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Abstract

Resident tissue macrophages (RTMs) develop from distinct waves of embryonic progenitor cells 

that seed tissues before birth. Tissue-specific signals drive a differentiation program that leads 

to the functional specialization of RTM subsets. Genetic programs that regulate the development 

of RTMs are incompletely understood, as are the mechanisms that enable their maintenance in 

adulthood. In this study, we show that the ligand-activated nuclear hormone receptor, retinoid 

X receptor (RXR)α, is a key regulator of murine RTM development. Deletion of RXRα in 

hematopoietic precursors severely curtailed RTM populations in adult tissues, including the 

spleen, peritoneal cavity, lung, and liver. The deficiency could be traced to the embryonic period, 

and mice lacking RXRα in hematopoietic lineages had greatly reduced numbers of yolk sac and 

fetal liver macrophages, a paucity that persisted into the immediate postnatal period.

INTRODUCTION

Macrophages are a heterogeneous population of cells that protect against infection and 

perform critical functions in organ development and tissue homeostasis (1). Murine resident 

tissue macrophages (RTMs) are represented by ontogenetically distinct populations that 

arise from distinct waves of precursor cells originating in the yolk sac (YS) and the 

aorta-gonadmesonephros region of the embryo. RTM identity is also shaped by residency, 

the duration of residency in tissues, and the influence of local environmental signals on 
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epigenetic and transcriptional programs (2, 3). The origins of RTMs and tissue-specific 

factors that define and maintain RTM identity are incompletely understood.

Retinoid X receptor (RXR)α is a transcription factor that undergoes obligate 

heterodimerization with other members of the nuclear hormone receptor superfamily and 

has been implicated in the control of numerous physiological processes, including cell cycle, 

lipid and glucose metabolism, and immune responses (4, 5). RXRα has been previously 

shown to be important for proper macrophage function (6-9). More recently, RXRα was 

shown to regulate the homeostasis of embryonically derived serous cavity macrophages (10). 

This study concluded that RXRs do not control the fetal development of large peritoneal 

macrophages, but rather their postnatal expansion. In our study, selective ablation of Rxra 
from panhematopoietic cells through the use of a Cre recombinase under the control of 

the Vav promoter revealed impaired generation of YS and fetal liver (FL) macrophages but 

not FL hematopoietic stem cell (HSC)–derived monocyte populations, suggesting a role for 

RXRα in the embryonic development of RTMs.

MATERIALS AND METHODS

Animal care

Mouse studies were conducted under protocols approved by the Institutional Animal Care 

and Use Committee of Massachusetts General Hospital. Rxrafl/fl (stock no. 013086) and 

Vav-iCre (stock no. 008610) mice on the C57BL/6 background were purchased from 

The Jackson Laboratory and housed in HPPF facilities (Heliobacter- and Pasteurella 
pneumotropica–free).

Cell isolation

Single-cell preparations from various tissues were performed as described in Liu et al. (11). 

Briefly, 8- to 10-wk-old mice were euthanized and peritoneal lavage was collected and 

stored on ice. Mice were then perfused and tissues harvested into ice-cold PBS. Spleens 

were homogenized using a motored tissue homogenizer, and RBCs were lysed using ACK 

lysis buffer. Colon and small intestine were washed in EDTA containing buffer to remove 

epithelial fraction before Liberase (Roche, catalog no. 5401020001) digestion. Skin, liver, 

and lungs were also digested in Liberase and subjected to Percoll gradient centrifugation 

at 600 × g for 20 min to enrich for hematopoietic cells. Brain tissues were digested in 

an enzyme mix of collagenase A (MilliporeSigma, catalog no. 11088793001) and DNase 

I, grade II, from bovine pancreas (MilliporeSigma, Cat No. 10104159001) and cleaned of 

debris (Miltenyi Biotec, 130-109-398). Embryonic tissues (FL and YS) were homogenized 

between frosted glass slides and digested in Liberase TL (thermolysin low). Cells isolated 

from all tissues were counted in a Countess 3 (Thermo Fisher Scientific) counter and 

resuspended in FACS buffer in preparation for staining.

Iron and IBA-1 staining

Ferric iron deposits were visualized by Prussian blue staining of formalin-fixed, paraffin-

embedded tissues. Multiple images of each biological replicate were taken using a 20× 

objective on a Nikon Eclipse 80i (Nikon, Tokyo, Japan). For IBA-1 staining, heat-mediated 

Philpott et al. Page 2

Immunohorizons. Author manuscript; available in PMC 2022 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ag retrieval with Tris/EDTA buffer was performed on paraffin-embedded spleen tissues 

followed by blocking in goat serum containing 0.3% Triton X-100. IBA-1 was stained using 

rabbit monoclonal anti–IBA-1 (Abcam, ab178847) primary Ab at 1:500 dilution followed 

by Alexa Fluor 488–conjugated goat anti-rabbit IgG (ab150077) at 1:1000 dilution. Images 

were taken using a Zeiss Imager Z1 (Zeiss, Thornwood, NJ).

Flow cytometry

A maximum of 3 × 106 cells were stained with fluorescent dye–conjugated Abs as described 

previously (12). Samples were acquired on a custom-made LSRFortessa X-20, and data 

were analyzed using FlowJo software (Tree Star). Changes in Ab staining panels (e.g., Ab 

clones and reagent batches) across experiments were minimized. Strong discrepancies in 

staining from different experiments were noted, and the data in question were excluded from 

final analyses.

Abs for flow cytometry

The following Abs were used for flow cytometry: CD115 Alexa Fluor 488 (AFS98, 

BioLegend, 135512), CD93 PerCP-Cy5.5 (AA4.1, BioLegend, 136512), CD144 PE 

(11D4.1, BD Biosciences, 562243), F4/80 PE-CF594 (T45-2342, BD Biosciences, 565613), 

CD64 PE-Cy7 (X54-5/7.1, BioLegend, 139314), Sca-1 allophycocyanin (D7, BioLegend, 

108112), CD16/32 allophycocyanin-R700 (2.4G2, BD Biosciences, 565502), CD11c 

allophycocyanin-780 (N418, eBio-science, 47011482), CD41 BV421 (MWReg30, BD 

Biosciences, 747729), Ter119 BV510 (TER-119, BD Biosciences, 563995), Ly6G BV605 

(1A8, BD Biosciences, 563005), CX3CR1 BV650 (SA011F11, BioLegend, 149033), c-

Kit BV711 (2B8, BD Biosciences, 105835), CD45 BV786 (30-F11, BD Biosciences, 

564225), CD3e BUV395 (145-2C11, BD Biosciences, 563565), CD11b BUV737 (M1/70, 

BD Biosciences, 564443), CD68 PerCP-Cy5.5 (FA-11, BioLegend, 137010), VCAM1 Alexa 

Fluor 647 (429, BioLegend, 105712), MHC class II Alexa Fluor 700 (M5/114, Thermo 

Fisher Scientific, 56532182), Siglec-F BV421 (E50-2440, BD Biosciences, 562681), 

Tim-4 BV510 (21H12, BD Biosciences, 742774), Live/Dead, fixable UV (Thermo Fisher 

Scientific, L34962).

Statistical analysis

For comparison between two cohorts, a minimum of four mice per group was used, and the 

experiments were repeated at least twice. The D’Agostino and Pearson omnibus normality 

test was used to determine whether values came from a Gaussian distribution. A two-tailed 

unpaired t test was used to calculate significance in the comparisons of two cohorts that 

were normally distributed. A Mann–Whitney U test was performed for comparing groups 

that failed normality tests. Graphs are vertical scatter plots showing the SEM. Animals of 

both sexes were used as available. No randomization was performed, and investigators were 

not blinded to group allocations.
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RESULTS

RXRα deficiency alters multiple RTM populations

We deleted RXRα in developing precursor cells by crossing Rxrafl/fl mice (13) with 

Vav-iCre transgenic mice (14, 15). Vav expression is restricted to hematopoietic cells 

and is reported in CD45+VEC− cells of the aorta-gonad-mesonephros region and FL at 

embryonic day (E)11.5 (15, 16). To minimize germline deletion of the floxed allele, 

male Rxrafl/fl mice were mated with female VavCre+Rxrafl/fl mice, and PCR-genotyped 

adult littermate progeny were used for analyses. RXRα deficiency had no impact on total 

splenic cellularity or the distribution of splenic B and T cell subsets (Supplemental Fig. 

1). However, we noted a lack of F4/80hiVCAM1+ splenic red pulp macrophages and 

bone marrow erythroblastic island macrophages in VavCre+ Rxrafl/fl mice compared with 

control RXRαfl/fl mice (Fig. 1A, 1C). Immunohistochemistry staining of spleen with the 

pan-macrophage marker, IBA-1, confirmed this phenotype (Fig. 1B, top row). Red pulp 

macrophages are critical for phagocytosis of senescent RBCs and iron recycling, and in their 

absence, VavCre+Rxrafl/fl mice accumulated ferric iron in the spleen (Fig. 1B, bottom row). 

This phenotype was similar to that of VavCre+Ppargfl/fl mice (17), an observation of potential 

significance in the present context because PPARγ is a binding partner of RXRα. PPARγ 
was initially identified as a transcription factor critical for perinatal alveolar macrophage 

development (18, 19). Adult VavCre+Rxrafl/fl mice also had severely reduced CD11c+Siglec-

F+ lung alveolar macrophage populations and IBA-1+ cells (Fig. 1D, 1E). Given the 

shared embryonic origins of RTM subsets, we interrogated RTMs in other tissues of 

adult VavCre+Rxrafl/fl mice and found similar declines in liver F4/80+Tim-4+ Kupffer cells, 

CD11b+F4/80hi large peritoneal cavity macrophages, and a small but significant reduction 

in small intestinal CD11b+CD64+ gut macrophages (Fig. 1F-H). Colonic macrophages that 

are derived from circulating bone marrow monocytes were not impacted (Fig. 1I), as were 

brain CD45loCD11b+ microglia that arise from distinct primitive YS precursors at E7.5 

(20) where RXRα is not expected to be deleted using the Vav-iCre strategy (Fig. 1J). 

Skin CD11b+F4/80+ Langerhans cells, which derive from a mix of YS and FL cells (21), 

were not affected by RXRα deficiency (Fig. 1K). Thus, our data pointed to a role for 

RXRα in regulating homeostasis of select RTM subsets arising from embryonic precursors. 

Our observations contrast with a recent report of RXRα deletion in macrophages using 

LysM-Cre transgene that also showed a reduction in cavity and liver macrophages but not 

in any other tissues (10). This discrepancy is likely due to poor LysM promoter-driven Cre 

recombinase expression in macrophage precursors during embryonic development that may 

have resulted in inefficient deletion of RXRα (10, 18, 22).

RXRα deficiency impairs embryonic development of RTM precursors

RTMs arise from embryonic precursors that seed tissues where they undergo rapid 

expansion. These precursors have been proposed to include YS-derived erythromyeloid 

progenitors (EMPs) (23), “late” EMP-derived fetal monocytes (24), or HSC-derived fetal 

monocytes (25). The current paradigm is that Csf1r-expressing EMPs give rise to circulating 

macrophage precursors (pMacs) that colonize embryos at the onset of organogenesis from 

E9.5 (3, 23, 26). We therefore determined whether RXRα regulated the initial development 

of RTM subsets or their postnatal expansion. Analysis of a publicly available fetal 
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macrophage dataset (3) revealed that Rxra transcripts may be detected as early as E9 in 

YS EMPs (Fig. 2A). Interestingly, Vav1 expression was also found in these CD45loc-Kit+ 

EMPs, raising the possibility of Rxra deletion in YS precursors. We therefore analyzed YS 

tissue from E9.5 embryos of time-pregnant VavCre+Rxrafl/fl females mated with Rxrafl/fl 

males (Fig. 2B, 2C). We noted considerable variability in the distribution of cell subsets at 

this embryonic stage, and although the frequency of CD45+c-Kit+ EMPs trended higher in 

VavCre+Rxrafl/fl embryos, significance was not achieved (Fig. 2B). However, our analysis 

did uncover significant deficits in CD45+ F4/80+ cells in E9.5 knockout embryos (Fig. 

2B). Furthermore, CD45+CD11bloF4/80− pMacs and CD45+CD11b+F4/80+ macrophages 

were diminished in KO YS (Fig. 2C), suggesting either a block in transition from EMP to 

pMac/macrophage stage in the absence of RXRα or altered proliferation and/or apoptosis 

in pMacs. YS EMPs additionally migrate to the FL where they can differentiate into 

RTMs (27). VavCre+Rxrafl/fl FL at E14.5 also contained significantly fewer CD11bloF4/80hi 

macrophages but not CD11bhiF4/80lo monocytes compared with controls (Fig. 2D). In 

agreement with this embryonic deficit, there were negligible RTMs in the spleen, liver, 

and lungs of postnatal day 1 VavCre+Rxrafl/fl mice, a paucity that persisted until postnatal 

day 8 (Fig. 2E). These data confirmed that the impairment in RTM homeostasis in RXRα-

deficient animals began during embryonic development and was likely exacerbated by lack 

of expansion during the postnatal period.

DISCUSSION

Our studies position RXRα as a key regulator of early life RTM development. Murine 

RTMs are produced during three consecutive waves of hematopoietic development. The 

first wave, called primitive hematopoiesis, occurs in the YS at E7.5 and gives rise to 

microglia of the brain (20). In the VavCre+ model of Rxra deletion, we noted no changes in 

adult microglia (Fig. 1J), and it remains to be determined, by the use of Cre systems that 

are activated earlier in ontogeny, whether RXRα might regulate aspects of this primitive 

developmental process. The second wave of macrophages arises from EMPs that are 

derived from hemogenic endothelium in the YS vasculature at E8.25 (28). In this wave 

of definitive hematopoiesis, YS EMPs generate circulating macrophage precursors that 

colonize embryonic tissues directly (3). EMPs may also migrate to the FL and give rise to 

fetal erythrocytes and myeloid cells including RTMs (27). VavCre+Rxrafl/fl YS at E9.5 and 

FL at E14.5 contained fewer CD11bloF4/80− macrophage precursors and negligible F4/80+ 

macrophages, respectively (Fig. 2B-D). These data suggested that RXRα might regulate 

developmental aspects of precursor macrophages that arise from EMPs. The third wave of 

macrophages arises from HSC-derived Sca-1+ monocytes (27). Similar to EMPs, HSCs are 

also derived from hemogenic endothelium and migrate to the FL at E10.5 and to the bone 

marrow at E17.5 where they give rise to monocytes and other lymphoid and myeloid cells. 

In VavCre+Rxrafl/fl mice, this arm of monocyte-derived macrophage development appeared 

unperturbed (Fig. 1I, 1K), suggesting a unique requirement for RXRα in embryonic 

precursors to generate specific RTM subsets.

RXRα forms heterodimers with other nuclear receptor family members such as the retinoic 

acid receptor, the vitamin D receptor, and PPARγ, allowing for pleiotropic signaling (29). 

It is therefore intriguing to speculate that precursors, including EMPs, receive distinct 
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extrinsic cues that feed into the RXRα signaling pathway and direct cells toward the RTM 

lineage. A function for RXRα in regulating migration of progenitors to embryonic tissues 

cannot also be ruled out, given that RXRα controls chemokine production in myeloid 

cells that affects leukocyte recruitment to inflammatory sites (7). In conclusion, we have 

uncovered an unexpected role for RXRα in the embryonic development of RTM subsets. 

Our observations will lead the way for future studies directed at identifying embryonic 

precursors that generate RTM subsets as well as understanding the role of tissue-specific 

ligands in directing RTM cell fate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. RXRα deficiency impacts multiple RTM subsets.
Analyses of RTM subsets from 8- 10-wk-old Rxrafl/fl (wild-type [WT]) and VavCre+Rxrafl/fl 

(knockout [KO]) mice. Flow cytometry gating strategies are shown in Supplemental Fig. 2. 

(A) Representative flow cytometry dot plots and graphs show frequency and cell numbers 

among CD45+ cells of splenic red pulp macrophages (RPMs) (CD11bloF4/80hiVCAM1+), 

(B) Upper row, Immunohistochemistry staining of IBA-1 (pan-macrophage marker) on 

splenic sections. White scale bars, 50 μm. Bottom row, Representative microscopy image 

of splenic sections showing iron deposits by Prussian blue stain. Black scale bars, 25 

μm. (C) Representative flow cytometry dot plots and graphs show frequency and cell 

numbers among CD45+ cells of bone marrow erythroblastic island macrophages (EIMs) 

(CD11bloF4/80hiVCAM1+). (D) Representative flow cytometry dot plots and graphs 
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show frequency and cell numbers among CD45+ cells of lung alveolar macrophages 

(AMs) (CD11c+Siglec-F+). (E) Immunohistochemistry staining of IBA-1 (pan-macrophage 

marker) on lung sections. Scale bars, 50 μm. (F–K) Representative flow cytometry dot 

plots and graphs show frequency and cell numbers among CD45+ cells of (F) liver 

Kupffer cells (KCs) (F4/80+Tim4+CD11b+CD68+), (G) large and small peritoneal cavity 

macrophages (LPMs, SPMs) (CD11b+F4/80hi and CD11b+F4/80lo), (H) small intestine 

macrophages (SI gMacs) (CD11b+CD64+CD11cloF4/80+) (I) large intestine macrophages 

(Colon gMacs) (CD11b+CD64+CD11cloF4/80+), (J) brain microglia (CD45loCD11b+), 

and (K) skin Langerhans cells (LCs) (CD11b+F4/80+). Data are representative of three 

independent experiments. Error bars are SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001.
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FIGURE 2. RXRα deficiency impacts embryonic development of RTMs.
(A) RNA-seq dataset from Mass et al. (3) were analyzed for the expression of Rxra and 

Vav1. Heatmaps show normalized gene expression (log2) of transcripts for Rxra (average 

of ENSMUST00000077257, ENSMUST00000100251, ENSMUST00000166775) and Vav1 
(average of ENSMUST00000169220, ENSMUST00000005889, ENSMUST00000112870). 

(B and C) Flow cytometry analyses of E9.5 yolk sac (YS) from Rxrafl/fl (wild-type 

[WT]) and VavCre+Rxrafl/fl (knockout [KO]) embryos. (B) Representative dot plots and 

graphs show frequency among CD45+ cells of EMPs (CD45+c-Kit+) and macrophages 

(CD45+F4/80+). Phenotypes of c-Kit+ and F4/80+ cells are detailed further in Supplemental 

Fig. 3. (C) Representative dot plots and graphs show frequency among CD45+ cells 

of precursor macrophages (pMacs) (CD45+CD11blo/+F4/80−) and macrophages (Macs) 

(CD45+CD11b+F4/80+). (D) Flow cytometry analyses of E14.5 fetal liver (FL) from Rxrafl/fl 

(WT) and VavCre+Rxrafl/fl (KO) fetuses. Representative flow cytometry dot plots and graphs 

show frequency among CD45+ cells of E14.5 FL monocytes (CD45+CD11b+F4/80lo Mos) 

and macrophages (CD45+CD11bloF4/80hi Macs). Data in (B)–(D) are from two independent 

experiments. (E) Frequency and cell numbers among CD45+ cells of postnatal day 1 (D1) 

and 8 (D8) spleen (F4/80+VCAM1+), liver (CD11bloF4/80hi), lung (CD11c+Siglec-F+) and 

Philpott et al. Page 11

Immunohorizons. Author manuscript; available in PMC 2022 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



skin (CD11b+F4/80+) RTM subsets. Data in (E) are representative of three independent 

experiments. Error bars are SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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