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Abstract.
BACKGROUND: Bupropion, one of the dual norepinephrine and dopamine reuptake inhibitors (NDRIs), is an aminoketone
derivative performed effect in improving cognitive function for depression. However, its therapeutic effect is unsatisfactory due
to poor clinical response, and there are only few derivatives in pre-clinical settings.
OBJECTIVE: This work attempted to elucidate the essential structural features for the activity and designed a series of novel
derivatives with good inhibitive ability, pharmacokinetic and medicinal chemistry properties.
METHODS: The field-based QSAR of aminoketone derivatives of two targets were established based on docking poses, and the
essential structural properties for designing novel compounds were supplied by comparing contour maps.
RESULTS: The selected two models performed good predictability and reliability with R2 of 0.8479 and 0.8040 for training
set, Q2 of 0.7352 and 0.6266 for test set respectively, and the designed 29 novel derivatives performed no less than the highest
active compound with good ADME/T pharmacokinetic properties and medicinal chemistry friendliness.
CONCLUSIONS: Bulky groups in R1, bulky groups with weak hydrophobicity in R3, and potent hydrophobic substituted
group with electronegative in R2 from contour maps provided important insights for assessing and designing 29 novel NDRIs,
which were considered as candidates for cognitive dysfunction with depression or other related neurodegenerative disorders.

Keywords: Cognitive dysfunctions, field-based QSAR, drug design, pharmacokinetic properties

1. Introduction

Depression is a common psychiatric disorder, affecting more than 350 million people around the
world [1–4]. Cognitive dysfunctions as a core complication of depression, leads to serious problems
in executive functioning, attention, learning processing speed and memory [5–7]. These functional
impairments often are remitted as the mood symptoms improved, but still residual after remission of mood
symptoms, which reduce the work abilities of patients [5,8,9]. These resulted in the crippling economic
burden including not only direct costs for treatment, but also sizeable indirect costs for the absenteeism
and poor productivity in the work [5,10]. As the World Health Organization predicts, depression will be
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the leading cause of disease burden worldwide by 2030 [1,5]. Thus, recovering cognitive dysfunctions
has been identified as the novel therapeutic strategy for depression [5,11,12].

As reported, prefrontal cortex (PFC), hippocampus, nucleus accumbens (NAc), amygdala, and ventral
striatum were the common neuropathological platform for depression and cognitive dysfunction due to
depression [4,13–15]. Neuropsychological and imaging evidence indicated the PFC plays a critical role
in the control of cognitive function [14,16–18]. In the course of treatment, some improving cognitive
function drugs preferentially targeted to PFC catecholamines, and the striatum and NAc might contribute
to their therapeutic efficacy [14]. In these brain areas, the dysfunctional catecholaminergic signaling is
the posited etiology of depression and related cognitive dysfunction especially for the catecholamine
neurotransmitters norepinephrine (NE) and dopamine (DA), which are required for proper prefrontal
functions acting as coordination with each other [15,19,20]. Moreover, the transporters of norepinephrine
(hNET) and dopamine (hDAT) are distributed in PFC, striatum and nucleus accumbens, and hDAT is
sparse and hNET is high density in the PFC while are opposite in striatum and nucleus accumbens [14,16].
Meanwhile, the hNET displays a high affinity for DA and plays a prominent role in DA clearance [16].
Thus selective NE reuptake inhibitors (sNRIs) merely could elevate both NE and DA in the PFC but
with minimal effects on striatal and NAc DA [14], and selective DA reuptake inhibitors (sDRIs) mainly
effected on striatal and NAc DA. In contrast, dual NE and DA reuptake inhibitors (NDRIs) performed
more efficacy because they could impact on NE and DA level not only in PFC but also in striatal and
NAc [20], and which of them with hNET > hDAT potency order could performed more effective in
treatment of PFC-dependent diseases due to limit expression of hDAT in PFC and the relatively high
affinity of DA for hNET compared to hDAT [15].

Recently, there are 4 NDRIs (Dexmethylphenidate, Dextroamphetamine, Dextromethamphetamine,
Bupropion) used to improve cognitive dysfunction. The first three of them are reported to remit the
cognitive dysfunction reduced by Attention-Deficit Hyperactivity Disorder (ADHD), but the risk of
abuse potential and addictive for them limit their widespread use [15,21,22]. The last one bupropion, an
aminoketone derivative is phase 4 clinical study in improving cognitive function for depression patients [5,
23]. However, its therapeutic effect is unsatisfactory attributed to the poorer clinical response [24]. Besides
bupropion, none aminoketone derivatives of NDRIs antidepressants are currently in clinical trial, and
only few are in pre-clinical.

In order to satisfy the strong need for antidepressants with improved cognitive dysfunction and enhanced
efficacy, this work explored the Quantitative Structure-Activity Relationship (QSAR) characteristics
of aminoketone derivatives based on the potent poses by molecular docking, which could be utilized
as structural guidance for assessing and rationally designing more efficacious NDRIs candidates with
hNET > hDAT potency order of cognitive dysfunction with depression or other related neurodegenerative
disorders.

2. Materials and methods

2.1. Datasets preparation

This work collected 60 and 63 aminoketone derivatives with active data of hNET and hDAT from
CHEMBL database [25] for field-based QSAR study as shown in Table 1. The datasets were randomly
assigned 70% into training set of 42 molecules for hNET and 44 molecules for hDAT to generate QSAR
models, and the rest of them as test sets were used to validate. The process of dividing datasets for both
models should be considered the uniform distribution of compounds with as enough structural diversity
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Table 1
The Glide gscore, experimental and predicted activities in data sets for selected QSAR models of hNET and hDAT
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Table 1, continued
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Table 1, continued
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Table 1, continued

FTest set for hNET field based QSAR studies. �Test set for hDAT field based QSAR studies. aPrediction
error = Predicted activity − Experimental activity.

and wide range activities as possible. The training and test sets of both models are demonstrated in
Table 1.

2.2. Homology modeling and molecular docking

The potent poses of compounds for each target were identified based on the complexes of target-ligand
achieved by molecular docking and prime minimization. Since there is no crystal structural data reported
in Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [26], the 3D
structures of hNET and hDAT need to be constructed by homology modeling performed in SWISS-
MODEL workspace [27]. The template used to construct models was confirmed according to sequence



P. Wang et al. / Profiling the structural determinants of aminoketone derivatives S263

identity with targets by sequence alignment using ClustalW2 [23,28,29], and the stereochemical quality
of built structures were checked by Ramachandran plot referenced our previous work [30–32].

The process of molecular docking was carried out in Maestro [33]. The first detailed work, active com-
pounds of hNET and hDAT were collected from CHEMBL, and then their structures were preprocessed
by the LigPrep [34] using OPLS-2005 force field [35]. The ionized state was assigned by Epik [36] at pH
value of 7.0 ± 2.0. Secondly, to prepare hNET and hDAT structures for docking, the Protein Preparation
Wizard module in Maestro [33] was used to add hydrogen atoms, assign partial charges using OPLS-2005
force field, assign protonation states and minimize the structure. The minimization was terminated when
the root mean square deviation reached the maximum value of 0.30 Å. Finally, docking grid boxes were
defined using the Receptor Grid Generation tool in Glide [37] by centroid of corresponding ligands from
the template structures, and the prepared structures were docked in binding site of each target via standard
precision (SP) in Schrödinger Glide module [37]. The preferred ligand was further rescored to calculate
relative binding free energies using prime [38] MM-GBSA method at default.

2.3. Field-based QSAR models construction and validation

Field-based QSAR studies were performed on Field-based QSAR module [39] in Maestro [33]. The
potent poses were superimposed to bupropion by SMARTS method based on common scaffold in Flexible
ligand alignment module. The field-based QSAR models were constructed by training sets at the extended
Gaussian field, and the maximum PLS factors was set 5 for hNET and hDAT. The best models for each
target were identified by statistical robustness, and their stabilities and predictive abilities were validated
by the testing sets with leave-one-out (LOO) cross-validation methods. The most important statistics are
the test set statistics including RMSE, Q2, and Pearson-r, which indicate how good the predictions are. If
the predictions are not improving (much) as the number of PLS factors increases, the extra factors are not
adding to the model and the model is probably over-fit. Scatter plots illustrated the correlation between
the observed and predicted activity of all compounds for selected models. Moreover, the 3D contour maps
for Gaussian steric, electrostatic, hydrophobic, hydrogen bond donor/acceptor, and aromatic ring fields
were analyzed in QSAR Visualization module.

2.4. ADME/T and chemical synthetize properties predicted for candidates

In order to obtain effective drugs, this work evaluated the ADME/T properties of the designed NDRIs
by the pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction) and ADMETlab online server (http://
admet.scbdd.com/calcpre/index/). On the SwissADME online server (http://www.swissadme.ch/index.
php), the problematic fragments in novel candidates were identified by the complementary pattern
recognition method of PAINS (pan assay interference compounds) and Brenk filter. Moreover, the
synthetic accessibilities (SA) were evaluated to demonstrate the synthetic complexities for molecules. A
molecule with SA score closer to 10 was considered difficult to synthetic, while was considered as easy
with closer to 1.

3. Results and discussion

3.1. Homology modeling and validation for hNET and hDAT

The X-ray crystal structures of Drosophila melanogaster dopamine transporter (dDAT, PDB ID: 4XPH)
showed high sequence identity with hNET (60.98%) and hDAT (55.83%), and showed higher sequence
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Fig. 1. Docking poses (A and B) and superimposed poses (C and D) template as bupropion of NDRIs compounds in the binding
pocket of hNET and hDAT. The hNET (palecyan) and hDAT (lightblue) were shown in ribbon representation.

identity in binding site as the same as our previous work (69.05% and 78.57% for hNET and hDAT,
respectively) [31]. Homology models of hNET and hDAT were constructed by dDAT as template, and
the stereochemical quality and accuracy of models were illustrated by Ramachandran plot. Residues
of models in allowed regions were 99.8% and 100% for hNET and hDAT respectively, indicating the
reasonability of obtained models.

3.2. The selected the potent poses by molecular docking and MM-GBSA prime

In this work, re-docking of 4XPH was first performed to validate the credibility of docking protocol.
The binding pose of DCP in dDAT achieved by molecular docking was close to the original conformation
with 0.474 of root mean square deviation (RMSD), indicating the validity of the docking protocol. Then,
all active molecules were docked in each target using the same parameter settings as re-docking, and
the obtained all complexes were minimized by MM-GBSA prime. Finally, the potent pose of bupropion
was identified as the same as our previous work [31], including the electrostatic interaction between
ammonium moiety and Asp75/Asp79 in hNET/hDAT recognition, and hydrophobic interactions formed
in corresponding sub-sites for the other two groups. For other molecules, the docking poses were selected
based on the docking score and the orientation of bupropion. Figure 1A and B show all selected poses
gathered in the binding site surrounded by TM1, 3, 6, 8 and 10.

3.3. Constructing and assessing of filed-based QSAR models for hNET and hDAT

All selected poses for hNET and hDAT were superimposed template as bupropion as demonstrated in
Fig. 1C and D. In this work, 10 filed-based QSAR models were constructed using superimposed training
sets compounds for hNET and hDAT, and the reliabilities of models were assessed by testing sets. All
QSAR statistics are collected in Table 2.

For QSAR models of hNET, the values of R2 for the partial least square regression rose as increased
factors, while the last 2 models should be discarded due to the lower stability value than the R2, which
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Table 2
PLS statistics of hNET and hDAT field-based QSAR models

Factors SD R2 R2
CV R2 scramble Stability F P RMSE Q2 Pearson-r

hNET QSAR models
1 0.6121 0.6143 0.5168 0.1873 0.987 63.7 8.38e-010 0.51 0.6882 0.8458
2 0.4662 0.7818 0.5428 0.3378 0.906 69.9 1.28e-013 0.50 0.6985 0.8836
3a 0.3944 0.8479 0.5873 0.4553 0.880 70.6 1.35e-015 0.47 0.7352 0.8776
4 0.3251 0.8993 0.6186 0.5658 0.842 82.7 6.29e-018 0.46 0.7469 0.8830
5 0.2841 0.9252 0.6150 0.6456 0.808 89.1 3.04e-019 0.39 0.8199 0.9145

hDAT QSAR models
1 0.5559 0.4800 0.3669 0.2074 0.984 38.8 1.88e-007 0.43 0.6582 0.8134
2 0.4580 0.6554 0.4602 0.3296 0.956 39.0 3.27e-010 0.46 0.6015 0.7784
3b 0.3497 0.8040 0.5107 0.4613 0.880 54.7 3.24e-014 0.45 0.6266 0.8072
4 0.2751 0.8817 0.5727 0.5402 0.826 72.7 1.52e-017 0.49 0.5471 0.7644
5 0.2407 0.9118 0.5981 0.6056 0.798 78.6 5.55e-019 0.53 0.4804 0.7239

aselected Field-based QSAR model for hNET. b selected Field-based QSAR model for hDAT.

Fig. 2. Correlation plots of the predicted and experimental PIC50 values for training and test sets of hNET (A) and hDAT (B).

indicating the over-fitting of them. The best model of 3 factor performed good predictive and descriptive
power based on QSAR statistics with 0.8479 for R2 and 0.5873 for R2

cv. Moreover, the 1.35e−15 for P
value further indicated great degree of confidence. The reliability of model 3 was assessed by independent
testing set of 18 compounds, and the value of Q2 for the predicted activities was 0.7352 suggesting its
potent capability in predicting extend molecules. Besides, 0.8776 for Pearson-r showed a good correlation
between predicted and observed activity for the test set, which further confirmed models’ reliability
(robustness). As the similar analysis of QSAR statistics among hDAT models, the model of 3 factor
was the best selection owing to the high linear correlation for training set (R2 = 0.8040) and the potent
capability in predicting testing set (Q2 = 0.6266) without over-fitting. The experimental and predicted
activities in data sets for selected models collected in Table 1 and evenly distributed around the diagonal
as illustrated in Fig. 2, which intuitively verified the effectiveness of models.

3.4. Contour maps analyses of QSAR models for hNET and hDAT

3D contour maps of 6 extended Gaussian fields referenced bupropion (compound 1) are illustrated in
Fig. 3, which provide information about the contribution of substituents on phenyl-aminoketone scaffold
to the activity for each target. As shown in Fig. 3, steric and hydrophobic fields performed more potent
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Fig. 3. 3D contour maps of 6 extended Gaussian fields referenced bupropion for hNET and hDAT field-based QSAR models. A-F
and G-L were steric, hydrophobic, electrostatic, hydrogen bond acceptor, hydrogen bond donor and aromatic ring field contour
maps based on bupropion in hNET (cyan) and hDAT (pink) models, respectively. The colors of favorable and unfavorable regions
were green and yellow for steric fields, yellow and white for hydrophobic field, blue and red for electrostatic fields, red and
magenta for hydrogen bond acceptor, purple and cyan for hydrogen bond donor and orange and gray for aromatic ring field,
respectively.

contribution to activity than other 4 fields with 0.539 and 0.225 respectively for hNET, and with 0.484 and
0.323 respectively for hDAT. Thus, the volume and hydrophobicity of substituents on phenyl-aminoketone
played major roles in regulating activity.

From the steric contour maps (Fig. 3A), there were 2 green and 1 yellow contour regions around
aminoketone moiety, with green meaning bulky groups are favored and yellow meaning bulky groups
are disfavored. The green contour maps at R1 (substituted-carbonyl) were incarnated by the increased
activities of compounds 1 (5.73), 40 (6.22) and 42 (6.43) with methyl, ethyl and propyl group respectively.
However, compounds 46 (6.40), 26 (5.70) and 29 (5.31) with butyl, amyl and hexyl are gradually weaker
than 42 for hNET, which demonstrated the larger stereoscopic space is not meaning blindly the longer
carbon chain. This opinion was effectively proved by compounds 30 (6.44) and 46 (6.40) with the same
carbon atoms for isobutyl and butyl group, the same condition was found in compounds 7 (7.06) and



P. Wang et al. / Profiling the structural determinants of aminoketone derivatives S267

21 (7.95) with propenyl and propyl. Moreover, the green and yellow contour maps at R3 (substituted-
ammonium) signified the large group with short carbon chain was beneficial to increase the activity. It
was reflected by the weak activity of compound 19 (5.60) with butyl rather than bulky tertiary butyl
in compound 1, and by compound 53 (5.09) with cyclopentyl-ammonium comparing with the larger
piperidyl group in 52 (6.14). The similarities of steric contour maps between hDAT (Fig. 3G) and hNET
at R1 and R3 meant that the large moieties in these regions are favor of increasing activities for hDAT.

The yellow contour map of hydrophobicity was mainly sited at R2 (substituted aromatics) as illustrated
in Fig. 3B and H, which demonstrated introducing the higher hydrophobic group would increase the
activities against targets. The result was confirmed by 1 (7.91 for hNET, 7.35 for hDAT) with 4-methanol
group versus 14 (7.06, 7.30) replaced by 4-phenolic hydroxyl, 9 (7.33, 7.50) comparing with 15 (6.77,
6.73) and 21 (7.95, 7.79) in contrast to 2 (7.64, 6.81). Moreover, the larger yellow polyhedron covering
meta-position of R2 for hDAT (Fig. 3H) comparing with hNET (Fig. 3B), which supplied guidance
to regulate the balance of activity for two targets. Conversely, the white contour at R3 (Fig. 3B and
H) indicated that introducing weaker hydrophobic group would improve the inhibition of targets. For
example, the replacement of cyclopentyl in this region by piperidyl with lower hydrophobicity could
increase the activity. This regulation could be seen from compound 52 (6.14, 6.34) versus 53 (5.09, 5.64),
54 (6.24, 6.38) in contrast to 55 (5.06, 6.08), respectively.

The electrostatic field contour maps are illustrated in Fig. 3C and I. The regions in red surrounded at
para-position of R2 implied where negative charge groups enhanced bioactivity, whereas the regions in
blue sited at meta-position of R2 purported positive charge groups improved the activity. The orderliness
for para-position of R2 could be adequately reflected by the decrease activities of compounds 21 (7.95,
7.79), 2 (7.64, 6.81) and 22 (6.26, 5.96), which is due to the gradual reduction of electronegativities for
methyl, methyl formate and nitro, respectively. Meanwhile, it also appeared in compounds 9 (7.33, 7.50),
8 (7.08, 7.4), 15 (6.77, 6.73) with increasing of electronic deficiency for iodine, bromine and fluorine
atom. At meta-position of R2, because of the more electropositive of carbon atom in naphthalene at blue
region, compound 18 (7.93, 7.40) performed higher activity contrasting to compound 2 (7.64, 6.81) with
methyl or 23 (6.5, 7.17) with oxygen atom in carbonyl. Additionally, the oxygen atom with negative
charge in meta-nitro of compound 58 intersected the blue area, therefore, it performed the weakest active
among similar compounds 54, 56, 57, 59, 60.

The H-bond acceptor contour maps (Fig. 3D and J) closed to R2, which indicated that introduction
of H-bond acceptor atom in red region is favorable while magenta areas stood for the opposite. This
might be one reason for compound 13 with hydroxy as H-bond acceptor atom performed potent activity
for hNET and hDAT. The purple contours in Fig. 3E and K signify H-bond donor was beneficial, while
cyan contours were unfavored to increase activity. This might could be explained by the hydrogen bond
between protonated nitrogen (NH+) in R3 and negative charged oxygen (O−) of Asp75/Asp79 were
essential for drugs recognition of hNET and hDAT in previous work [31,40]. Finally, from gaussian
aromatic ring contours as displayed in Fig. 3F and L, the gray polyhedron surrounding the para-position
of R2 suggesting that it was not prominently effectual to increase the activity by introducing the aromatic
group.

Considering all discussed above, this work supplied the graphical description of the structural features
for designing novel NDRIs. In order to improve the activity, researchers could replace the methyl
by the bulky groups with suitable carbon chain at R1, and/or with additional weak hydrophobicity
at R3. Moreover, hydrophobic and electronegative substituted at R2 should be helpful for enhancing
the effectiveness. Meanwhile, designer could regulate the active balance between hNET and hDAT by
changing the hydrophobicity with obvious contribution to activity of meta-position of R2. At last but
the most important, it was necessary to retain the protonizable nitrogen in ammonium group to form
hydrogen bond for recognizing by targets.
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Table 3
The predicted activities of designed novel derivatives by selected hNET
and hDAT QSAR models

‡Molecules with active as the high active NDRI compound 10. §Molecules
with more active than compound 10.
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3.5. Design of novel derivatives

According to the information based on compound 1 provided by Field-based QSAR models, firstly
this work replaced methyl of R1 by cyclopentyl, cyclopentadienyl, cyclohexyl and phenyl, meanwhile
introduced cyclopentyl, cyclohexyl, pyrrolyl, piperidyl at R3. Secondly, the designed compounds were
optimized by bring methyl, trifluoromethyl, methoxy, trifluoromethoxy and formate group in R2, and
regulated the active balance for hNET and hDAT by changing the hydrophobicity of substituent between
meta- and para-position. Additionally, Other useful proposals could be performed to import the elec-
tronegative group in para-position of R2 to yield goo candidates, such as methoxy, sulfo group and so
on. Finally, 29 novel derivatives were designed and their activities were predicted by selected models of
hNET and hDAT as collected in Table 3. All designed candidates performed with hNET > hDAT potency
order, and their inhibitive ability were no less than the highest active NDRI compound 10.

3.6. ADME/T profiles and medicinal chemistry friendliness properties of candidates

The ADME/T properties and medicinal chemistry of 29 high active candidates were predicted using
pre-ADMET web servers, and the results are shown in Table 4. As results, the rang of HIA was from
89.056% to 98.477%, indicating that all candidates performed high absorption properties from intestine.
The VDss of most molecules was between 0.71 and 2.81 L/kg, which meant that they were evenly
distributed in the plasma and in tissues, while compounds D21, D25, D27 and D29 with low 0.71 L/kg
were distributed more in the plasma rather than in tissues. There was no compound to be considered as
poorly distributed to the brain and unable to penetrate the CNS according BBB and CNS permeability.
For metabolism, all designed molecules were predicted as substrates for the CYP450 2D6/3A4/1A2
subtype, which indicated they could be metabolized by P450 isoforms. In addition, compound D6, D16,
D25, D26, D27 and D29 could not inhibit the CYP450 family, whereas the other compounds might
inhibit the CYP450 1A2/2C19/2C9/2D6/3A4 subtype. The predicted total clearance of all compounds
demonstrated they could be cleared by combing hepatic and renal tissue. Based on the predicted the
toxicity, some candidates would be harmful for the liver, and only a few compounds were likely to be
associated with skin sensitization, and none of them performed mutagenic potency. Finally, as shown
the medicinal chemistry friendliness properties in Table 4, there was no problematic fragment in novel
compounds assessing by PAINS and Brenk filter. The SA of all designed candidates ranged from 2.85
to 3.58, indicating the low synthetic complexity of structure and high synthetic feasibility. Taking all
predicted ADMET properties and medicinal chemistry profiles into consideration, the designed 29 novel
derivatives could be served as lead compounds for further development of NDRIs.

4. Conclusions

This work established firstly field-based QSAR models of aminoketone derivatives as hNET and hDAT
reuptake inhibitors based on the potent poses by molecular docking, and the best models performed good
predictability in in/external validations and reliability. According to the contour maps of QSAR models
for hNET and hDAT, three strategies were proposed to improve the activity: (I) the bulky groups with
suitable carbon chain at R1 and R3, (II) the additional weak hydrophobicity at R3 with a precondition of
protonizable nitrogen for recognizing by targets, and (III) the potent hydrophobic and electronegative
substituted in R2 with changing the hydrophobicity to regulate the active balance between hNET and
hDAT at its meta site. These results provide new insights into the key structural factors affecting activity
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to two targets, which could be further utilized as structural and energetic blueprints for assessing and
discovering novel NDRIs with assigned potency order. Moreover, the designed 29 novel derivatives
performed no less than the highest active NDRI compound 10, and all of them exhibited good ADME/T
pharmacokinetic properties and medicinal chemistry friendliness, which could be considered as the
NDRIs lead compounds for cognitive dysfunction with depression or other related neurodegenerative
disorders.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant number
81903544); the Incubation Fund of National scientific research in Huanghuai University (grant number
XKPY-2018008); and the Key Scientific Research Projects of the Universities in Henan Province (grant
number 19A150033).

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Madhav KC, Sherchand SP, Sherchan S. Association between screen time and depression among US adults. Prev Med
Rep. 2017; 8: 67. doi: 10.1016/j.pmedr.2017.08.005.

[2] Zhang Y, Zheng GX, Fu TT, Hong JJ, Li FC, Yao XJ, et al. The binding mode of vilazodone in the human serotonin
transporter elucidated by ligand docking and molecular dynamics simulations. Phys Chem Chem Phys. 2020; 22(9): 5132.
doi: 10.1039/c9cp05764a.

[3] Xue WW, Fu TT, Zheng GX, Tu G, Zhang Y, Yang FY, et al. Recent advances and challenges of the drugs acting on
monoamine transporters. Curr Med Chem. 2020; 27(23): 3830. doi: 10.2174/0929867325666181009123218.

[4] Xue WW, Wang PP, Tu G, Yang FY, Zheng GX, Li XF, et al. Computational identification of the binding mechanism of a
triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Phys Chem Chem Phys. 2018; 20(9):
6606. doi: 10.1039/c7cp07869b.

[5] Baune BT, Brignone M, Larsen KG. A Network Meta-Analysis comparing effects of various antidepressant classes on the
Digit Symbol Substitution Test (DSST) as a measure of cognitive dysfunction in patients with major depressive disorder.
Int J Neuropsychopharmacol. 2018; 21(2): 97. doi: 10.1093/ijnp/pyx070.

[6] Oliveira MR, Chenet AL, Duarte AR, Scaini G, Quevedo J. Molecular mechanisms underlying the anti-depressant effects
of resveratrol: a review. Mol Neurobiol. 2018; 55(6): 4543. doi: 10.1007/s12035-017-0680-6.

[7] Fu TT, Zheng GX, Tu G, Yang FY, Chen YZ, Yao XJ, et al. Exploring the binding mechanism of metabotropic glutamate
receptor 5 negative allosteric modulators in clinical trials by molecular dynamics simulations. Acs Chem Neurosci. 2018;
9(6): 4192. doi: 10.1021/acschemneuro.8b00059.

[8] Schaefer JD, Scult MA, Caspi A, Arseneault L, Belsky DW, Hariri AR, et al. Is low cognitive functioning a predictor
or consequence of major depressive disorder? A test in two longitudinal birth cohorts. Dev Psychopathol. 2017; 1. doi:
10.1017/S095457941700164X.

[9] Targum SD, Wedel PC, Fava M. Changes in cognitive symptoms after a buspirone-melatonin combination treatment for
Major Depressive Disorder. J Psychiatr Res. 2015; 68: 392. doi: 10.1016/j.jpsychires.2015.04.024.

[10] Ekman M, Granstrom O, Omerov S, Jacob J, Landen M. The societal cost of depression: evidence from 10,000 Swedish
patients in psychiatric care. J Affect Disord. 2013; 150(3): 790. doi: 10.1016/j.jad.2013.03.003.

[11] Bortolato B, Miskowiak KW, Kohler CA, Maes M, Fernandes BS, Berk M, et al. Cognitive remission: a novel objective
for the treatment of major depression? BMC Med. 2016; 14: 9. doi: 10.1186/s12916-016-0560-3.

[12] Salagre E, Sole B, Tomioka Y, Fernandes BS, Hidalgo-Mazzei D, Garriga M, et al. Treatment of neurocognitive
symptoms in unipolar depression: a systematic review and future perspectives. J Affect Disord. 2017; 221: 205. doi:
10.1016/j.jad.2017.06.034.



S272 P. Wang et al. / Profiling the structural determinants of aminoketone derivatives

[13] Levada OA, Troyan AS. Insulin-like growth factor-1: a possible marker for emotional and cognitive disturbances, and
treatment effectiveness in major depressive disorder. Ann Gen Psychiatry. 2017; 16: 38. doi: 10.1186/s12991-017-0161-3.

[14] Schmeichel BE, Berridge CW. Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to
low-dose psychostimulants. Neuropsychopharmacology. 2013; 38(6): 1078. doi: 10.1038/npp.2013.6.

[15] Bymaster FP, Golembiowska K, Kowalska M, Choi YK, Tarazi FI. Pharmacological characterization of the norepinephrine
and dopamine reuptake inhibitor EB-1020: implications for treatment of attention-deficit hyperactivity disorder. Synapse.
2012; 66(6): 522. doi: 10.1002/syn.21538.

[16] Spencer RC, Devilbiss DM, Berridge CW. The cognition-enhancing effects of psychostimulants involve direct action in
the prefrontal cortex. Biol Psychiatry. 2015; 77(11): 940. doi: 10.1016/j.biopsych.2014.09.013.

[17] Miceli M, Gronier B. Psychostimulants and atomoxetine alter the electrophysiological activity of prefrontal cortex
neurons, interaction with catecholamine and glutamate NMDA receptors. Psychopharmacology. 2015; 232(12): 2191. doi:
10.1007/s00213-014-3849-y.

[18] Xue WW, Wang PP, Li B, Li YH, Xu XF, Yang FY, et al. Identification of the inhibitory mechanism of FDA approved
selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Phys Chem Chem Phys.
2016; 18(4): 3260. doi: 10.1039/c5cp05771j.

[19] Park JE, Song C, Choi K, Sim T, Moon B, Roh EJ. Synthesis and biological evaluation of novel 3,4-diaryl lactam
derivatives as triple reuptake inhibitors. Bioorg Med Chem Lett. 2013; 23(20): 5515. doi: 10.1016/j.bmcl.2013.08.062.

[20] Xing B, Li YC, Gao WJ. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the
prefrontal cortex. Brain Res. 2016; 1641(Pt B): 217. doi: 10.1016/j.brainres.2016.01.005.

[21] Pliszka S, Issues AWGoQ. Practice parameter for the assessment and treatment of children and adolescents with attention-
deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2007; 46(7): 894. doi: 10.1097/chi.0b013e318054e
724.

[22] Schmeichel BE, Zemlan FP, Berridge CW. A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent
cognitive function: potential relevance to attention deficit hyperactivity disorder. Neuropharmacology. 2013; 64: 321. doi:
10.1016/j.neuropharm.2012.07.005.

[23] Wang PP, Zhang XY, Fu TT, Li S, Li B, Xue WW, et al. Differentiating physicochemical properties between addictive
and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem Neurosci. 2017; 8(6):
1416. doi: 10.1021/acschemneuro.7b00173.

[24] Bruder GE, Alvarenga JE, Alschuler D, Abraham K, Keilp JG, Hellerstein DJ, et al. Neurocognitive predictors of
antidepressant clinical response. J Affect Disord. 2014; 166: 108. doi: 10.1016/j.jad.2014.04.057.

[25] Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic
Acids Res. 2017; 45(D1): D945. doi: 10.1093/nar/gkw1074.

[26] Goodsell DS, Zardecki C, Di Costanzo L, Duarte JM, Hudson BP, Persikova I, et al. RCSB protein data bank: enabling
biomedical research and drug discovery. Protein Sci. 2020; 29(1): 52. doi: 10.1002/pro.3730.

[27] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of
protein structures and complexes. Nucleic Acids Res. 2018; 46(W1): W296. doi: 10.1093/nar/gky427.

[28] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version
2.0. Bioinformatics. 2007; 23(21): 2947. doi: 10.1093/bioinformatics/btm404.

[29] Zheng GX, Xue WW, Yang FY, Zhang Y, Chen YZ, Yao XJ, et al. Revealing vilazodone’s binding mechanism underlying
its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder. Phys Chem Chem Phys. 2017;
19(42): 28885. doi: 10.1039/c7cp05688e.

[30] Wang PP, Yang FY, Yang H, Xu XF, Liu D, Xue WW, et al. Identification of dual active agents targeting 5-HT1A and SERT
by combinatorial virtual screening methods. Biomed Mater Eng. 2015; 26(Suppl 1): S2233. doi: 10.3233/BME-151529.

[31] Wang PP, Fu TT, Zhang XY, Yang FY, Zheng GX, Xue WW, et al. Differentiating physicochemical properties between
NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim Biophys Acta Gen Subj. 2017; 1861(11 Pt
A): 2766. doi: 10.1016/j.bbagen.2017.07.022.

[32] Zheng GX, Yang FY, Fu TT, Tu G, Chen YZ, Yao XJ, et al. Computational characterization of the selective inhibition of
human norepinephrine and serotonin transporters by an escitalopram scaffold. Phys Chem Chem Phys. 2018; 20(46):
29513. doi: 10.1039/c8cp06232c.

[33] Schrödinger Release 2018-2: Maestro, Schrödinger, LLC, New York, 2018.
[34] Schrödinger Release 2018-2: LigPrep, Schrödinger, LLC, New York, 2018.
[35] Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field

for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001; 105: 6474.
doi: 10.1021/jp003919d.

[36] Schrödinger Release 2018-2: Epik, Schrödinger, LLC, New York, 2018.
[37] Schrödinger Release 2018-2: Glide, Schrödinger, LLC, New York, 2018.
[38] Schrödinger Release 2018-2: Prime, Schrödinger, LLC, New York, 2018.



P. Wang et al. / Profiling the structural determinants of aminoketone derivatives S273

[39] Schrödinger Release 2018-2: Field-based QSAR, Schrödinger, LLC, New York, 2018.
[40] Zheng GX, Xue WW, Wang PP, Yang FY, Li B, Li XF, et al. Exploring the Inhibitory Mechanism of Approved Selective

Norepinephrine reuptake inhibitors and reboxetine enantiomers by molecular dynamics study. Sci Rep-Uk. 2016; 6:
26883. doi: 10.1038/Srep26883.


