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Abstract
Zika virus (ZIKV) is a positive-stranded RNA virus within the Flaviviridae family. After decades of circulation in Asia, ZIKV 
was introduced to Brazil in 2014–2015, associated with a rise in congenital malformations. Unlike the genetically related 
dengue virus (DENV), ZIKV constitutes only one serotype. Although assumed that ZIKV infection may engender lifelong 
immunity, the long-term kinetics of ZIKV antibody responses are unclear. We assessed long-term kinetics of ZIKV NS1-IgG 
response in 144 individuals from 3 different subpopulations: HIV patients, tuberculosis patients and healthy individuals first 
tested in 2016 and retested 1.5–2 years after the 2015–2016 ZIKV epidemic in Salvador de Bahia, Brazil, using a widely 
distributed NS1-based commercial ELISA. The seropositivity in 2016 reached 59.0% (85/144, 95% confidence interval (CI) 
50.7–66.7%), and decreased to 38.6% (56/144, CI 31.3–47.0%) 1.5–2 years later. In addition, the median ZIKV NS1-ELISA 
reactivity for individuals that remained positive in both timepoints significantly decreased from a ratio of 4.4 (95% CI 3.8–5.0) 
to 1.6 (95% CI 1.6–1.9) over the 2-year interval (Z: − 6.1; p < 0.001) irrespective of the subpopulation analyzed. Initial 2016 
DENV antibody response was non-significant between groups, suggesting comparable DENV background. The high 20.6% 
seroreversion suggest that widely used serologic tests may fail to account a considerable proportion of past ZIKV infections 
in flavivirus endemic countries. In addition, ZIKV immunity might be shorter-lived than previously thought, which may 
contribute to local ZIKV resurgence once individual immune responses wane sufficiently to reduce community protective 
immunity in addition to birth and migration.
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Introduction

The Zika virus (ZIKV) is an enveloped positive-stranded 
RNA virus belonging to the Flavivirus genus inside the 
Flaviviridae family. Unlike the ubiquitous dengue virus 
(DENV), which occurs as four  distinct serotypes glob-
ally, ZIKV represents only a single serotype to which both 
the African and the Asian lineages of ZIKV belong [1, 2]. 
The ZIKV genome encompasses about 10.7 kb containing 
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two non-coding regions (5′- and 3′-UTR) and a single open 
reading frame that encodes for a polyprotein subsequently 
cleaved into three structural (core, envelope and membrane 
precursor) and seven non-structural (NS1, NS2A, NS2B, 
NS3, NS4A, NS4B, NS5) proteins [3]. Virologic diagno-
sis usually requires both molecular detection and serologic 
detection of IgM and IgG antibodies, since viremia is usu-
ally low and transient [4]. ZIKV serologic diagnosis is 
mostly based on antibodies against two viral proteins, enve-
lope and NS1 [5]. The envelope protein has critical roles 
in the assembly of virions and cell entry [6] and NS1 is a 
non-structural glycoprotein that plays a putative role in viral 
replication, and when secreted modulates viral immune inva-
sion and pathogenesis [7]. The NS1 of flaviviruses contains 
more highly diversified epitopes than the envelope protein, 
therefore its wide use in flavivirus serologic tests [8].

ZIKV was first detected in 1947 in Uganda [9]. Later in 
2007, ZIKV emerged in the Pacific island of Yap, in 2013 
in French Polynesia and other Pacific islands and from there 
expanding to mainland Latin America in 2015 causing the 
biggest outbreak to date [10–12]. The limited serologic 
surveys that are available found a high-level population 
exposure reaching from 42% in French Polynesia and 49% 
in Martinique, to as much as 63% in mainland America, 
specifically Brazil [5, 13, 14]. If ZIKV confers long-lasting 
immunity, high exposure could create sufficient herd immu-
nity limiting local resurgence and upcoming epidemics [5]. 
However, isolated island populations might not be compa-
rable to mainland America. The Pacific islands are a diverse 
region in which the combined population consists of approx-
imately 2.3 million people and the island surface usually 
extends over a few thousand km2 only. In contrast, Brazil 
has 210 million inhabitants spread over 8 million km2 (latest 
United Nations Population Division estimates). In Brazil, 
as other Latin American countries, cocirculation of other 
flaviviruses such as DENV, Yellow fever virus, Bussuquara, 
Cacipacoré, Ilhéus, Rocio and Saint Louis encephalitis virus 
might elicit unique flaviviral antibody responses that impact 
ZIKV-specific antibody kinetics [15–17]. Nonetheless, long-
term antibody kinetics of individuals infected with ZIKV in 
Brazil are largely unknown. Here, we conducted a prospec-
tive observational cohort study monitoring putative ZIKV 
circulation and antibody responses over time of individuals 
infected with ZIKV in the metropolitan region of Salvador, 
Brazil.

Results and discussion

A total of 144 samples were taken from individuals on 2 
occasions. The samples from the first timepoint correspond 
to a cross-sectional study conducted at the University Hospi-
tal Professor Edgard Santos (UHPES) in Salvador de Bahia, 

which is one of the biggest public hospitals in the region, 
between February and May 2016 during the end of the ZIKV 
epidemic [5]. Samples belong to three different subpopu-
lations: immunologically stable HIV-positive patients and 
healthy individuals from the UHPES and treated tubercu-
losis patients from the José Silveira Foundation-Brazilian 
Institute for Investigation of Tuberculosis. These popula-
tions were selected due to their regular visits to the hospital, 
which was the only inclusion criterion for this study. The 
follow-up assessment was performed to the same subpopu-
lations 1.5–2 years later (median 1.8, IQR 1.5–1.9 years), 
between August 2017 and February 2018, through new 
interviews and blood collections (IRB number 2.326.141). 
Follow-up serum samples were obtained from 28 patients 
on treatment for active pulmonary tuberculosis; 93 immu-
nologically stable HIV-positive patients under antiretrovi-
ral therapy; and 23 healthy individuals. Samples from both 
timepoints were tested using a highly sensitive real time RT-
PCR [18]. No sample tested positive by RT-PCR. Although 
there was no RT-PCR confirmation of acute ZIKV infection, 
it is likely that ZIKV antibody responses are largely com-
parable between study participants, since all of them were 
likely infected in a very similar time span during 2015–2016, 
due to the ultra-rapid ZIKV spread in Salvador, northeastern 
Brazil [5].

Brazil acquired millions of ZIKV NS1 antigen-based 
indirect ELISA tests (Euroimmun, Lübeck, Germany) 
for serological testing in public health laboratories [19]. 
We used the same NS1-based ELISA to compare detec-
tion between the paired serum samples from 2016 [5] and 
2017–2018. The ZIKV seropositivity in the first timepoint 
in 2016 reached 59.0% (85/144, 95% confidence interval 
(CI) 50.7–66.7%) in concordance with the 63% seropreva-
lence from a serologic survey performed at the UHPES in 
2015–2016 (Fig. 1a) [5]. Moreover, this seropositivity later 
decreased to 38.6% (56/144, CI 31.3–47.0%) 1.5–2 years 
later (Fig. 1a). Of the 59 ZIKV-negative individuals in 2016, 
only 1 individual belonging to the healthy individuals sub-
population seroconverted 2 years later, consistent with near-
complete lack of ZIKV activity in northeastern Brazil after 
the large initial outbreak [5]. As shown in Fig. 1b, c, median 
ELISA reactivity for seropositive individuals that remained 
seropositive in 2017/2018 decreased significantly from a 
ratio of 4.4 (the ratio is built by dividing sample reactivity 
by the reactivity of a calibrator provided in the kit; 95% CI 
3.8–5.0) to 1.6 (95% CI 1.6–1.9) over the 2-year interval 
(positivity threshold of the kit is a ratio of 1.1.; Z − 6.1; 
p < 0.001) irrespective of which subpopulation was ana-
lyzed. Among the initially seronegative individuals, median 
ELISA reactivity was almost identical between both time 
points (0.36–0.37; Z − 0.1; p = 0.88) (Fig. 1b). Remarkably, 
30 individuals (20.6%; 95% CI 14.9–28.4) that were seropos-
itive in 2016 were seronegative for ZIKV in 2017–2018, the 
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majority of which (n = 25; 83.3%) were HIV-positive indi-
viduals (Fig. 1a, c). The level of seroreversion did not differ 
significantly among HIV-positive and tuberculosis patients 
[25 serorevertants (26.9%) versus 5 serorevertants (17.8%); 

Fisher, p = 0.23], whereas seroreversion occurred signifi-
cantly less frequently in healthy individuals (1 serorever-
tant; 4.3%) than in HIV-positive patients (Fisher, p = 0.03) 
(Fig. 1c).

Fig. 1   a Zika virus NS1-IgG 
seropositivity in 2016 (shown 
in black) and in 2017–2018 
(shown in gray) in the HIV 
patients (HIV), tuberculosis 
patients (TB), healthy indi-
viduals (HI) subpopulations 
and total patients analyzed 
for the prospective study. b 
Comparison between the ZIKV 
NS1-specific IgG ratios dur-
ing the epidemic (2016) and 
follow-up (2017–2018). Heavy 
lines (horizontal and vertical) 
correspond to the positivity 
cut-off ratio of 1.1 suggested 
by the manufacturer. Diagonal 
line divides the results among 
positive individuals in both time 
points who had an increase in 
the ratio of the follow-up sam-
ple (above) compared to the first 
one and the individuals whose 
value of the ratio decreased 
(below). c Zika virus NS1–IgG 
ratio per subpopulation. Colors 
as in b. d Dengue IgG ratios 
in 2016 between patients that 
remained positive in both 
timepoints (++), patients that 
seroreverted (+−), patients that 
seroconverted (−+) and patients 
that remained negative in both 
timepoints (–). Colors as in b. 
n.s. not significant. e Zika virus 
specific plaque reduction neu-
tralization test (PRNT). Double 
asterisk denotes p < 0,001. 
Colors as in b. f Zika virus 
IgG ratios in 2016. Colors as 
in b. Double asterisk denotes 
p < 0,001
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The high level of seroreversion can be explained by 
three scenarios. First, seroreversion in HIV-positive indi-
viduals may be associated with lower magnitudes of ZIKV-
specific immune responses compared to other subpopula-
tions, consistent with generally lower antibody responses of 
HIV-positive individuals, e.g., following hepatitis A virus 
vaccination [19]. However, the decrease of ELISA ratios 
in all analyzed subpopulations speaks against this scenario 
(Fig. 1c). Second, cross-reactive antibodies elicited by prior 
infection with flaviviruses other than ZIKV might have elic-
ited false-positive ZIKV results during first testing. Cross-
reactivity of dengue-specific IgG with ZIKV NS1 antigen 
has been well documented, ranging from 83.3% 3–6 months 
to 28.1% 1–2 years after secondary dengue infections [20]. 
If this was the case, patients that are ZIKV antibody posi-
tive in both timepoints might show different DENV-reactive 
antibody responses than serorevertants and participants that 
were ZIKV-negative in both timepoints. However, our data 
showed no difference in a DENV-reactive ELISA between 
the groups in 2016, suggesting comparable exposure to 
the hyperendemic DENV (Fig. 1d). Unfortunately, due to 
low sample volumes, no further test of the DENV antibody 
response in 2018 was performed. Next, to assess the speci-
ficity of the observed ZIKV reactive antibody responses, 
samples were analyzed by plaque reduction neutralization 
assays (PRNT) as previously described (Fig. 1e) [5]. In total, 
30.0% (24/85) of the ZIKV NS1-ELISA-positive partici-
pants in 2016 where positive by PRNT. Compared to ELISA, 
PRNT is more specific, but also less sensitive [4, 17]. We 
observed that patients that seroreverted also had significantly 
lower PRNT titers (Fig. 1e) and ZIKV NS1-ELISA ratio 
(Fig. 1f) at enrollment than patients that remained positive in 
both timepoints. On the one hand, this may imply unspecific 
ELISA results at enrollment, hypothetically due to differ-
ences in the time since exposure to the hyperendemic DENV 
[21]. On the other hand, it seems unlikely that hypotheti-
cally unspecific results should not have occurred in the sera 
sampled 2 years later during 2018, because DENV immune 
responses are usually long-lasting [17, 20]. It thus seems 
likely that higher PRNT titers and ELISA ratios in study par-
ticipants that remained positive over time represent stronger 
immune responses. The last explanation for our data could 
be that the lower responses observed may be limited to NS1-
specific antibodies, which are elicited in infected individuals 
at much lower magnitude than antibodies against the ZIKV 
envelope antigen that also remain elevated for longer periods 
of time [22].

Irrespective of the complex underlying reasons, the 
observed decrease in ZIKV NS1-specific antibody levels 
over time was reminiscent of the complete lack of sero-
conversion in follow-up samples of two different cohorts. 
First, from RT-PCR-confirmed ZIKV infections in travel-
ers using the same NS1-based serologic test 42 days post 

onset of symptoms [23]. Second, from a recent serological 
survey in the Pacific islands following patients during a 
2-year period, showing a marked decrease in ZIKV overall 
seroprevalence in French Polynesia from 37 to 22% and in 
Fiji from 24 to 12% [24]. This decrease was observed for 
ZIKV and not for DENV, which causes sporadic outbreaks 
in the Pacific [24]. Similarly, DENV NS1-specific IgG 
antibodies were readily detected up to three years post-
infection in Brazilian patients [20]. Those data are not at 
odds with our results, because DENV seroprevalence is 
as high as 80% in northeastern Brazil [5] and individuals 
frequently have multiple DENV infections likely boosting 
NS1-specific immune responses compared to ZIKV, which 
exists as a single serotype.

Our serologic data from Brazil are thus consistent with 
data from Pacific island populations in showing loss of 
ZIKV-specific antibody responses over a comparably short 
time span irrespective of the serologic method used for 
testing [24]. Since NS1-based serologic tests are widely 
used, it is possible that future seroprevalence studies 
will underestimate ZIKV spread, particularly in immu-
nocompromised populations. This could also be the case 
for Africa, where despite the recent introduction of the 
Asian lineage from Latin America potentially causing con-
genital malformations, seroprevalence is several orders of 
magnitude lower than the observed for the Pacific islands 
or Latin America [22]. The combination of NS1-specific 
antibodies with other antigens and tests may be necessary 
to increase the reliability of future seroprevalence studies 
[4]. The relevance of an adequate determination of the fla-
viviral serostatus is illustrated by the interaction between 
DENV and ZIKV antibodies that may both protect from 
and enhance subsequent infections [21, 25], and by the 
growing number of flaviviruses that cocirculate in Bra-
zil, for which their potential immune interplay is largely 
unknown [16, 17]. Since Brazil has licensed a DENV 
vaccine, adequate determination of the ZIKV serostatus 
and its potential interplay with DENV vaccination is cru-
cial. Finally, studies analyzing long-lasting ZIKV-specific 
immune response are needed, as ZIKV immunity in flavi-
virus endemic countries might be shorter than previously 
thought. Decreasing individual-level immune responses 
in addition to the replenishment of susceptible individuals 
by birth and migration may sufficiently reduce community 
protective immunity to allow ZIKV resurgence.
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