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Abstract: The predictive receiver operating characteristic (PROC) curve differs from the more
well-known receiver operating characteristic (ROC) curve in that it provides a basis for the evaluation
of binary diagnostic tests using metrics defined conditionally on the outcome of the test rather than
metrics defined conditionally on the actual disease status. Application of PROC curve analysis may
be hindered by the complex graphical patterns that are sometimes generated. Here we present an
information theoretic analysis that allows concurrent evaluation of PROC curves and ROC curves
together in a simple graphical format. The analysis is based on the observation that mutual information
may be viewed both as a function of ROC curve summary statistics (sensitivity and specificity) and
prevalence, and as a function of predictive values and prevalence. Mutual information calculated from
a 2 × 2 prediction-realization table for a specified risk score threshold on an ROC curve is the same as
the mutual information calculated at the same risk score threshold on a corresponding PROC curve.
Thus, for a given value of prevalence, the risk score threshold that maximizes mutual information
is the same on both the ROC curve and the corresponding PROC curve. Phytopathologists and
clinicians who have previously relied solely on ROC curve summary statistics when formulating
risk thresholds for application in practical agricultural or clinical decision-making contexts are thus
presented with a methodology that brings predictive values within the scope of that formulation.

Keywords: diagnostic test; mutual information; prevalence; PROC curve; positive predictive value;
negative predictive value; ROC curve; sensitivity; specificity

1. Introduction

Receiver operating characteristic (ROC) curves and predictive receiver operating characteristic
(PROC) curves are graphical formats with application in the determination of threshold values for
proxy variables used in disease risk assessment when it is, for whatever reason, deemed inappropriate
to use the gold standard. The work described in the present article concerns graphical threshold
determination for binary predictors based on 2 × 2 prediction-realization tables. In crop protection
decision making, binary tests are disease predictors that provide a probabilistic risk assessment
of, for example, epidemic vs. no epidemic, or treatment required vs. no treatment required.
Context for the work described here is provided by four previous articles; in chronological order of
publication, Vermont et al. [1], Shiu and Gatsonis [2], Reibnegger and Schrabmair [3] and Hughes [4].
Vermont et al. [1] described general strategies of threshold determination for both ROC curves and
PROC curves. Shiu and Gatsonis [2] described PROC curves and discussed a probabilistic measure of
performance. Reibnegger and Schrabmair [3] described ROC curves and discussed both probabilistic
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and information theoretic measures of performance. Hughes [4] described both ROC curves and PROC
curves and briefly discussed both probabilistic and information theoretic measures of performance for
the latter.

Both ROC curves and PROC curves are based on graphical plots of conditional probabilities.
In the case of the more well-known ROC curve, the probabilities are conditioned on the actual (gold
standard) disease status. For the PROC curve, the probabilities are conditioned on the outcome of the
test. The shape of an ROC curve is independent of disease prevalence, whereas the shape of a PROC
curve varies with prevalence. Performance measures for both ROC and PROC curves are metrics
that are deployed to search for a suitable balance of the conditional probabilities on which the plots
are based. Much more work has been done on describing performance measures for ROC curves
than for PROC curves, reflecting the historical levels of application of the curves in the evaluation of
disease predictors. The work discussed here is presented as a unifying approach to the description of
performance measures for both types of curve.

To illustrate this approach, we first extend the scope of [3], a study of performance measures
for ROC curves, by calculating the corresponding PROC curves. This then provides a context for
a discussion of performance measures as characterized in [2–4] in a range of ROC curves and the
corresponding PROC curves. In particular we investigate the properties of the information theoretic
performance measure mutual information, applied to both ROC curves and PROC curves. The work
of Vermont et al. [1] is of interest in that although it appears to be one of the earliest studies of the
application of both ROC and PROC curves to the problem of probabilistic risk assessment, it has not
always been cited in the subsequent literature. Thus, we will integrate a discussion of [1] with our
analysis of the findings of the present study.

The methodology described here is applicable to the development of binary prediction tools
in phytopathology and also in clinical medicine. In particular, we show that the adoption of an
information theoretic approach to performance measurement allows the choice of an appropriate risk
score threshold to take both ROC curve and PROC curve characteristics into account in a single analysis.

2. Methods

2.1. Background to ROC Curves and PROC Curves

The present analysis of ROC curves and PROC curves uses the same starting point as a previous
study of some performance measures for ROC curves [3]. However, it is helpful at the outset to place
the analysis in the context of the kind of phytopathological studies in which these graphical formats
find application for the evaluation of disease predictors in practice.

In crop protection decision making, an ROC curve is based on the analysis of a data set that
typically comprises two observations derived from agronomic data collected during the growing
season from each of a set of experimental crops, untreated for the disease in question. One observation
is the gold standard disease assessment, often a measure of disease intensity, yield, or quality, made at
the end of the growing season. The other observation is a risk score, based on data collected earlier in
the season. The risk score provides a basis for crop protection decision making because in practice,
a gold standard observation would come too late for application in decision making. Risk scores are
typically calibrated so that higher scores are indicative of greater probability of a disease outbreak, or of
the need for a disease management intervention. The methods we describe here assume that this data
set of gold standard observations and their corresponding risk scores is already available for analysis.
For further information on the assembly of such a data set, see Hughes [5] for background on methods
for the calculation of risk scores from agronomic data, and Yuen et al. [6] and Twengström et al. [7] for
an example of the experimentation that underlies the necessary agronomic data collection.

Crops are classified as cases (‘c’) or non-cases (‘nc’), based, respectively, on whether or not the
gold standard end-of-season assessment is indicative of economically significant damage. We may
then calculate histograms of risk scores separately for the c and nc crop categories. Now, consider
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the introduction of a threshold on the risk score scale. Scores above the threshold are designated ‘+’,
indicative of (predicted) need for a crop protection intervention. Scores at or below the threshold are
designated ‘−’, indicative of (predicted) no need for a crop protection intervention.

The proportion of + predictions made for c crops is referred to as the true positive proportion
(TPP or sensitivity) written p+|c in conditional probability notation. The complementary false negative
proportion (FNP) is written p−|c. Similarly, the proportion of + predictions made for nc crops is referred
to as the false positive proportion (FPP), written p+|nc. The complementary true negative proportion
(TNP or specificity) is written p−|nc. Thus, sensitivity and specificity are metrics defined conditionally
on actual disease status. The ROC curve, which has become a familiar device in crop protection
decision support following the pioneering work of Jonathan Yuen and colleagues [6,7], is a graphical
plot of probabilities p+|c (sensitivity) against p+|nc (1 − specificity) derived by systematically varying
the position of the threshold on the risk score scale and plotting the resulting probabilities over a range
of risk scores.

In practice, the application of this analysis depends on the adoption of a particular threshold
risk score for use in a given crop protection context. The variable that characterizes the risk score
together with the adopted threshold on the risk score scale characterize a classification rule that may be
referred to as a (binary) test (‘predictor’ is synonymous). Since the values of sensitivity and specificity
are linked, a disease predictor based on a particular threshold must represent values chosen in order
to achieve an appropriate balance; see Madden [8] for discussion. The considerations underlying
adoption of a particular threshold risk score for use in a given crop protection context are beyond the
scope of this article.

While sensitivity and specificity are of interest in characterizing a test, they are of limited
significance in terms of the way we consider test results in the context of crop protection decision
making. This is because they are metrics conditioned on the actual disease status which, in a practical
decision-making context, we do not know. If we begin with a disease prevalence denoted pc, often what
we would really like to know is the predicted probability after a + test result, denoted pc |+. To obtain
this and similar probabilities, we apply Bayes’ Rule.

Generally, we can write i = +, − (for the predictions) and j = c, nc (for the realizations). The pi for
a prediction either of intervention required (i = +) or of intervention not required (i = −) can be written
as pi = pi |c·pc + pi |nc·pnc from the Law of Total Probability. The pj for case (j = c, prevalence) or non-case
(j = nc) status, such that pnc = 1 − pc, are taken as Bayesian prior probabilities (i.e., before the test is
used to make a prediction). From Bayes’ Rule, pi|j·pj = pj |i·pi, so we have pc |+ = (p+|c·pc)/p+ (positive
predictive value, PPV) and the complement pnc |+ = 1 − pc |+. Here, PPV refers to correct predictions
of the need for a crop protection intervention; the complement 1 − PPV refers to incorrect predictions
of the need for an intervention. We also have pnc |− = (p−|nc·pnc)/p− (negative predictive value, NPV) and
the complement pc |− = 1 − pnc |−. Here, NPV refers to correct predictions of no need for an intervention;
the complement 1 − NPV refers to incorrect predictions of no need for an intervention. The predictive
values are Bayesian posterior probabilities, calculated after obtaining the prediction. We note that the
positive and negative predictive values are metrics conditioned on the test outcomes. Also, unlike
sensitivity and specificity, which are independent of disease prevalence, the positive and negative
predictive values vary with prevalence. The PROC curve is a graphical plot of probabilities pc |+ (PPV)
against pc |− (1 − NPV).

2.2. Analytical Scenarios and the Calculation of ROC Curves and Corresponding PROC Curves

Reibnegger and Schrabmair [3] described four scenarios “with quite different distributional
characteristics”. Each scenario comprised a pair of statistical probability distributions, modelling the
separate (normalized) histograms of risk scores for c and nc subject categories. Here, we begin with the
same four scenarios (Table 1).

In Table 1, each scenario’s pair of distributions implicitly describes a parametric ROC curve.
However, Reibnegger and Schrabmair [3] did not make these ROC curves explicit. Instead they used
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each pair of distributions as the basis for sampling c and nc data sets of various sizes. Their simulation
study of ROC curve performance measures was based on the resulting sample data. Understandably,
then, Reibnegger and Schrabmair [3] had no need to discuss the underlying parametric ROC curves
and their properties. Here, however, these curves provide a basis for further analysis, so we explicitly
calculate the ROC curve for each scenario (Figure 1) and discern its properties. An important reason
for using the parametric ROC curves, rather than adopting the simulation approach of [3], is that
we wish to be able to discuss the shape properties of the ROC and corresponding PROC curves for
each scenario. The parametric ROC curves provide us with a non-varying baseline for this purpose.
Visually, the curve for Scenario 4 passes noticeably closer to the top left-hand corner of the plot than
the others, the curve for Scenario 2 stays noticeable further from the top left-hand corner, while the
curves for Scenarios 1 and 3 are intermediate (Figure 1). By visual inspection, none of these ROC
curves appears markedly asymmetrical.

Table 1. The four analytical scenarios i,ii.

Scenario Distribution of c Distribution of nc

1 iii Lognormal; mean = 2.5, s.d. = 0.3 Lognormal; mean = 2.0, s.d. = 0.4
2 iv Chi-squared; d.f. = 10 Chi-squared; d.f. = 7
3 Inverse gamma; shape = 3 Inverse gamma; shape = 6
4 Weibull; shape = 10, scale = 20 Chi-squared; d.f. = 6

i Notation: c, cases; nc, non-cases; s.d., standard deviation; d.f., degrees of freedom. ii See Figure 1 in [3] for a
graphical illustration of these scenarios. Each distribution was plotted over the range from 1 to 30 on the horizontal
axis. iii See [9] for further discussion of the bi-lognormal receiver operating characteristic (ROC) curve. iv See [10]
for further discussion of the bi-chi-squared ROC curve.

Entropy 2020, 22, x FOR PEER REVIEW 4 of 17 

 

Understandably, then, Reibnegger and Schrabmair [3] had no need to discuss the underlying 
parametric ROC curves and their properties. Here, however, these curves provide a basis for further 
analysis, so we explicitly calculate the ROC curve for each scenario (Figure 1) and discern its 
properties. An important reason for using the parametric ROC curves, rather than adopting the 
simulation approach of [3], is that we wish to be able to discuss the shape properties of the ROC and 
corresponding PROC curves for each scenario. The parametric ROC curves provide us with a 
non-varying baseline for this purpose. Visually, the curve for Scenario 4 passes noticeably closer to 
the top left-hand corner of the plot than the others, the curve for Scenario 2 stays noticeable further 
from the top left-hand corner, while the curves for Scenarios 1 and 3 are intermediate (Figure 1). By 
visual inspection, none of these ROC curves appears markedly asymmetrical. 

Table 1. The four analytical scenarios i,ii. 

Scenario Distribution of c  Distribution of nc 
1 iii Lognormal; mean = 2.5, s.d. = 0.3 Lognormal; mean = 2.0, s.d. = 0.4 
2 iv Chi-squared; d.f. = 10 Chi-squared; d.f. = 7 
3 Inverse gamma; shape = 3 Inverse gamma; shape = 6 
4 Weibull; shape = 10, scale = 20 Chi-squared; d.f. = 6 

i Notation: c, cases; nc, non-cases; s.d., standard deviation; d.f., degrees of freedom. ii See Figure 1 in 
[3] for a graphical illustration of these scenarios. Each distribution was plotted over the range from 1 
to 30 on the horizontal axis. iii See [9] for further discussion of the bi-lognormal receiver operating 
characteristic (ROC) curve. iv See [10] for further discussion of the bi-chi-squared ROC curve. 

 
Figure 1. ROC curves for: (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. See Table 1 
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Figure 1. ROC curves for: (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. See Table 1 for
details. Risk score thresholds are calibrated in units of 1 unit on a 1 to 30 scale, following [3]. The risk
score threshold increases along the curve from the top right-hand corner to the bottom left-hand corner.
On each curve a subset of thresholds is indicated.
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ROC curves are often described in terms of being “proper” or “improper”. A proper ROC curve
has a negative second derivative (i.e., decreasing slope) over the whole range; such a proper ROC
curve never crosses the main diagonal of the plot [11]. However, an ROC curve that does not cross the
diagonal may still be improper [11]. From the literature, Scenario 2 provides a proper ROC curve [9],
and it appears from [10] that Scenario 1 provides an improper curve. We found no information relating
to the curves for Scenarios 3 and 4. For the purpose of the present study, it is of more interest whether
or not an ROC curve crosses the diagonal than whether it is strictly defined as proper or improper, so
all we can really draw for certain from the literature is that the ROC curve in Figure 1B does not cross
the main diagonal.

Having described the ROC curves, the first element of further analysis is to calculate the
corresponding PROC curves for each of the four scenarios. The required probabilities can be obtained
by adopting a value of pc (prevalence), systematically varying the position of the threshold on the risk
score scale to obtain values of p+|c (TPP) and p+|nc (FPP = 1 − TNP), then calculating PPV and 1 − NPV
via Bayes’ Rule. For each scenario, a PROC curve is calculated for each of nine prevalence values, from
pc = 0.1 to 0.9 at intervals of 0.1 (Figures 2–5).
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Figure 2. Scenario 1: Predictive receiver operating characteristic (PROC) curves corresponding to the
ROC curve in Figure 1A. Each panel is labelled with the prevalence value at which the graph was
calculated. For reference to Figure 1A, the threshold risk score at 9 is marked on each graph. Threshold
risk scores increase along the curves, starting from the vertical axis (where 1 − NPV = 0), crossing the
main diagonal (at which point PPV = 1 −NPV = prevalence) from above, and continuing the horizontal
axis (where PPV = 0). NPV: negative predictive value, PPV: positive predictive value.
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Figure 3. Scenario 2: PROC curves corresponding to the ROC curve in Figure 1B. Each panel is labelled
with the prevalence value at which the graph was calculated. For reference to Figure 1B, the threshold
risk score at 7 is marked on each graph. Threshold risk scores increase along the curves, starting from
the vertical axis (where 1 −NPV = 0) and continuing to the upper horizontal of the plot (where PPV = 1)
without crossing the main diagonal.

As noted in [2], the shapes of PROC curves can appear rather complicated. There is not, as yet,
an accepted vocabulary for discussion of the shapes of PROC curves. Here, we offer a descriptive
account, based on [2,4]. The PROC curves in Figures 3 and 4, corresponding to ROC curves in Figure 1B
(Scenario 2) and Figure 1C (Scenario 3) respectively, do not cross the main diagonal of the PROC plot.
Since we know from [4] that where a PROC crosses the diagonal, it does so at the same risk score
threshold as the corresponding ROC curve, this suggests that neither ROC curve crosses the diagonal.
We know this definitively to be the case for Scenario 2, based on a proper ROC curve.

The PROC curves in Figures 2 and 5, corresponding to ROC curves in Figure 1A (Scenario 1) and
Figure 1D (Scenario 4) respectively, cross the main diagonal of the PROC plot. Qualitatively, the shape
of these PROC curves resembles that of Figure 2B in [4]. Starting at the left-hand vertical (PPV) axis of
the plot, the risk score threshold increases along the curve. The curve cuts the main diagonal of the
plot from above, then continues until meeting the horizontal (1 − NPV) axis. Now consider the ROC
curves in Figure 1A (for corresponding PROC curves in Figure 2) and Figure 1D (for corresponding
PROC curves in Figure 5). From [4], we know that these ROC curves must also cross the diagonal
(in fact, they must cross at the same risk score threshold as the corresponding PROC curve). Starting in
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the top right-hand corner of the ROC plot (FPP = 1, TPP = 1), the risk score threshold increases along
the curve. The curve cuts the main diagonal of the plot from above, then continues to the bottom
left-hand corner of the plot (FPP = 0, TPP = 0). The point where the ROC curve cuts the diagonal is
close to the bottom left-hand corner of the plot in Figure 1A,D, so is not obvious from visual inspection.

At the point where an ROC curve cuts the main diagonal of the plot, TPP = 1 − FPP, and we
know that the positive and negative likelihood ratios (LR+ and LR−, respectively) are both equal to 1.
Now, via the odds form of Bayes’ Rule (i.e., posterior odds = prior odds × LR(+ or − as appropriate)),
the posterior odds of c (given either a + or − test result) is equal to the prior odds of c; and similarly
the posterior odds of nc (given either a + or − test result) is equal to the prior odds of nc. Converting
these odds back to probabilities, we have pc |+ = pc |− = pc and pnc |+ = pnc |− = pnc. In words, the result
means that application of a test based on a threshold positioned on the main diagonal of an ROC plot
is uninformative because it results in no revision of prior probabilities to new posteriors. This is a
well-known observation; we include it here in order to compare the corresponding observation for a
PROC curve. The points where the corresponding PROC curves cut their respective diagonals are
(Figures 2 and 5) visually much clearer. We note that when the PROC curve crosses the diagonal of the
plot, it does so at the point (1 − NPV, PPV), where both these conditional (posterior) probabilities are
equal to the prior, pc. So we can see directly that a test based on a threshold positioned on the main
diagonal of an PROC plot is, by definition, uninformative.
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Figure 5. Scenario 4: PROC curves corresponding to the ROC curve in Figure 1D. Each panel is labelled
with the prevalence value at which the graph was calculated. For reference to Figure 1D, the threshold
risk score at 13 is marked on each graph. Threshold risk scores increase along the curves, starting from
the vertical axis (where 1 −NPV = 0), crossing the main diagonal (at which point PPV = 1 −NPV =

prevalence) from above, and continuing to the horizontal axis (where PPV = 0).

2.3. Performance Measures for ROC Curves and Corresponding PROC Curves

Performance measures for ROC and PROC curves are metrics that summarize the consequences of
different choices about the position of the threshold on the risk score scale. Thus they provide methods
for identification of what Reibnegger and Schrabmair [3] called the “optimum binary cut-off threshold”.
In [3] three such methods for ROC curves are considered in a simulation study: a probability-scale
metric, an information-scale metric, and a metric based on logistic regression. Here we consider further
the first two of these, but do not pursue their logistic regression analysis.

For ROC curves, Reibnegger and Schrabmair [3] calculated the probability-scale metric Youden’s
index [12], where the index J = TPP + TNP − 1 = TPP − FPP. J was originally proposed as a generic index
for rating diagnostic tests, without reference to ROC curves. For a geometrical interpretation of J in the
context of a test with TPP and FPP described by an ROC curve, consider two points on the ROC plot.
The first is a point on the ROC curve positioned at a value TPP on the vertical axis; the second a point
vertically below the first, positioned on the main diagonal of the plot (where TPP = FPP). The vertical
distance between the two points is thus TPP − FPP. J can thus be thought of as the vertical distance
between the curve and the main diagonal on an ROC plot at a given value of TPP. Reibnegger and
Schrabmair sought the optimum risk score threshold on an ROC curve by systematically varying the
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threshold and observing the value at which J was maximized. In practice, a search for the maximum
value of J would only need to consider thresholds where the ROC curve was above the main diagonal
of the plot.

Now consider the equivalent geometrical examination of two points on a PROC plot. The first
point is on the PROC curve positioned at a given value of PPV on the vertical axis (and, in practice,
above the main diagonal of the plot); the second is a point vertically below the first, positioned on the
main diagonal of the plot (where PPV = 1 − NPV). The vertical distance between the two points is
thus calculated as PPV − (1 − NPV) = PPV + NPV − 1. This probability-scale metric was discussed
in the context of the evaluation of diagnostic tests by Altman and Royston [13], who referred to it as
PSEP. Note that Altman and Royston’s discussion was generic. It concerned neither ROC curves nor
PROC curves. In the present context, one could seek the optimum risk score threshold on an PROC
curve by systematically varying the threshold and observing the value at which PSEP was maximized.
These geometrical interpretations of the performance measures J (as applied to ROC curves) and PSEP
(as applied to PROC curves) are both illustrated in Figure 6. The maximum values of J and of PSEP
occur at different risk score thresholds.
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Figure 6. (A) The ROC curve is based on the normal distribution, with c subjects being N~(1.72, 0.42)
and nc subjects N~(1.27, 0.27) (see [1] for details). Qualitatively, the shape of this improper ROC curve
resembles that of Figure 1C in [4]. The risk score threshold increases along the ROC curve from the top
right-hand corner of the plot to the bottom left-hand corner, crossing the main diagonal from below
close to the top right-hand corner. The approximate maximum value of J = 0.494 (correct to 3 d.p.)
occurs at a risk score threshold of 1.5. (B) The corresponding PROC curve was calculated as outlined
in [4], with prevalence set to 180/702 = 0.256 (see [1]). Qualitatively, the shape of this PROC curve
resembles that of Figure 2C in [4]. The risk score threshold increases along the PROC curve from the
right-hand upright of the plot (where 1 − NPV = 1) to the upper horizontal (where PPV = 1), crossing
the main diagonal from below at 1 − NPV = PPV = 0.256 (prevalence). The approximate maximum
value of PSEP = 0.754 (correct to 3 d.p.) occurs at a risk score threshold of 2.0. Risk score thresholds on
both curves are calibrated in units of 0.5 on a −10 to +10 scale (resulting data points may overlap).

We note that the metric r = (1 − PPV) + (1 − NPV) = 1 − PSEP [4] was discussed as a performance
measure for PROC curves by Shiu and Gatsonis [2] (without reference to PSEP). It is a measure of
distance (but not the shortest distance) between a given point on a PROC curve and the point (0, 1)
in the top left-hand corner of the plot, with minimum value denoted r*. In passing, we note that the
ROC curve analogue of r is 1 − J = (1 − TPP) + (1 − TNP). We did not find any discussion of the use of
this metric as a performance measure in the literature. The distance metrics J (and its complement)
(for ROC curves) and PSEP and r (for PROC curves), and other metrics derived from them, have
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application in graphical determination of thresholds, as discussed in, for example, [1] (see Strategies 5
and 6) and [14].

We turn now to the information-scale metric mutual information (denoted here I). In the present
context, mutual information is the expected value of the amount of information gained by application
of a diagnostic test. Metz et al. [15] and McNeil et al. [16] appear to have described the first applications
of I in the particular context of ROC curve analysis. As with J and PSEP, I is not defined specifically for
such application [17]. Reibnegger and Schrabmair [3] sought the optimum risk score threshold on an
ROC curve by systematically varying the threshold and observing the value at which I was maximized.
Here we extend this approach to include the study of both ROC and PROC curves. Hughes [4] briefly
discussed I as a potential performance measure for PROC curves.

Starting from a generic 2 × 2 prediction-realization table (Table 2), and working in natural
logarithms, we obtain mutual information I via:

I =
∑

i=+,−

∑
j=c,nc

pi∩ j · ln
{ pi∩ j

pi · p j

}
(1)

from which, on substituting the appropriate numerical data, we may calculate the required estimates
of I in nats. In the present study, the calculation of I via Equation (1) was carried out on systematically
varying the risk score threshold over the range 1 to 30 (in increments of 1 unit, along the calculated
ROC curves for each scenario shown in Figure 1). In order to apply the results to the corresponding
PROC curves (Figures 2–5), these calculations were carried out using nine different prior probabilities
(prevalence values) over the range 0.1–0.9 in increments of 0.1.

We note at this stage that Equation (1) can be viewed either from an ROC curve perspective (i.e., in
terms of sensitivity and specificity and their complements) or from a PROC curve perspective (i.e., in
terms of predictive values). For the ROC perspective, we rewrite Equation (1) as:

I= p+|c · pc · ln
{

p+|c
p+|c · pc + p+|nc · pnc

}
+p+|nc · pnc · ln

{
p+|nc

p+|c · pc + p+|nc · pnc

}
+p−|c · pc · ln

{
p−|c

p−|c · pc + p−|nc · pnc

}
+p−|nc · pnc · ln

{
p−|nc

p−|c · pc + p−|nc · pnc

}
(2)

in nats, which is Equation (2) from [15] written in the notation of the current article. Here mutual
information is written as a function of sensitivity and specificity (and their complements) and the
prevalence values for cases and non-cases. For the PROC perspective, we rewrite Equation (1) as:

I =
∑

i=+,−

pi

∑
j=c,nc

p j|i · ln
{p j|i

p j

}
(3)

in nats, which is Equation (4) from [18] written in the current notation. Here, mutual information is
written as the information obtained from a specific test outcome (either + or −) averaged over both c
and nc subjects (this is relative entropy), then averaged over both + and − outcomes. Both [15] and [18]
worked in base 2 logarithms rather than natural logarithms. To convert from natural logarithms to
base 2 logarithms, divide by ln(2) ≈ 0.693 (in which case the units are bits).
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Table 2. The prediction-realization table for a test with two categories of realized (actual) status (c, nc)
and two categories of prediction (+, −). In the body of the table are the joint probabilities.

Prediction (i)
Realization (j)

c nc Row Sums

+ p+∩c p+∩nc p+

− p−∩c p−∩nc p−

Column Sums pc pnc 1

3. Results

An immediate consequence of the fact that Equation (1) can be viewed either from the perspective
of an ROC curve (Equation (2)) or a PROC curve (Equation (3)) is that the mutual information calculated
for a given 2 × 2 prediction-realization table applies to the same risk score threshold on both curves.
Thus, mutual information as a performance measure for binary predictors characterized by both ROC
and PROC analysis has the same value at the same risk score threshold on both curves. Having
obtained this result, we do not pursue the separate probability metrics J (for ROC curves) and PSEP
(for PROC curves) further. We focus instead on the information metric I, applicable to both curves.

It is tests based on the part of the ROC curve above the main diagonal of the plot that are of
interest in the context of diagnostic decision making. Here, p+|c > p+|nc, which implies pc |+ > pc and
pnc |− > pnc [4]. And as noted above, we know from [4] that for an ROC curve that crosses the main
diagonal of the ROC plot, the corresponding PROC curve crosses the main diagonal of the PROC plot
at the same threshold risk score. Looking first at Equation (2), recall that pc + pnc = 1, and that at the
point where the ROC curve crosses the diagonal, p+|c = p+|nc and p−|c = p−|nc. Thus at that point, each
of the four terms in curly brackets in Equation (2) is equal to 1, and as ln{1} = 0, I = 0 nats. Looking
now at Equation (3), recall that where the PROC curve crosses the diagonal of the plot, we have pc |+ =

pc |− = pc and pnc |+ = pnc |− = pnc. So in Equation (3), we again have four terms in curly brackets, each
term equal to 1 at the point where the PROC curve crosses the diagonal, so again we have I = 0 nats.
This result confirms that at the risk score threshold where an ROC curve and the corresponding PROC
curve cross the main diagonal of their respective plots, characterizing an uninformative predictor, the
mutual information I is zero nats.

We now return to the scenarios outlined in Table 1. These are arbitrary in the sense that they
represent plausible statistical simulacra of data used in the context of diagnostic test evaluation, rather
than any specific disease diagnostic scenario. So the results presented here (Figures 7–10) are of interest
mainly in terms of their qualitative characteristics. Note, in particular, that in the examples presented
there is always a single maximum value of I (referred to here as Imax) over the range of threshold risk
scores, whatever the shapes of the ROC and PROC curves. Somoza and Mossman [19] also observed
this in a study based on bi-normal ROC curves. The threshold risk score for Imax decreases slowly with
increasing prior probability, as noted in Reibnegger and Schrabmair’s simulation study [3].

For each of Figures 7–10, each of the nine panels shows how I varies with risk score threshold
at a specified prior probability. Imax refers to the maximum value of I for a particular panel. Clearly
there is variation in Imax over the set of panels in each of Figures 7–10. Recall that in Figures 7–10, each
panel applies both to an ROC curve from Figure 1A–D respectively and to a PROC curve from the
corresponding panel from Figures 2–5 respectively. The values of Imax obtained in this way characterize
an information-scale specification of the optimum risk score threshold at a specified prevalence for an
ROC curve as discussed by [3], which is shown here to apply also to the corresponding PROC curves.

Metz et al. [15] were not directly concerned with characterizing the optimum risk score threshold
on an ROC curve. Instead, their application of Imax was as measure of the “system quality” attributable
to a device used in diagnostic decision making and described by an ROC curve, for the purpose of
comparison with other such devices. Nevertheless, the calculations of mutual information in [15]
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are the same as those required for application in characterizing ROC curve thresholds [3], and those
presented here with application further extended to characterizing PROC curve thresholds.

Metz et al. [15] pointed out a distinction between Imax and the global “information capacity” of a
system. Information capacity, which we refer to here as channel capacity (denoted C) is the maximum
value of I at a given risk score threshold taken over all values of prevalence. A (binary) “channel”,
in this case, is represented quantitatively by data from a numerical version of a 2 × 2 table such as
Table 2. Now, for example, suppose we obtain from Figures 7–10 the risk score thresholds at which the
largest value of Imax is observed for each scenario. These thresholds occur at 9 (Scenario 1, Figure 7),
7 (Scenario 2, Figure 8), 5 (Scenario 3, Figure 9), and 13 (Scenario 4, Figure 10). The corresponding
largest observed values of Imax for each respective specified risk score threshold are then Imax = 0.154
nats (Figure 7), Imax = 0.046 nats (Figure 8), Imax = 0.158 nats (Figure 9) and Imax = 0.568 nats (Figure 10).
We note in passing that these values of Imax reflect our earlier visual description of the ROC curves for
the four scenarios in terms of the relative proximity of their paths to the top left-hand corner of the plot
(Figure 1).

What we cannot say without further analysis is that these estimates of Imax are in the vicinity of C.
While the calculation of C from a general prediction-realization table requires application of an iterative
algorithm, there is a relatively simple analytical solution available in the case of a channel represented
by a 2 × 2 table [20,21]. From this, using the same thresholds as above, we obtain for Scenario 1,
C = 0.155 nats; for Scenario 2, C = 0.046 nats; for Scenario 3, C = 0.158 nats; and for Scenario 4, C = 0.569
nats (all to 3 d.p.). We find that the maximum value of Imax, obtained graphically at specified thresholds
from Figures 7–10 for each of the four scenarios, is an approximation of the corresponding value of C.
Thus calculation of the maximum value of Imax at a specified threshold can provide an estimate of what
Metz et al. [15] called information capacity, furnishing an upper limit to their information theoretic
measure of system quality. This result was unforeseen by Metz et al. [15].
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Figure 7. Scenario 1: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1A and at the same
risk score thresholds on the corresponding PROC curves in Figure 2. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.
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Figure 9. Scenario 3: variation of mutual information with risk score threshold. The calculated values
of mutual information apply at risk score thresholds on the ROC curve in Figure 1C and at the same
risk score thresholds on the corresponding PROC curves in Figure 4. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.
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risk score thresholds on the corresponding PROC curves in Figure 5. Each panel is labelled with the
prevalence value at which the graph was calculated. The vertical axis scales on Figures 7–10 differ.

4. Discussion

Vermont et al. [1], concluding their study of the roles of ROC curves and PROC curves in the
context of graphical methods for diagnostic threshold determination, wrote as follows: “we do not
feel that it is possible to choose a segmentation threshold by only using the ROC curve of a variable
when this threshold must be used for diagnostic purposes; the PROC curves are less attractive,
more chaotic and imprecise than the ROC curves but can help to select or reject certain threshold
choice strategies”. Much the same point—that the complex patterns of PROC curves made their
implementation difficult—was later made by Shiu and Gatsonis [2]. The question thus arises as to how
we may realize the advantages of PROC curves in application (that is to say, how to make them more
attractive) in the face of apparent presentational difficulties. Answering this question would facilitate
use of PROC curve analysis to augment what we can learn from the application of ROC curve analysis,
not to substitute for it.

Because of the dependence of PROC curves on prevalence, we displayed an array of PROC curves
corresponding to the ROC curve on which each scenario was based (Figures 2–5). When calibrating
predictive values for a predictor initially based on an ROC curve, there is potential application for
an array of PROC curves such as shown in each of Figures 2–5 if consideration of more than one
prevalence value is deemed necessary. For example, it was noted in [22] that the prevalence of bladder
cancer is known to differ between subgroups of males and females. In such a situation, an array of
PROC curves for different prevalence values may allow a preview of the likely extent of differences
between the curves for each of the subgroups. A similar situation may arise in crop protection decision
making with a predictor based on an ROC curve. For example, a predictor may be used in separate
locations where geographical and/or climatic differences result in subgroups with differing disease
prevalence [23].



Entropy 2020, 22, 938 15 of 17

Vermont et al. [1] discussed strategies for threshold determination based on probability measures;
sensitivity and specificity for ROC curves, predictive values for PROC curves. We have discussed
examples of such measures; J [12] for ROC curves and its analogue PSEP [13] for PROC curves.
Probability measures require separate calculation and interpretation of performance measures for
ROC curve analysis and for PROC curve analysis. Mutual information is an information theoretic
performance measure that has had application in the analysis of ROC curves, for example [3,15,16].
We have studied the concurrent application of mutual information to the analysis of ROC curves and
their corresponding PROC curves. The important new result of our study is that mutual information
is a performance measure that is applicable to the analysis of both ROC curves and PROC curves.
In particular, for a given prevalence, mutual information calculated at a specified risk score threshold
on an ROC curve (using Equation (2)) is the same as mutual information calculated at the same risk
score threshold on a PROC curve (using Equation (3)). In our study this result applied to scenarios
based on proper, improper, and unspecified-type ROC curves. It is also applicable to empirical ROC
and PROC analysis, as for example in [22].

The presentation of this result is noteworthy. We begin with an ROC curve, the graphical plot of
sensitivity (TPP) against 1 − specificity (1 − TNP = FPP) (e.g., Figure 1). This curve is independent of
prevalence. However, a PROC curve, the graphical plot of positive predictive value (PPV) against 1 −
negative predictive value (1 −NPV), is not independent of prevalence. Thus, in our study, we calculate
PROC curves corresponding to an ROC curve for a range of prevalence values, from 0.1 to 0.9 at
intervals of 0.1. Then, in each of Figures 2–5, we present an array of nine PROC curves for each ROC
curve shown in Figure 1. Now we can calculate mutual information for risk score thresholds from 1 to
30 at intervals of 1 unit (thus following the methodology of [3]). These mutual information values
apply to risk score thresholds along the ROC curve and to the same thresholds along the corresponding
array of PROC curves. Thus, if we describe a scenario for description of a diagnostic device in terms of
an ROC curve and a set of likely prevalence values in which the device may be operational, we can
present an array of graphical plots of mutual information against risk score threshold as a performance
measure that applies both to the ROC curve and the corresponding PROC curves (e.g., Figures 7–10).

If we set out to integrate ROC curve analysis and PROC curve analysis into a strategy for graphical
threshold determination [1], an array such as shown in each of Figures 7–10 provides an information
theoretic basis on which to meet this objective. We note that the threshold at which Imax is indicated in
the appropriate panel of an array (for the specified prevalence) is not prescriptive. It provides guidance
towards the choice of an appropriate threshold, taking into consideration data on both sensitivity
and specificity (via the ROC curve) and predictive values (via the PROC curve). Values of sensitivity,
specificity (and so J) and predictive values (and so PSEP) in the vicinity of the threshold identified by
Imax can always be investigated if required.

Drawing mutual information contours calculated at a specified prevalence onto ROC space [15]
is another way in which to present the information theoretic analysis of an ROC curve. However,
this approach does not allow for integration of an analysis of the corresponding PROC curves into
the same graphic. Nor, we believe, does this contour plot depict Imax as clearly as a graph of mutual
information against risk score threshold. Metz et al. [15] were concerned with measuring and comparing
system quality via mutual information, specifically by calculating Imax from an ROC curve by means
of Equation (2) applied at a given prevalence. Any one panel from an array of graphical plots of
mutual information against risk score threshold (e.g., Figures 7–10) fulfils this objective for a particular
prevalence value. In addition, the maximum value of Imax at a specified risk score threshold across an
array, independent of prevalence, is an estimate of channel capacity C.

There is little doubt that the complexity of PROC curves [1,2] is an obstacle to their application in
assessment of the performance of binary predictors. Equally, few would disagree that predictive values,
alongside sensitivity and specificity, should have a role to play in characterizing predictor performance.
We have shown that adoption of an information theoretic performance measure, mutual information,
in a graphical format that plots the variation of mutual information over an appropriate range of
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risk score thresholds, allows integration of ROC curve analysis and PROC curve analysis. So the
undoubted difficulties of interpretation that the PROC graph’s complexity presents may be avoided,
while retaining the benefits of considering predictive values alongside ROC curve characteristics in the
evaluation of predictor performance.
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