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Abstract

Feed efficiency (FE) is a key trait in pig production, as improvement in FE has positive eco-

nomic and environmental impact. FE is a complex phenotype and testing animals for FE is

costly. Therefore, there has been a desire to find functionally relevant single nucleotide poly-

morphisms (SNPs) as biomarkers, to improve our biological understanding of FE as well as

accuracy of genomic prediction for FE. We have performed a cis- and trans- eQTL (expres-

sion quantitative trait loci) analysis, in a population of Danbred Durocs (N = 11) and Danbred

Landrace (N = 27) using both a linear and ANOVA model based on muscle tissue RNA-seq.

We analyzed a total of 1425x19179 or 2.7x107 Gene-SNP combinations in eQTL detection

models for FE. The 1425 genes were from RNA-Seq based differential gene expression

analyses using 25880 genes related to FE and additionally combined with mitochondrial

genes. The 19179 SNPs were from applying stringent quality control and linkage disequilib-

rium filtering on genotype data using a GGP Porcine HD 70k SNP array. We applied 1000

fold bootstrapping and enrichment analysis to further validate and analyze our detected

eQTLs. We identified 13 eQTLs with FDR < 0.1, affecting several genes found in previous

studies of commercial pig breeds. Examples include MYO19, CPT1B, ACSL1, IER5L,

CPT1A, SUCLA2, CSRNP1, PARK7 and MFF. The bootstrapping results showed statisti-

cally significant enrichment (p-value<2.2x10-16) of eQTLs with p-value < 0.01 in both cis and

trans-eQTLs. Enrichment analysis of top trans-eQTLs revealed high enrichment for gene

categories and gene ontologies associated with genomic context and expression regulation.

This included transcription factors (p-value = 1.0x10-13), DNA-binding (GO:0003677, p-

value = 8.9x10-14), DNA-binding transcription factor activity (GO:0003700,) nucleus gene

(GO:0005634, p-value<2.2x10-16), negative regulation of expression (GO:0010629, p-

value<2.2x10-16). These results would be useful for future genome assisted breeding of pigs

to improve FE, and in the improved understanding of the functional mechanism of trans

eQTLs.
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Introduction

The biological background of complex traits is expressed through molecular processes trig-

gered by a combination of genetics, epigenetics and the environment. [1]. Almost per defini-

tion, complex traits are controlled by multiple genetic variants [2–4], which further

complicates the causal structure between genetic variants and complex traits. While ample

genetic markers have been identified for complex traits, the understanding of the functional

effect of identified genetic markers is challenging to identify. One way of tackling this issue, is

identify correlations between genetics and gene expression, thus identifying a direct effect of

genetic variation. This allows for a straightforward interpretation of the effect of genetic varia-

tion based on pathway and functional knowledge of implicated genes. This can be done

through the identification of eQTLs, mapping genetic variants that influence gene expression

patterns of genes in various tissues, originally termed as systems genetics [5, 6]. The usage of

both genetic and transcriptomic information, combined with pathway and phenotype data can

be a powerful way of identifying biomarkers for traits of interest.

There are number of eQTL studies in pigs using high density SNP array data and RNA-Seq

based transcriptomic datasets. As examples from the general Danish pig population, boar taint

eQTLs [7] and fat mass [8] eQTLs have been identified. Typically, the sample sizes are limiting

factors as transcriptomic profiling of various tissues is laborious and expensive compared to

genotyping. There are several other challenges with eQTL analysis. If one wanted to map all

possible SNP-gene pairs in a modern data set, which typically has thousands of expressed

genes and at the minimum several tens of thousands of SNP, the total amount of tests will be at

least in the order of 108. This can pose computational challenges, but even worse, multiple test-

ing problems. This is especially relevant as a cursory search of the Gene Expression Omnibus

database (https://www.ncbi.nlm.nih.gov/geo/) for RNA-Seq studies reveals most studies hav-

ing less than 100 samples. Therefore, it is important to have strategies for these issues when

performing eQTL analysis. Example strategies used for filtering the expression data in previous

studies include: filtering by estimated heritability of gene expression [9–11] or using only a

limited set of genes[12].

Feed efficiency (FE) has been known for decades to be an important complex trait in pig

breeding. Cost of feed is the largest economic burdens in commercial pig production [13, 14],

and lower feed consumption leads to more environmentally friendly production. The two

main metrics for feed efficiency are residual feed intake (RFI) [15] and feed conversion rate

(FCR), which is the ratio between feed consumed and growth, with the latter being the most

used in pig production. Selective breeding has improved FCR in pigs, but this has not led to

direct gains in knowledge of the biological drivers of FE in pigs. Even with many studies being

done on the subject, the genetic and biological background of FE in pigs is still not well under-

stood [16]. The cost and difficulty of measuring FE likely plays into this, as it cannot be easily

measured without expensive equipment and setup, unlike meat quality or litter size. FCR is the

FE trait of choice in the Danish pig production. In this context, FCR is improved through a

centralized breeding program where potential breeding sires are tested for efficiency via accu-

rate measurements of feed intake and growth.

Muscle is the most important tissue in pig production in regards to economic value. Muscle

plays a large role in energy metabolism and energy storage [17–19]. As such, there have been

multiple studies on the muscle transcriptome in a FE context [13, 20–22]. While there are sev-

eral eQTL studies performed in pig muscle [9, 12, 23, 24], there are none based on FE traits.

A connection between FE and mitochondria in muscle has been reported several times, in

several species in the literature [13, 21, 22, 25–27]. The link between mitochondria and FE is

well established, but the causal effect of mitochondria on FE is less clear. Jing and Vincent et al
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[13, 22] report lower mitochondrial expression in efficient pigs, while Gondret and Bottje et al

[21, 26] report the opposite in pigs and broiler chicken. Given the evidence for mitochondrial

effects, and the unclear causal nature of these effects, identifying genetic regulation of mito-

chondrial genes could assist in efforts to develop biomarkers for FE and further understanding

of the functional effect of mitochondria on FE.

Trans-eQTLs are per definition distally located in relation to the genes they are affecting.

This means that true trans eQTLs should have a mechanism that mediate correlations between

expression and genetic variation. There has been evidence that trans-eQTLs can be mediated

by local cis effects of the eQTL[28, 29]. One proposed method for the mediation is through cis

affected transcription factors [29]. Given this evidence, we could hypothesize that the genes

should be enriched for gene ontology categories that can interact with genomic context or reg-

ulate expression, as seen previously in genes near trans-eQTLs.

Here we performed cis and trans-eQTL analysis on a previously identified set of FCR

related differentially expressed genes (DEG) and mitochondrial genes (known to be involved

in energy metabolism and nutrient utilization), in a pig population comprised of Danbred

Duroc and Landrace purebred pigs. The joint breed analysis provides genetic variations that

can aid in the detection of eQTLs, as it has been proposed that natural genetic variation aids in

eQTL analysis [30], and natural variation in FCR due to the breed differences increases the

likelihood of identified eQTLs being relevant in an FE context. By focusing on DEG and mito-

chondrial genes, we applied a targeted approach for underpinning systems genetics of our phe-

notype of interest (FE). To improve the statistical and computational analysis, we reduced

genotype input space through linkage disequilibrium (LD) and loci variation filtering. Finally,

we tested the hypothesis that genes that were associated with SNPs identified as trans-eQTLs

would belong to pathways that could mediate such effects, including expression regulation and

DNA binding.

Material and methods

Sampling and sequencing

The pigs in this study were the intersection between the pigs genotyped in Banerjee et al. [31]

and Carmelo et al [32], resulting in a selection of 38 pigs. All data processing steps follow those

two studies, unless otherwise stated. Of the 38 male uncastrated pigs included in this study, 11

were purebred Danbred Duroc and 27 were purebred Danbred Landrace. The pigs were sent

to the commercial breeding station at Bøgildgård, which is owned by the pig research Centre

of the Danish Agriculture and Food Council (SEGES) at ~7kg of weight. The pigs were regu-

larly weighed, and feed intake was measured based on a single feeder setup in a test period

from ~28kg of weight until ~100kg. The period of measurement was determined by each pig’s

commercial viability and a final weight of 100kg. All pigs were fed the exact same diet as

reported in [33].

Genotype data and filtering

DNA isolation from collected blood and genotyping was performed by GeneSeek (Neogen

company - https://www.neogen.com/uk/). The Genotyping was based on the GGP Porcine

HD array (GeneSeek, Scotland, UK), which includes 68,516 SNPs on 18 autosomes and both

sex chromosomes. The SNPs were mapped to the Sus scrofa genome version 11.1 using the

NCBI Genome Remapping from the Sus scrofa genome version 10.2. This was done using

default settings. To insure that we had a sufficient representation of genotypes for each SNP,

we used a MAF (minor allele frequency) threshold of 0.3. This removes SNPs that would be

underpowered for the eQTL analysis and could not be related to expression changes due to
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lack of variation. It also had the advantage of reducing the overall testing space to a more con-

servatively sized set. This reduced the initial set of SNPs to a total of 27531. The next step per-

formed was to remove groups of SNPs in high LD. To do this, we used the LD_blocks function

from the WISH-R R package [34], which was applied with an R2 of 0.9. This grouped SNPs lin-

early across chromosomes into blocks based on a minimum pairwise R2 value of 0.9 between

all SNPs in a block. After this step, 19179 SNPs remained. The genotypes were coded as 0

(homozygote major), 1 (heterozygote) and 2 (homozygote minor) for the eQTL analysis.

Expression data, gene selection and filtering

Muscle tissue samples were extracted from the psoas major muscle immediately post slaughter,

and the samples were kept at -25 C in RNA later (Ambion, Austin, Texas). The data was

sequenced on the BGISEQ platform using the PE100 (pair end, 100bp length) with RNA

extraction and sequencing performed by BGI Genomics (https://www.bgi.com/global/). The

mean number of total reads was 64.5 million with standard deviation of 7.4 × 10. The mean

number of uniquely mapped reads was 95.3% with a standard deviation of 0.33%. All reference

genomes, gene annotation and analysis was based on Sus scrofa annotation version 11.1.96

from Ensembl. The reads were trimmed using Trimmomatic [35] version 0.39, with the default

setting for paired end reads. Data QC was performed pre- and post-trimming using FastQC

v0.11.9. Mapping was done with STAR aligner [36] version 2.7.1a adding the above mentioned

Sus Scrofa ensemble annotation for splice site reference. Beside default parameters, the—

quantMode GeneCounts setting was used for read quantification. The main interest was to

investigate genes that could be related to FCR. We therefore based the set of genes on the

methods in Carmelo et. al [32]. In brief, Differential Expression analysis (DEA) was performed

using three different DE methods (Limma, EdgeR, Deseq2) [37–39] with FCR as the pheno-

type of interest. We then calculated the divergence between our observed p-value distribution

for FCR and the uniform distribution for each method, enabling us to select a list of genes that

are related to FCR. This was motivated by the fact that we had a large overrepresentation of

low p-values in the DEA, meaning the distribution was anti-conservative. This resulted in a set

of 853 genes. As mitochondrial genes have been implicated in FE in muscle in both our previ-

ous study and in several studies in multiple species [13, 21, 22, 25–27], we also selected all

genes with a mitochondrial gene ontology (gene ontology id GO:0005739, N = 927) and

included them in the analysis. The union of first 853 genes and the mitochondrial genes

resulted in a set of 1772 genes. All genes were then filtered to have a minimum of 5 reads in at

least 11 samples, as 11 was the size of the Duroc group. Testing revealed that genes with a sin-

gle expression outlier could result in likely false positives. Therefore, all genes with a single

expression value with a Z-score above 3 were removed, corresponding to a single observation

with normalized expression further than 3 standard deviations from the mean. This resulted in

a final gene set of 1425 genes.

eQTL analysis

Calculation of eQTLs. All of the eQTL analysis was performed using R version 3.5.3.

Gene expression was normalized using the calcNormFactors from the R package edgeR version

3.34.3 using weighted trimmed mean of M-values as the normalization method [40]. We per-

formed eQTL analysis using the R package MatrixEQTL version 2.3[41], using R version 3.5.3.

eQTLs were tested between all possible pairs between our genes (n = 1425) and genotypes

(n = 19179). We added breed and batch effects as factors and RNA integrity values (RIN) and

age (days) as covariates in the model. There were 5 levels of batch effect, representing different

sampling days. Given that the samples were collected in slaughterhouse setting, it was
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necessary to include RIN in the model, but this should not be an issue if appropriately cor-

rected for [42]. Breed and age have an effect on expression, as seen in our previous study [32]

and thus must be accounted for. While the samples come from a selection of 28 different

breeders in Denmark, there still was some relationship between pigs, especially if they came

from the same breeder. Therefore, a kinship matrix based on 4 generations of pedigree was

added as the error covariance matrix instead of using the default identity matrix. The cis-dis-

tance was set to 106 bp. The analysis was done using both the modelANOVA (ANOVA) and

the modelLINEAR (linear) options for both cis and trans-eQTLs, thus applying both a factor

based model, and a linear model fit.

Statistical significance. To show the significance of the spike of low p-values we observed

in the eQTL analysis (Fig 2), we performed bootstrapping by shuffling the genotype values of

each SNP while maintaining the same expression values and covariates for each eQTL. This

was done 1000 times, each time doing the full analysis for both the linear and ANOVA models

with all possible genotype-gene pairs. We then calculated the number of random eQTLs with

p-value< 0.01 for each sampling for both the cis- and trans-eQTLs. Assuming the shuffled val-

ues were normally distributed, we calculated the probability of observing our empirical num-

ber of p-values < 0.01. We also saved the lowest, the 10th lowest and the 100th lowest observed

p-value for both trans and cis bootstrapped eQTLs for each iteration for comparison to the

empirical values. Based on the empirical p-value distribution and bootstrapping analysis, path-

way enrichment analysis was performed on the top putative eQTLs based on the results from

the trans-eQTL linear model. The trans linear model was chosen over the trans ANOVA as the

empirical p-value distribution for the ANOVA had an overweight of low and high p-values,

which means that we should avoid using the overall distribution of p-values for conclusions, as

there may have been issues with model assumptions. Thus, there was a risk of selecting models

which violated model assumptions. In the linear version, the p-values were nearly uniform

with a slight overweight of low p-values. This indicated a combination of non-significant

eQTLs, which have uniformly distributed p-values under the null hypothesis, and a subset of

true positives.

Mulitple testing correction was performed using FDR using the Benjamini-Hochberg

method [43].

Orthonormalization. To visualize the expression and genotype values on the scale used

by Matrix eQTL, we scaled and centered the design matrix of the covariates, the factors, the

expression and the genotypes. Without this procedure, visualization of the relation between

expression and genotype for a given eQTL would not be clear, as Matrix eQTL works and cal-

culate p-values from this transformed scale. We used the mlr.orthogonalize function from the

MatchLinReg package version 0.7.0 to orthogonilize the expression values and genotypes of

each relevant gene and SNP in relation to the covariates and factors, using normalize = True.

This procedure was done mimicking the method reported in the Matrix eQTL[41].

QTL regions and relation to FCR. To verify if our eQTLs were in known quantitative

trait loci (QTL) regions, we first defined a region of 100kb upstream and downstream of each

SNP as the SNP loci. The region size was conservatively defined based on reported haplotype

block sizes in commercial pigs [44]. We then checked if the SNP coordinate had any overlaps

with FCR quantitative trait loci (QTL) from the Pig QTL database[45]. We did the same proce-

dure with the genes associated with each eQTL, except we did not extend the region beyond

the gene boundaries.

Pathway analysis. We hypothesized that, if trans-eQTLs are not false positives, they

should be enriched for functional categories that could relevantly cause distal interactions, in

comparison to the background set of genes in the analysis. Therefore, to analyze the top trans-

eQTLs, we calculated the number of additional empirically observed low p-values under 0.01,
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by subtracting the expected number of p-values < 0.01 given a uniform p-value distribution,

from the observed number of p-values < 0.01. We then tested the enrichment of the genes in

the top eQTL group for the following gene categories/ontologies: transcription factors(TF)

(based on the AnimalTFDB 3.0 pig transcription factors [46]), DNA-binding (GO:0003677),

DNA-binding transcription factor activity (GO:0003700) nucleus gene (GO:0005634), positive

regulation of expression (GO:0010628), negative regulation of expression (GO:0010629) and

membrane gene (GO:0016020). Each category was selected based on a biological hypothesis,

with membrane gene serving as a control category. Membrane genes were selected as a control

as we did not expect membrane genes to have enrichment of trans eQTL mediating effects. All

GO terms were retrieved using biomart 2.42.0 with annotation from Sus scrofa 11.1. 96.

Results

eQTL analysis

To contextualize the eQTL analysis, it is important to understand the differences between the

breeds. The Durocs are more efficient than the Landrace pigs, and thus have lower FCR

(Fig 1). In eQTL analysis, the linear model was generally well behaved, with uniform p-values

and a small increase of low p-values (Fig 2a and 2c). In the ANOVA model, we observed a

spike of high p-values (Fig 2b and 2d), which may have been due to issues with model assump-

tions, but as we tested a large number of eQTLs, it was not practical to do model diagnostics

on each eQTL. This did not mean individual ANOVA based eQTLs could not be valid, but we

should be careful with drawing results based on the overall distribution. The cis-eQTLs had a

more uneven overall distribution (Fig 2a and 2b), but this was likely due to the lower amount

Fig 1. Distribution of FCR values in the two breeds. The Duroc pigs are generally more efficient, and thus have lower

FCR on average.

https://doi.org/10.1371/journal.pone.0239143.g001
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of tests combined with the histogram binning. At an FDR of 0.1, the only analysis that gave

any significant results was the ANOVA analysis, which yielded 13 significant trans-eQTLs. In

the trans linear analysis, due to the left skewing of the p-value distribution, all trans-eQTLs

with p-value < 0.01 (N = 301213) had an FDR value of 0.9 or lower. This means that it was

likely that we had true positive linear trans-eQTLs, we just lacked the power to identify them

individually. Given this, and the results from the bootstrapping analysis (see below), we elected

to present the top 10 eQTLs for each analysis, except for the ANOVA trans analysis, where we

selected all with FDR< 0.1 (Table 1). This resulted in a p-value limit of 1.64 × 10-7

(FDR = 0.45) for the linear trans, a limit of 5.5 × 10-5 (FDR = 0.77) for the ANOVA cis, and a

limit of 4.7 × 10-5 (FDR = 0.63) for the linear cis analysis. To further confirm the results, we

visualized the top 6 eQTLs in the linear trans model (Fig 3), ordered from the lowest p-value

(top left) to highest (bottom right). Given the low p-values reported (Table 1), the visualiza-

tion, did not seem to support the results, which should show a linear relationship between

expression and genotypes. The explanation is found in the way the Matrix eQTL implementa-

tion deals with the covariates and factors included in the analysis, or in our case, RIN, breed,

batch and age. In Matrix eQTL, all covariates, expression and genotypes are centered and

scaled, and the expression and genotype vectors are both orthogonized in relation to the covar-

iate/factor matrix. Only after this step is the linear relationship between expression and geno-

type calculated. This is clearly seen once the same results are presented on the

orthonormalized scale (Fig 4).

Bootstrapping

Bootstrapping is a useful tool when dealing with complex data, allowing us to get estimates of

the likelihood of our observations without explicit probability calculations. Here, we wanted to

show that our spike in low p-values in the linear analysis was statistically unlikely to happen by

chance. Based on the bootstrapping, the probability of our observed number of p-values below

0.01 was essentially 0 if we model the distribution of p-values< 0.01 using the normal distribu-

tion (Fig 5). To understand why we did not have more significant results post-FDR, we com-

pared the 1st, 10th and 100th p-values in our bootstrapped data with our empirical data

(Table 2). The real data was more left skewed as we go down in in p-value rank. This indicated

Fig 2. Histograms of the p-value distributions. Histograms of the p-value distributions of all cis (a,b) and trans(c,d)

eQTL pairs in the linear(a,c) and ANOVA(b,d) models. Based on the overall distribution, we see a slight anti-

conservative trend in the linear p-values in both cis and trans-eQTLs.

https://doi.org/10.1371/journal.pone.0239143.g002
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Table 1. Overview over the top cis and trans-eQTLs in all 4 four sub-analyses.

SNP name Gene name P-value FDR Chr Position Analysis

ASGA0047927 SLC20A2 7.25e-12 0.00020 10 44192068 ANOVA trans

H3GA0030144 SLC20A2 2.78e-11 0.00032 10 43919876 ANOVA trans

H3GA0030143 SLC20A2 4.40e-11 0.00032 10 43861540 ANOVA trans

ALGA0058821 SLC20A2 4.74e-11 0.00032 10 43913127 ANOVA trans

ALGA0043655 CSRNP1 2.07e-08 0.080 7 91867077 ANOVA trans

WU_10.2_15_121814208 CSRNP1 2.50e-08 0.080 15 110258817 ANOVA trans

M1GA0000775 CSRNP1 2.61e-08 0.080 1 13988391 ANOVA trans

ALGA0022682 KLF4 2.67e-08 0.080 4 7252911 ANOVA trans

ALGA0048662 ACLS1 2.99e-08 0.080 8 91823303 ANOVA trans

ALGA0067527 WDR81 3.520e-08 0.080 13 3403128 ANOVA trans

CASI0010058 ACLS1 3.54e-08 0.080 8 89930889 ANOVA trans

ASGA0089323 ACLS1 3.54e-08 0.080 8 89959199 ANOVA trans

ALGA00181601 INTS7 4.88e-08 0.010 3 27307613 ANOVA trans

ALGA00181601 INTS7 5.61e-09 0.15 3 27307613 Linear trans

MARC00815811 INTS7 3.25e-08 0.31 3 27346598 Linear trans

ALGA00152292 ACOX3 3.39e-08 0.31 2 116633408 Linear trans

ALGA00562992 PARK71 5.21e-08 0.36 10 1400269 Linear trans

ASGA00916382 CPT1B 8.19e-08 0.38 4 626787 Linear trans

WU_10.2_12_3964486 MFF1 8.38e-08 0.38 12 4217210 Linear trans

ALGA01156692,3 PARK71 9.79e-08 0.38 10 1187360 Linear trans

DRGA00157091 COMTD1 1.22e-07 0.42 16 2090820 Linear trans

ALGA00879011 NSUN2 1.63e-07 0.45 15 129751572 Linear trans

WU_10.2_7_740616 Glycine N-phenylacetyltransferase 1.64e-07 0.45 7 618465 Linear trans

INRA00157081 TBX3 0.00013 0.00013 14 37161034 ANOVA cis

WU_10.2_15_134661069 MY19 0.00015 0.77 12 38196853 ANOVA cis

WU_10.2_6_27531636 SYNPO2 0.00027 0.77 8 104924079 ANOVA cis

MARC0009689 IER5L 0.00030 0.77 1 268604956 ANOVA cis

WU_10.2_15_150992806 CRYM 0.00040 0.77 3 24920076 ANOVA cis

MARC0112128 CPT1A 0.00040 0.77 2 4531357 ANOVA cis

WU_10.2_15_91334711 ANKRD54 0.00050 0.77 5 10644697 ANOVA cis

WU_10.2_2_4374745 ANKRD54 0.00050 0.77 5 10687503 ANOVA cis

ALGA00198081 RABPEK 0.00055 0.77 1 264970392 ANOVA cis

WU_10.2_3_18580686 SUCLA 0.00056 0.77 11 20630808 ANOVA cis

ASGA0054417 MYO19 0.00018 0.63 12 38196853 Linear cis

WU_10.2_X_128169493 RBMX 0.00018 0.63 X 112221790 Linear cis

WU_10.2_12_39624033 MYO19 0.00026 0.63 12 37981199 Linear cis

WU_10.2_3_183721 C7orf50 0.00031 0.63 3 335933 Linear cis

ALGA01088961 CRYM 0.00035 0.63 3 24920076 Linear cis

ALGA0061099 MRPS31 0.00035 0.63 11 16202962 Linear cis

ALGA0061107 MRPS31 0.00035 0.63 11 16236530 Linear cis

ASGA0030240 NSUN4 0.00042 0.63 6 165835717 Linear cis

WU_10.2_14_153092095 ECHS1 0.00047 0.63 14 141129811 Linear cis

WU_10.2_14_153836231 ECHS1 0.00047 0.63 14 141357898 Linear cis

1Genes or SNPs in known FCR QTL regions.
2SNPs with p-value < 0.05 for linear association with FCR
3 SNPs found in top FCR modules from a previous study in the same pigs [47].

https://doi.org/10.1371/journal.pone.0239143.t001
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Fig 3. Top linear trans eQTLs. Boxplot of the top 6 trans-eQTLs from linear analysis. Comparing with the summary

from Table 1, it seemed unexpected that the top left boxplot was the most significant eQTL. Overall, the 3rd and the 6th

ranked eQTLs look visually more significant. This was because the genotypes and expression values were not corrected

in relation to the model covariated and factors.

https://doi.org/10.1371/journal.pone.0239143.g003

Fig 4. Orthonormalized expression and genotypes of top eQTLs. Scatter-plot of the orthonormalized expression and genotype values for the top 6

trans-eQTLs in the linear analysis. The linear relationship is quite clear on the transformed values, in comparison to the boxplots of the untransformed

values.

https://doi.org/10.1371/journal.pone.0239143.g004
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Fig 5. Distribution of bootstrapped low p-value counts. Histograms of the number of p-values below 0.01 in our 100 bootstrapped linear trans

and cis-eQTLs analysis. The red dotted line represents the observed values. The likelihood of observing such extreme values by chance is

essentially 0 in both cases, if we model the likelihood based of the normal distribution.

https://doi.org/10.1371/journal.pone.0239143.g005

Table 2. Summary of comparison of empirical and bootstrapped data.

Model Min P-value 10th P-value 100th P-value

ANOVA Cis 0.967 0.864 0.019

ANOVA Trans 0 0 0

Linear Cis 0.993 0.884 0

Linear Trans 0.184 0.028 0.014

Probability of observing a lower p-value than the lowest, 10th lowest p-value and 100th lowest p-values in our

bootstrapping. In general, in relation to our random eQTLs, the empirical data was in the lower end of the

bootstrapping, except in the linear cis analysis. It is interesting to note that by the 100th p-value all the analysis

outperform random data. This indicated that we did have true, but weak effects.

https://doi.org/10.1371/journal.pone.0239143.t002
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that the real data had lower bound on significance, but the overall results were not achievable

by chance.

Pathway enrichment analysis

As our genes were pre-selected, there was no a-priori reason to perform enrichment analysis.

More exactly, there was no particular meaning in finding that the cis-eQTLs were enriched for

some pathway. The cis-eQTLs are simply tests of correlation between local genomic context

and expression, and significance denotes the identification of possible genetic expression regu-

latory mechanisms, so groups of cis-eQTLs do not have common underlying pathways. In

contrast, for the trans-QTL, there are meaningful hypothesis one could state about pathways

of genes affected by trans-eQTLs. Why would a gene have significant association to a distal

genetic element? Previous studies have looked at the local context of trans-eQTLs [28, 29],

however, we were not able to find any overrepresentation of our pathways in our local genes of

top trans eQTLs data (S1 Table). Instead, we hypothesized that genes that interact with geno-

mic context and/or regulate expression would be enriched in the low p-value group in compar-

ison to the overall genes used in the trans eQTL analysis. We included genes that directly

interact with genomic context, such as DNA binding genes, and regulatory genes, such as tran-

scription factors and positive or negative expression regulators. To test our hypothesis, we

selected the top 28147 SNP-gene pairs from our linear trans-eQTL analysis, which had a maxi-

mum overall FDR of 0.84. While it is clear that not all of these are significant, given the FDR

values, there should be thousands of true positives in this set. In this top set of 28147 eQTLs,

1401 out of 1425 genes initially included in the analysis were involved in at least one eQTL,

with the median number of eQTLs for each gene being 11 with a standard deviation of 53.

This set represented our observed surplus of low p-values found when comparing with a uni-

form p-value distribution for eQTLs with a p-value < 0.01, motivated by our results from the

bootstrapping (Fig 5). Traditionally, one might test our hypothesis using a pathway enrich-

ment tool, but given that the eQTL data had a special structure, including repeated entries of

the same genes from a smaller background set and a large overall number of input genes, it

was not suiTable for typical methods. Instead, we used a more targeted approach, selecting

specific categories we believed tested our hypothesis. The results from the enrichment, using

the exact Fisher test, showed highly significant enrichment for DNA binding genes, transcrip-

tion factors and DNA binding transcription factor activity (Table 3). All these categories fit

our hypothesis, as they engage directly with distal genomic context. We also tested for nucleus

genes, as we expected genes that are active in the nucleus to be more likely to interact with

genomic context. Furthermore, we tested for general expression regulation, with the positive

and negative expression regulation categories. Intriguingly, positive regulation was slightly

depleted or unchanged, while negative expression regulation was the most enriched category.

Finally, we included membrane genes as a control category that includes a large number of

genes, as we did not believe they had a reason to be enriched, as membrane genes should pri-

marily be active in the membrane, and not mediating expression in the nucleus. In comparison

to the set of genes we used in the eQTL analysis, we did not find enrichment in the membrane

genes. As a control of the enrichment, we also compared with all expressed genes in our sam-

ples, beyond our selected eQTL analysis set. This aids in the interpretation, and acts as a safe-

guard, as if there was high divergence in the two comparisons the results might just be an

artefact of our methodology. We see similar results comparing with all expressed genes, and

due to the large number of genes in both the expressed set and the trans-eQTLs, we get very

significant p-values. When comparing to the expressed gene-set, we do see slight enrichment

for membrane genes. It should be noted that the baseline ratio between our test set and
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expressed set for membrane genes is already slightly enriched, at 1.05 (see S2 Table), and small

effect sizes are significant with the large number of genes included from the trans eQTL genes

and the expressed set of genes.

Discussion

In this study, we applied Matrix eQTL to a set of genes previously identified as having potential

relations to FCR. We presented the top results of both cis and trans-eQTLs based on a linear

association and a factor based analysis (ANOVA). There have been several muscle eQTL studies

in pig before [9, 12, 24, 48–52]. However, direct comparison of our results to previous studies is

not straight forward, for several reasons. None of the other studies were applied to FCR, and as

the genes and SNPs selected in each study were generally selected based on the phenotype of

interest, this limits the overlap. Furthermore, due to the statistical challenges, many divergent

strategies were employed, for example using a pre-GWAS[49], picking a limited set of pathway

specific genes [12] or using a limited set of microsatellites[52]. Some studies included heritabil-

ity analysis as a filter [9],but this may be a flawed strategy as it has been shown that this might

filter out potential eQTLs, especially as trans-eQTLs show low overall heritability [24]. The stud-

ies above include both crossed, purebred and F2 half-sib pig populations, in contrast to the two-

breed model applied here. Given all these factors, and the novelty of FCR in an eQTL context,

we could not compare our study very specifically to others, and one should thus view our study

as a pilot study for FCR eQTLs. When comparing with our own previous study of genetic net-

works in the same population [47], we found that two of our top eQTL snps from the trans lin-

ear model and ANOVA trans model, ALGA0115669, was also found in a SNP module highly

correlated to FCR. Interestingly, ALGA0115669 has a p-value< 0.05 for linear relationship to

FCR, and its associated linear trans eQTL gene, PARK7, is located in a known FCR QTL region.

We included two pure breeds in the analysis, Duroc and Landrace, which is an unusual

choice when reviewing the literature presented above. Many studies published have inbred

lines, but it has been suggested that it would be advantageous to do eQTL analysis on a natural

genetically varying population [30], such as two separate breeds. For the input SNPs, we made

several choices for maximizing the number of relevant SNPs to include. First, we selected a

quite high cutoff of 0.3 MAF. This allowed us to have high enough variation at each included

Table 3. Pathway enrichment results.

Category N Genes Fold Enrichment compared to

Background

P-value Fold Enrichment compared to

expressed genes

P-value

Transcription Factor (Pig TF database) 3145 2.27 1.0x10-13 1.40 <2.2x10-

16

DNA binding (GO:0003677) 3394 2.20 8.9x10-14 1.73 <2.2x10-

16

DNA-binding transcription factor activity

(GO:0003700)

2721 3.36 <2.2x10-

16
2.36 <2.2x10-

16

Positive regulation of expression (GO:0010628) 346 0.67 0.07 0.67 8.9x10-6

Negative regulation of expression

(GO:0010629)

1887 4.34 <2.2x10-

16
5.39 <2.2x10-

16

Nucleus gene (GO:0005634) 8811 1.33 2.4x10-6 1.18 1.8x10-12

Membrane gene (GO:0016020) 7707 1.06 0.30 1.15 1.8x10-8

Enrichment analysis based on the linear trans eQTLs with p-value < 0.01, based on the Fisher exact test. N genes denotes the number of eQTLs which matched each

category from the top linear trans eQTL set (total N = 28147). The enrichment calculated comparing with the original input set of 1425 genes (column 4 and 5), and to

the set of expressed genes (N = 13202) in our muscle samples for additional comparison column (5 and 6).

https://doi.org/10.1371/journal.pone.0239143.t003
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SNP to fit the eQTL models, given our low sample size. It has also been shown, that in chip-

based data such as ours, the overall structure in the data is robust to different MAF cutoffs

[53], thus this should not impart any biases into the results. Finally, we grouped SNPs in high

LD (R2 >0.9) into blocks and used tagging variants to represent blocks. This allowed us to

reduce the space further, removing redundant genetic information, thus relaxing our multiple

testing thresholds. We chose a concervative cis-eQTL distance of 1Mb, which is on the lower

end for pig studies [24]. Given our relatively low samples size we wanted to keep the cis analy-

sis as conservative as possible.

In the individual eQTLs results, one should be careful with over interpreting, but instead

view the eQTLs as candidates for further study. Based on a qualitative analysis, we did find sev-

eral interesting genes among the top eQTL candidates. We identified two genes associated to

meat quality in previous pigs studies, namely SLC20A2 (Solute Carrier Family 20 Member 1)

in Durocs [54] and INTS7 (Integrator Complex Subunit 7) in Chinese pigs [55].

Two genes were identified to be related to response to feed intake: CSRNP1 (Cysteine And

Serine Rich Nuclear Protein 1) was found to be a metabolic response gene in relation to feed

intake in Durocs [56]; and CPT1A (carnitine O-palmitoyltransferase I) was differentially

expressed depending on diet in pigs [57]. CPT1A was also related to reproduction traits [58],

with the IER5L (Immediate Early Response 5 Like) and Tbx3 (T-box 3) being related to teat

number and mammary glands development, respectively [59] [60]. These last three genes are

interesting as only the less efficient pigs, the Landarace pigs, were selected for traits related to

reproduction and caring of piglets.

Several genes were related to fat and fat metabolism. The ACOX3 (acyl-CoA oxidase 2)

gene, a fatty acid metabolism gene, had previous cis-eQTLs identified associated with it [12].

CPT1B (arnitine palmitoyl transferase 1B), was differentially expressed in large whites versus

an indigenous high-fat breed [61]. This last one is interesting as both CPT1B and CPT1A show

up in our analysis. ACSL1 (Acyl coenzyme A long-chain 1 synthetase), which is a key gene for

animal fat synthesis and fatty acid beta-oxidation, has been found to be differentially expressed

in multiple tissues, including muscle, between different pigs breeds[62]. The same study also

identified genetic variants with breed specific allele frequencies in the ACLS1 flanking region,

concluding that ACLS1 might be important for breed specific fat deposition and meat quality.

Finally the KLF4 gene (Krüppel-like factor 4) is an essential regulator of adipogenesis [63].

Beyond the small gene categories from above, we also found several other interesting genes.

The PARK7 gene, a gene that codes for a protein that protects from oxidative stress[64], does

not appear in a pig related context in the literature, but it is found in a known FCR QTL

region, and its eQTL SNP was found in a module highly correlated to FE in our previous work

[47]. MFF was similarly found in a known FCR QTL region. Myosin XIX (MYO19) was a can-

didate gene for eating behavior traits due to a nearby significant SNP in the same Duroc popu-

lation our pigs come from [65]. The Uncharacterized Protein C7orf50 had a previous cis-

eQTLs identified in a behavioral context in humans[66]. The SYNPO2 (Synaptopodin 2) gene

has previously been found to be differentially expressed between Yorkshire and Wannanhua

pigs in muscle [67]. The SUCLA2 (Succinate-CoA Ligase ADP-Forming Subunit Beta) gene

has polymorphisms which have been associated with growth in pigs [68].

While the above-mentioned genes might seem like a mixed group of results, the main take-

away was that each of the genes mentioned above had appeared in previous contexts that dem-

onstrated breed variation, genetic regulation and association with traits under selection in

production pigs, thus giving qualitative evidence that increases the likelihood of the eQTLs

being true positives.

The final and perhaps most interesting result in our analysis stemmed from the enrichment

analysis in the linear trans-eQTL analysis. We initially hypothesized that we would find
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enrichment for genes that interact with genomic context and expression regulating genes. The

findings, and their significance level, showed a strong overrepresentation of DNA-binding

genes, DNA-binding with transcription factor activity genes and transcription factors. These

results have a quite straightforward interpretation—genes that interact on a genomic level had

a higher chance of having trans-eQTL activity. This could be mediated through direct interac-

tions, or through indirect effects, such as transcription factors acting on each other, thus medi-

ating their own genetic effect to other genes. The more intriguing result is the contrast

between negative and positive gene regulation. It is possible that a gene regulation mechanism

correlated to trans-eQTLs explains why we have such a high enrichment of negative regula-

tion, but given our sample size and study power, it is difficult to assess individual genes, and

thus properly grasp specific interpretation of these results. One possible cause of the negative

gene regulation enrichment could be the activation of apoptotic pathways in the cells post

mortem, as apoptotic processes are observed in muscle cells post-mortem [69]. The pathway

results were highly statistically significant, indicating that these effects should be observable in

other eQTL studies. In general, given the complexity of gene expression regulation, further

study is needed before we have a proper understanding of the contrast between negative and

positive expression, and the rest of the enrichment results. Based on our analysis, we propose

that these enrichments could be general patterns of trans eQTLs due to the implications of

long distance expression mediation effects. Pathway information of putatitive eQTLs could

guide us in the validation of true trans-eQTLs. Essentially, identification of such biologically

relevant effects can be used as an extra layer of evidence for true positive trans-eQTLs. If we

view these results in an animal breeding and selection context, it shows that there may be a

merit to weight the importance of genetic variation based on the gene and pathway context,

and weighted methods have been shown to improve the accuracy of breeding value estimates

[70, 71].

Conclusion

FE is a challenging phenotype to study, as it is complex and affected by many factors, such as

metabolism, growth and activity level. Furthermore, testing for FE is expensive, as it requires

costly equipment to measure feed intake of individual animals, making FE biomarkers valu-

able. The analysis of eQTLs is a statistically challenging but powerful method for the functional

analysis of genetic variation. Our final eQTL analyses involved a total of 1 2.7x107 Gene-SNP

combinations. The 1425 genes were selected from the results of RNA-Seq based differential

gene expression analyses using 25880 genes related to FE and genes related to mitochondrial

activity and the 19179 SNPs were from GGP Porcine HD 70k SNP array. We used 1000-fold

bootstrapping and gene set enrichment analysis to further validate and analyze our detected

eQTLs. By using pigs from two breeds with different selection goals, and these analytical

approaches, we were able to identify putative cis and trans-eQTLs (N = 13, FDR<0.1). Qualita-

tive analysis revealed several eQTLs genes associated to traits and pathways highly relevant for

pig breeding and variation in pigs. We identified highly significant enrichment of regulatory

and DNA binding genes in trans-eQTLs. This result provided a strong evidence for the validity

of our trans-eQTLs, and evidence for a general hypothesis of the nature of trans-eQTLs.
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12. González-Prendes R., Quintanilla R., and Amills M., Investigating the genetic regulation of the expres-

sion of 63 lipid metabolism genes in the pig skeletal muscle. Animal Genetics, 2017. 48(5): p. 606–610.

https://doi.org/10.1111/age.12586 PMID: 28737243

13. Jing L., et al., Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important

network for differential Residual Feed Intake in pigs. Scientific Reports, 2015. 5.

14. Gilbert H., et al., Review: divergent selection for residual feed intake in the growing pig. Animal, 2017.

11(9): p. 1427–1439. https://doi.org/10.1017/S175173111600286X PMID: 28118862

15. Koch R.M., Swiger L. A., Chambers D. J. & Gregory K. E, Efficiency of feed use in beef cattle. Journal of

Animal Science, 1963. 22(2): p. 486–494.

16. Ding R., et al., Genetic Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population.

Front Genet, 2018. 9: p. 220. https://doi.org/10.3389/fgene.2018.00220 PMID: 29971093

17. Morales P.E., Bucarey J.L., and Espinosa A., Muscle Lipid Metabolism: Role of Lipid Droplets and Peri-

lipins. Journal of Diabetes Research, 2017. 2017: p. 10.

18. Pedersen B.K., Muscle as a Secretory Organ, in Comprehensive Physiology. 2013. p. 1337–1362.

https://doi.org/10.1002/cphy.c120033 PMID: 23897689

19. Turner N., et al., Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocri-

nol, 2014. 220(2): p. T61–79. https://doi.org/10.1530/JOE-13-0397 PMID: 24323910

20. Horodyska J., et al., RNA-seq of muscle from pigs divergent in feed efficiency and product quality identi-

fies differences in immune response, growth, and macronutrient and connective tissue metabolism.

BMC Genomics, 2018. 19(1): p. 791. https://doi.org/10.1186/s12864-018-5175-y PMID: 30384851

21. Gondret F., et al., A transcriptome multi-tissue analysis identifies biological pathways and genes associ-

ated with variations in feed efficiency of growing pigs. BMC Genomics, 2017. 18(1): p. 244. https://doi.

org/10.1186/s12864-017-3639-0 PMID: 28327084

22. Vincent A., et al., Divergent selection for residual feed intake affects the transcriptomic and proteomic

profiles of pig skeletal muscle. J Anim Sci, 2015. 93(6): p. 2745–58. https://doi.org/10.2527/jas.2015-

8928 PMID: 26115262

23. Ponsuksili S., et al., Discovery of candidate genes for muscle traits based on GWAS supported by

eQTL-analysis. Int J Biol Sci, 2014. 10(3): p. 327–37. https://doi.org/10.7150/ijbs.8134 PMID:

24643240

24. Velez-Irizarry D., et al., Genetic control of longissimus dorsi muscle gene expression variation and joint

analysis with phenotypic quantitative trait loci in pigs. BMC Genomics, 2019. 20(1): p. 3. https://doi.org/

10.1186/s12864-018-5386-2 PMID: 30606113

25. Connor E.E., et al., Enhanced mitochondrial complex gene function and reduced liver size may mediate

improved feed efficiency of beef cattle during compensatory growth. Functional & Integrative Genomics,

2010. 10(1): p. 39–51.

26. Bottje W.G., et al., Proteogenomics Reveals Enriched Ribosome Assembly and Protein Translation in

Pectoralis major of High Feed Efficiency Pedigree Broiler Males. Front Physiol, 2017. 8: p. 306. https://

doi.org/10.3389/fphys.2017.00306 PMID: 28559853

27. Eya J.C., Ashame M.F., and Pomeroy C.F., Association of mitochondrial function with feed efficiency in

rainbow trout: Diets and family effects. Aquaculture, 2011. 321(1): p. 71–84.

28. Bryois J., et al., Cis and trans effects of human genomic variants on gene expression. PLoS genetics,

2014. 10(7): p. e1004461–e1004461. https://doi.org/10.1371/journal.pgen.1004461 PMID: 25010687

29. Bonder M.J., et al., Disease variants alter transcription factor levels and methylation of their binding

sites. Nature Genetics, 2017. 49(1): p. 131–138. https://doi.org/10.1038/ng.3721 PMID: 27918535

30. Gilad Y., Rifkin S.A., and Pritchard J.K., Revealing the architecture of gene regulation: the promise of

eQTL studies. Trends Genet, 2008. 24(8): p. 408–15. https://doi.org/10.1016/j.tig.2008.06.001 PMID:

18597885

31. Banerjee P., Carmelo V.A.O., and Kadarmideen H.N., Genome-Wide Epistatic Interaction Networks

Affecting Feed Efficiency in Duroc and Landrace Pigs. Frontiers in Genetics, 2020. 11(121).

32. Carmelo V.A.O. and Kadarmideen H.N., Genome regulation and gene interaction networks inferred

from muscle transcriptome underlying feed efficiency in Pigs. bioRxiv, 2020: p. 2020.03.20.998203.

33. Carmelo V.A.O., et al., Metabolomic networks and pathways associated with feed efficiency and

related-traits in Duroc and Landrace pigs. Scientific Reports, 2020. 10(1): p. 255. https://doi.org/10.

1038/s41598-019-57182-4 PMID: 31937890

PLOS ONE Genetic variation in muscle expression and trans-eQTLs pathways in feed efficiency from Danish breeding pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0239143 September 17, 2020 16 / 18

https://doi.org/10.1039/c0mb00190b
https://doi.org/10.1039/c0mb00190b
http://www.ncbi.nlm.nih.gov/pubmed/21072409
https://doi.org/10.1111/age.12586
http://www.ncbi.nlm.nih.gov/pubmed/28737243
https://doi.org/10.1017/S175173111600286X
http://www.ncbi.nlm.nih.gov/pubmed/28118862
https://doi.org/10.3389/fgene.2018.00220
http://www.ncbi.nlm.nih.gov/pubmed/29971093
https://doi.org/10.1002/cphy.c120033
http://www.ncbi.nlm.nih.gov/pubmed/23897689
https://doi.org/10.1530/JOE-13-0397
http://www.ncbi.nlm.nih.gov/pubmed/24323910
https://doi.org/10.1186/s12864-018-5175-y
http://www.ncbi.nlm.nih.gov/pubmed/30384851
https://doi.org/10.1186/s12864-017-3639-0
https://doi.org/10.1186/s12864-017-3639-0
http://www.ncbi.nlm.nih.gov/pubmed/28327084
https://doi.org/10.2527/jas.2015-8928
https://doi.org/10.2527/jas.2015-8928
http://www.ncbi.nlm.nih.gov/pubmed/26115262
https://doi.org/10.7150/ijbs.8134
http://www.ncbi.nlm.nih.gov/pubmed/24643240
https://doi.org/10.1186/s12864-018-5386-2
https://doi.org/10.1186/s12864-018-5386-2
http://www.ncbi.nlm.nih.gov/pubmed/30606113
https://doi.org/10.3389/fphys.2017.00306
https://doi.org/10.3389/fphys.2017.00306
http://www.ncbi.nlm.nih.gov/pubmed/28559853
https://doi.org/10.1371/journal.pgen.1004461
http://www.ncbi.nlm.nih.gov/pubmed/25010687
https://doi.org/10.1038/ng.3721
http://www.ncbi.nlm.nih.gov/pubmed/27918535
https://doi.org/10.1016/j.tig.2008.06.001
http://www.ncbi.nlm.nih.gov/pubmed/18597885
https://doi.org/10.1038/s41598-019-57182-4
https://doi.org/10.1038/s41598-019-57182-4
http://www.ncbi.nlm.nih.gov/pubmed/31937890
https://doi.org/10.1371/journal.pone.0239143


34. Carmelo V.A.O., et al., WISH-R–a fast and efficient tool for construction of epistatic networks for com-

plex traits and diseases. BMC Bioinformatics, 2018. 19(1): p. 277. https://doi.org/10.1186/s12859-018-

2291-2 PMID: 30064383

35. Bolger A.M., Lohse M., and Usadel B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bio-

informatics, 2014. 30(15): p. 2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

36. Dobin A., et al., STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013. 29(1): p. 15–21.

https://doi.org/10.1093/bioinformatics/bts635 PMID: 23104886

37. Ritchie M.E., et al., limma powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Res, 2015. 43(7): p. e47. https://doi.org/10.1093/nar/gkv007 PMID: 25605792

38. Robinson M.D., McCarthy D.J., and Smyth G.K., edgeR: a Bioconductor package for differential expres-

sion analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139–40. https://doi.org/10.

1093/bioinformatics/btp616 PMID: 19910308

39. Love M.I., Huber W., and Anders S., Moderated estimation of fold change and dispersion for RNA-seq

data with DESeq2. Genome Biol, 2014. 15(12): p. 550. https://doi.org/10.1186/s13059-014-0550-8

PMID: 25516281

40. Robinson M.D. and Oshlack A., A scaling normalization method for differential expression analysis of

RNA-seq data. Genome Biol, 2010. 11(3): p. R25. https://doi.org/10.1186/gb-2010-11-3-r25 PMID:

20196867

41. Shabalin A.A., Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics, 2012.

28(10): p. 1353–8. https://doi.org/10.1093/bioinformatics/bts163 PMID: 22492648

42. Gallego Romero I., et al., RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol,

2014. 12: p. 42. https://doi.org/10.1186/1741-7007-12-42 PMID: 24885439

43. Benjamini Y. and Hochberg Y., Controlling the False Discovery Rate: A Practical and Powerful

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 1995.

57(1): p. 289–300.

44. Veroneze R., et al., Linkage disequilibrium and haplotype block structure in six commercial pig lines.

Journal of Animal Science, 2013. 91(8): p. 3493–3501. https://doi.org/10.2527/jas.2012-6052 PMID:

23736062

45. Hu Z.-L., Park C.A., and Reecy J.M., Building a livestock genetic and genomic information knowledge-

base through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Research, 2018.

47(D1): p. D701–D710.

46. Hu H., et al., AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal tran-

scription factors. Nucleic Acids Research, 2018. 47(D1): p. D33–D38.

47. Priyanka Banerjee V.A.O.C., Haja N. Kadarmideen, Genome-wide epistatic interaction networks affect-

ing feed efficiency in Duroc and Landrace pigs. Front. Genet, 2020.

48. Ponsuksili S., et al., Discovery of candidate genes for muscle traits based on GWAS supported by

eQTL-analysis. International journal of biological sciences, 2014. 10(3): p. 327–337. https://doi.org/10.

7150/ijbs.8134 PMID: 24643240

49. Steibel J.P., et al., Genome-wide linkage analysis of global gene expression in loin muscle tissue identi-

fies candidate genes in pigs. PloS one, 2011. 6(2): p. e16766–e16766. https://doi.org/10.1371/journal.

pone.0016766 PMID: 21346809

50. Chen C., et al., A genome-wide investigation of expression characteristics of natural antisense tran-

scripts in liver and muscle samples of pigs. PloS one, 2012. 7(12): p. e52433–e52433. https://doi.org/

10.1371/journal.pone.0052433 PMID: 23285040

51. Perry K.R., et al., P3030 Identification of expression quantitative trait loci for longissimus muscle micro-

rna expression profiles in the Michigan State University Duroc × Pietrain pig resource population. Jour-

nal of Animal Science, 2016. 94(suppl_4): p. 67–67.

52. Canovas A., et al., Segregation of regulatory polymorphisms with effects on the gluteus medius tran-

scriptome in a purebred pig population. PLoS One, 2012. 7(4): p. e35583. https://doi.org/10.1371/

journal.pone.0035583 PMID: 22545120

53. Linck E. and Battey C.J., Minor allele frequency thresholds strongly affect population structure inference

with genomic data sets. Molecular Ecology Resources, 2019. 19(3): p. 639–647. https://doi.org/10.

1111/1755-0998.12995 PMID: 30659755

54. Lee T., et al., Genome-wide Association Study of Integrated Meat Quality-related Traits of the Duroc

Pig Breed. Asian-Australasian journal of animal sciences, 2014. 27(3): p. 303–309. https://doi.org/10.

5713/ajas.2013.13385 PMID: 25049955

55. Liu X., et al., Genome-wide association analyses for meat quality traits in Chinese Erhualian pigs and a

Western Duroc × (Landrace × Yorkshire) commercial population. Genetics Selection Evolution, 2015.

47(1): p. 44.

PLOS ONE Genetic variation in muscle expression and trans-eQTLs pathways in feed efficiency from Danish breeding pigs

PLOS ONE | https://doi.org/10.1371/journal.pone.0239143 September 17, 2020 17 / 18

https://doi.org/10.1186/s12859-018-2291-2
https://doi.org/10.1186/s12859-018-2291-2
http://www.ncbi.nlm.nih.gov/pubmed/30064383
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
http://www.ncbi.nlm.nih.gov/pubmed/19910308
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1186/gb-2010-11-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/20196867
https://doi.org/10.1093/bioinformatics/bts163
http://www.ncbi.nlm.nih.gov/pubmed/22492648
https://doi.org/10.1186/1741-7007-12-42
http://www.ncbi.nlm.nih.gov/pubmed/24885439
https://doi.org/10.2527/jas.2012-6052
http://www.ncbi.nlm.nih.gov/pubmed/23736062
https://doi.org/10.7150/ijbs.8134
https://doi.org/10.7150/ijbs.8134
http://www.ncbi.nlm.nih.gov/pubmed/24643240
https://doi.org/10.1371/journal.pone.0016766
https://doi.org/10.1371/journal.pone.0016766
http://www.ncbi.nlm.nih.gov/pubmed/21346809
https://doi.org/10.1371/journal.pone.0052433
https://doi.org/10.1371/journal.pone.0052433
http://www.ncbi.nlm.nih.gov/pubmed/23285040
https://doi.org/10.1371/journal.pone.0035583
https://doi.org/10.1371/journal.pone.0035583
http://www.ncbi.nlm.nih.gov/pubmed/22545120
https://doi.org/10.1111/1755-0998.12995
https://doi.org/10.1111/1755-0998.12995
http://www.ncbi.nlm.nih.gov/pubmed/30659755
https://doi.org/10.5713/ajas.2013.13385
https://doi.org/10.5713/ajas.2013.13385
http://www.ncbi.nlm.nih.gov/pubmed/25049955
https://doi.org/10.1371/journal.pone.0239143


56. Cardoso T.F., et al., Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle.

BMC Genomics, 2017. 18(1): p. 603. https://doi.org/10.1186/s12864-017-3986-x PMID: 28797239

57. Jégou M., et al., Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response

to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PloS one, 2016. 11(1): p.

e0146550–e0146550. https://doi.org/10.1371/journal.pone.0146550 PMID: 26752050

58. Sironen A.I., et al., Effect of polymorphisms in candidate genes on reproduction traits in Finnish pig pop-

ulations1. Journal of Animal Science, 2010. 88(3): p. 821–827. https://doi.org/10.2527/jas.2009-2426

PMID: 19933427

59. Xu R.-X., et al., Association of Novel Polymorphisms in Lymphoid Enhancer Binding Factor 1 (LEF-1)

Gene with Number of Teats in Different Breeds of Pig. Asian-Australasian journal of animal sciences,

2014. 27(9): p. 1254–1262. https://doi.org/10.5713/ajas.2013.13772 PMID: 25178368

60. Verardo L.L., et al., Bayesian GWAS and network analysis revealed new candidate genes for number

of teats in pigs. Journal of Applied Genetics, 2015. 56(1): p. 123–132. https://doi.org/10.1007/s13353-

014-0240-y PMID: 25104247

61. Gao Y., et al., Detection of differentially expressed genes in the longissimus dorsi of Northeastern Indig-

enous and Large White pigs. Genet Mol Res, 2011. 10(2): p. 779–91. https://doi.org/10.4238/vol10-

2gmr1170 PMID: 21563072

62. Li Q., et al., Expression and genome polymorphism of ACSL1 gene in different pig breeds. Molecular

Biology Reports, 2012. 39(9): p. 8787–8792. https://doi.org/10.1007/s11033-012-1741-6 PMID:

22714915

63. Birsoy K., Chen Z., and Friedman J., Transcriptional Regulation of Adipogenesis by KLF4. Cell Metabo-

lism, 2008. 7(4): p. 339–347. https://doi.org/10.1016/j.cmet.2008.02.001 PMID: 18396140

64. Zhang Y., et al., Elevated expression of DJ-1 (encoded by the human PARK7 gene) protects neuronal

cells from sevoflurane-induced neurotoxicity. Cell Stress and Chaperones, 2018. 23(5): p. 967–974.

https://doi.org/10.1007/s12192-018-0904-3 PMID: 29728856

65. Do D.N., et al., Genome-wide association study reveals genetic architecture of eating behavior in pigs

and its implications for humans obesity by comparative mapping. PloS one, 2013. 8(8): p. e71509–

e71509. https://doi.org/10.1371/journal.pone.0071509 PMID: 23977060

66. Liao C., et al., Multi-tissue probabilistic fine-mapping of transcriptome-wide association study identifies

cis-regulated genes for miserableness. bioRxiv, 2019: p. 682633.

67. Li X.-J., et al., Identification of genes in longissimus dorsi muscle differentially expressed between Wan-

nanhua and Yorkshire pigs using RNA-sequencing. Animal Genetics, 2016. 47(3): p. 324–333. https://

doi.org/10.1111/age.12421 PMID: 27038141

68. Yang F., et al., Associations between gene polymorphisms in two crucial metabolic pathways and

growth traits in pigs. Chinese Science Bulletin, 2012. 57(21): p. 2733–2740.

69. Becila S., et al., Postmortem muscle cells die through apoptosis. European Food Research and Tech-

nology, 2010. 231(3): p. 485–493.
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