pathway.
Based on the present observations and precedents30,31 regarding
the mechanism of B(C6F5)3-mediated hydrosilylation, we propose
a cascade catalytic pathway leading to the Z-selective homoallylic
silane, and subsequently the anti-cyclopropyl silanes, as seen in
Fig. 3a using 2-methylfuran as a model substrate. On the in situ
generation of a borane-silane adduct I, 2-methylfuran 1a attacks
the silylium species to afford an oxonium species II that
immediately reacts with the borohydride leading to a partially
reduced furan intermediate III bearing a sp3 C� Si bond next to
an oxygen atom. A subsequent hydrosilylation of III is suggested
to take place through a key intermediate IV, at which a selective

borohydride attack at the a-carbon via a nucleophilic vinylic
substitution (SNV) pathway leads to a-silyloxy-(Z)-alkenyl silane
(V)32 (Fig. 3a (top), 1a to V).

An O-silyl oxonium species VI formed by a reaction of V with
active species I is proposed to be involved in the ring-closing
process, which will induce the borohydride nucleophilic attack
(SN20-type mechanism) to give the corresponding silylated
cyclopropanes with the release of one equivalent of siloxane
(Fig. 3a (bottom), V to anti-3a). With regard to the oxonium
species VI, two different types of intermediates would be
plausible: (i) VI that has C1 and C4 substituents (oxonium/silyl
and methyl groups, respectively) at the opposite space and (ii) VI0

having two groups on the same side. The relative stereochemistry
(anti-) of two substituents in the resultant cyclopropane product
can be reasoned by proposing a nucleophilic substitution of an
in situ generated oxonium species VI (ref. 20) by the borohydride
nucleophile to minimize the steric repulsion between
substituents33.

This mechanistic proposal was supported by a series of
experiments, including kinetic and isotopic studies. A
hydrosilylation of 2-methylfuran (1a) with PhMe2SiD (2.0 equiv.)
under standard conditions led to the exclusive incorporation
of deuterium at the two positions to give Z-2a-d2 (Fig. 3b). A
reaction of 2,3-dihydro-5-methylfuran, 13 with 1.0 equiv. of
PhMe2SiD afforded a product Z-14-d with a selective deuterium
incorporation at the olefinic carbon (Fig. 3c). These results led us
to propose a selective and consecutive attack of a borohydride
nucleophile following the silylium ion (R3Siþ ) (refs 34–38)
transfer and the involvement of a partially reduced dihydrofuran
intermediate such as 13 during the ring-opening process.
Although the proposed vinylic substitution by the borohydride
nucleophile is unknown to our best knowledge, an example of an
inversion at the alkenyl configuration was previously reported in
a reaction of alkylvinyliodonium electrophiles with halide
nucleophiles39.
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Table 1 | B(C6F5)3 catalysed cascade silylative transformation of furans.
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As expected, the subsequent ring-closing process from V to the
corresponding silylated cyclopropanes was highly stereoselective
as proved by an isotope experiment. Indeed, when a-silyloxy-(Z)-
alkenyl silane (Z-2a) was allowed to react with PhMe2SiD
(1.5equivalents), cyclized product (anti-3a-d) was obtained in

82% yield as a single isomer with the exclusive incorporation of
deuterium at the a-ethyl position (Fig. 3d). A stoichiometric
amount of siloxane was also confirmed to be generated during the
cyclopropanation process. An initial-rate study for the cyclopro-
panation of V under the B(C6F5)3-catalysed hydrosilylation

Table 2 | B(C6F5)3-catalysed silylative ring-opening of derivatives of furan and benzofuran.
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conditions clearly showed that the reaction was first-order in
silane concentration (Fig. 3e; see Supplementary Figs 4 and 5),
leading us to propose that the cyclization path involves an
O-silylated oxonium ion possessing a borohydride anion40.

Synthetic applications. The synthetic utility of the products
obtained was demonstrated to be very broad, including a wide
range of simple and convenient organic transformations (Fig. 4).
a-Silyloxy-(Z)-alkenyl silanes were easily desilylated to give
allylic- or homoallylic alcohols with retention of double bond
stereochemistry (Z-15 and Z-16, respectively). a-Hydroxy
homoallylic silane (Z-2a0), accessed through the O-desilylation of
a-silyloxy-(Z)-homoallylic silane, turned out to be also
synthetically versatile. a-Silyloxy acetate (Z-17) was readily
produced by a radical Brook rearrangement in good yield41.
Moreover, Z-2a0 was smoothly converted to (Z)-a-amino silane
derivative (Z-18) under the Mitsunobu conditions leading to
C�N bond formation. Epoxide (19) was obtained syn-selectively
via the Sharpless directed epoxidation of Z-2a0 (ref. 42), thus
proving that a-silylalcohol works as an effective directing group.
An efficient Prins cyclization43 of Z-2a0 was achieved to furnish a
tetrasubstituted pyran ring (syn-20) with complete stereocontrol.
The observed syn-stereochemistry was unambiguously confirmed
by NMR and X-ray diffraction analyses. Cross metathesis of
Z-2a0 with ethyl acrylate was carried out stereoselectively with
Grubbs II catalyst to give E-21. Lewis acid-promoted allylic
rearrangement44 of a-silyloxy-(Z)-allylic silane bearing tert-
butyldimethylsilyloxy group Z-500 (tert-butyldimethylsilyl
derivative of Z-5, see Supplementary Methods) proceeded
smoothly to afford silyloxy vinylic silane (E-22), another
versatile synthetic building block. Acylsilane (E-23), a valuable
organosilicon reagents in organic synthesis45, was readily
obtained.

Two preparative procedures of cyclopropyl silanes were mild
and efficient on a large scale (Supplementary Methods): (i) a
stepwise route via a-silyloxy homoallylic silane (Z-2a, procedure
‘‘xi’’ in 77%), and (ii) a direct conversion of furan (procedure
‘‘xii’’ in 81% yield). The subsequent oxidation of the C� Si
bond under the Tamao–Fleming conditions46 proceeded
with retention of stereochemistry to furnish the versatile
synthons, cyclopropanol (24) and its methansulfonyl derivative
(25), which are broadly utilized in synthetic and medicinal
chemistry47. For instance, cascarillic acid48, a natural
product derived from the bark of the medicinal shrub
Croton eluteria, can be envisioned to be accessible based on our
current procedure.

In summary, we have developed the tris(pentafluorophenyl)-
borane-catalysed cascade transformation of furans that are readily
available from renewable biomass resources to obtain syntheti-
cally valuable silicon-functionalized products such as a-silyloxy-
(Z)-alkenyl silanes and anti-cyclopropyl silanes. Simply by
varying the stoichiometry of employed hydrosilanes in presence
of B(C6F5)3 catalyst, the product distribution could completely be
controlled with high efficiency (TON up to 2,000) and excellent
stereoselectivity. The transformation does not require transition
metal catalysts, proceeds efficiently on large scale, and is broadly
applicable to various types of furans and their derivatives,
bringing about a significant structural diversity in the product
obtained. A proposed mechanistic pathway involves a series of
hydrosilylation cascades, containing a ring-opening and
subsequent SN20-type ring-closing process, both mediated by a
B(C6F5)3 catalyst. The synthetic utility of obtained silicon-
functionalized products was demonstrated in a range of
post-transformations. It is anticipated that this study will
stimulate future developments in the transformations of
biomass-derived platform chemicals to synthetic valuables.
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Methods
General procedure for the silylative ring opening reaction (conditions A,
GP1). In a flame-dried flask bearing a stirring bar, B(C6F5)3 (0.01B0.02 mmol,
2.0 mol%) was dissolved in CH2Cl2 (0.4B0.8 ml). Silane (1.025B2.050 mmol) was
added, and the solution was shaken shortly to make it homogeneous. The corre-
sponding furan derivative (1aB1t, 0.50B1.0 mmol) was then added and the
reaction mixture was stirred at 23 �C for the indicated time (1B15 h). After
quenching the reaction mixture with Et3N (10.0B20.0 mol%), the crude reaction
mixture was concentrated under reduced pressure and then purified by flash col-
umn chromatography on silica gel (using either hexane only or a mixture of
hexane/ethyl acetate) to afford the desired products (Z-2aBZ-2t, in all cases Z/E
499/1).

General procedure for the cyclopropanation reaction (conditions B, GP2). In a
flame-dried flask bearing a stirring bar, B(C6F5)3 (0.025 mmol, 5.0 mol%) was
dissolved in CH2Cl2 (0.2 ml). Silane (1.5B2.0 mmol) was added, and the solution
was shaken shortly to make it homogeneous. The corresponding furan derivative
(1aB1t, 0.50 mmol) was then added at 0 �C and the reaction mixture was stirred at
23 �C for the indicated time (4B22 h). After quenching the reaction mixture with
Et3N (10.0B20.0 mol%), the crude reaction mixture was concentrated under
reduced pressure and then purified by flash column chromatography on silica gel
(using either hexane or a mixture of hexane and ethyl acetate) to afford the desired
products (anti, 3aB3r, in all cases dr 499/1).

Data availability. The authors declare that the data supporting of the findings of
this study are available within the article and Supplementary Information files. For
the experimental procedures and spectroscopic and physical data of compounds,
see Supplementary Methods. For NMR analysis of the compounds in this article,
see Supplementary Figs 6–187. The CCDC 1505482 (Z-2a00) and CCDC 1505484
(syn-200) contain the supplementary crystallographic data for this paper
(Supplementary Tables 4 and 5). These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/
data_request/cif. All other data are available from the authors on reasonable
request.
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