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Physiologically based pharmacokinetic model
for ethyl tertiary-butyl ether and tertiary-butyl
alcohol in rats: Contribution of binding to
ad2u—-globulin in male rats and high-exposure
nonlinear kinetics to toxicity and cancer
outcomes

Susan J. Borghoff**, Caroline Ring?, Marcy I. Banton® and Teresa L. Leavens®

ABSTRACT: In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver
tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure
via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor
responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl
tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included
ETBE and TBA binding to the male rat-specific protein a2u-globulin, which plays a role in the ETBE and TBA kidney response
observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted
similar kidney AUC,_... for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific
mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure
concentrations above ~2000 ppm, based on blood AUC,_., for ETBE and TBA. The shift from linear to nonlinear kinetics at
exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of
action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk.
Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd
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reported that in Japan the geometric mean of 8 h time-weighted
average exposure (TWA-8h) to ETBE was 0.08 ppm (0.02-
0.28ppm) for 28 gas-station workers and 0.04 ppm
(0.01-0.21 ppm) in two gasoline tanker truck drivers. None of the

Introduction

Ethyl tertiary-butyl ether (ETBE, CAS RN 637-92-3) is used as a fuel
oxygenate in unleaded gasoline to improve combustion efficiency,

allowing the gasoline to burn more completely and thereby reduc-
ing exhaust emissions. The technical characteristics of ETBE sug-
gest that it is comparable to methyl tertiary-butyl ether (MTBE), a
fuel oxygenate that had been more widely used until it was found
to be mobile in groundwater. Based on concern for contamination
of drinking-water sources (Malveda et al, 2009), MTBE was re-
moved from the US market. However, the much lower water solu-
bility of ETBE (23.7gl™"), compared to MTBE (42gl™"), is
considered an advantage, because its mobility in groundwater will
be lower than that of MTBE in the event of leakage from an under-
ground storage tank (McGregor, 2007).

In the past 15 years, ETBE has not been used significantly as a
gasoline additive in the USA and Europe. The US Geological Survey
(2006; USGS Circular, 1292) reported that ETBE was detected in less
than 0.5% of public wells at concentrations of ~0.2 ug |, with less
frequent detection in domestic wells. In Japan, ETBE-blended gas-
oline has been used since 2007 (Eitaki et al., 2011). The maximum
atmospheric concentration of ETBE in the general environment is
estimated to be ~0.0091 ppm (JPEC, 2008a). Eitaki et al. (2011)

examined workers had a TWA-8 h exceeding the American Confer-
ence of Governmental Industrial Hygienists (ACGIH) threshold limit
value (TLV) of 5 ppm, which was the threshold recommended by
the ACGIH at the time the Eitaki et al. (2011) study was published.
The current occupational ACGIH TLV established for ETBE is now
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25 ppm (ACGIH, 2015), which is still significantly lower than the
exposure concentrations used in animal toxicity and the cancer
studies discussed below.

Considering that the metabolism of ETBE is similar in both
rodents and humans and is mediated through cytochrome
P450 oxidation to tertiary-butyl alcohol (TBA) and acetaldehyde
(McGregor, 2007), it is assumed that the internal dose metric
may very well be the same in these two species. Cytochrome
P450 metabolic oxidation is commonly associated with vulnera-
bility to high-dose metabolic saturation. Several lines of evidence
support ETBE being metabolized by liver P450 enzymes in
humans (CYP2A6) (Hong et al., 1999a; Le Gal et al., 2001) and rats
(CYP2B1) (Turini et al, 1998) and a study in P450 2E1 knockout
mice showed that this enzyme has a negligible contribution
(Hong et al,, 1999b). The two main metabolic products derived
from the metabolism of ETBE’s major metabolite, TBA, are 2-
methyl-1,2-propanediol and o-hydroxyisobutyric acid (Bernauer
et al, 1998), both of which have been detected in the urine of
rats and humans exposed to ETBE (Amberg et al., 1999).

As with MTBE, ETBE is not considered genotoxic, nor is TBA, the
major metabolite of both these chemicals (McGregor, 2007). ETBE
has been found to be negative in bacterial mutation assays and
chromosomal aberration assays in cultured mammalian cells
(McGregor, 2007). It was also negative in two in vivo micronucleus
assays, with one assay finding no micronucleus formation in the
bone marrow following ETBE exposure of rats and mice via drink-
ing water (Noguchi et al., 2013). However, two reliable ETBE cancer
bioassays were conducted in male and female F344 rats via differ-
ent routes of administration — inhalation (ETBE at 0, 400, 1500 and
5000 ppm, 6hday ', 5daysweek ' for 104 weeks) (Saito et al.,
2013) and drinking-water exposure (at estimated daily dose levels
up to 560 mg kg~ bodyweight (bw) day ") (Suzuki et al,, 2012). At
the highest inhalation exposure concentration of 5000 ppm, male
rats exhibited an increased incidence of hepatocellular adenomas
(only one rat had a hepatocellular carcinoma), as well as an
increased incidence of eosinophilic and basophilic cell foci, both
of which are considered pre-neoplastic lesions. No neoplastic
lesions were observed in the chronic drinking-water study, which
was conducted at ETBE concentrations that resulted in estimated
daily dose levels up to 560mgkg™' bw day™' (Suzuki et al,

Reference

Borghoff and Asgharian
(1996)?

eliminated in urine was calculated from the level

radioactivity determined to be TBA was used to
quantitated at each time point collected.

radioactivity in the samples and the % of the
calculate the total mg of TBA.
Cumulative amount of ETBE and TBA exhaled or

Summary of data sets available in Supporting information
combination of the total

Description of data collected
up to 16 h post-exposure to ETBE
for a single day. ETBE and TBA
eliminated in urine and exhaled
“Experimental design, methods and data sets used for model development and verification are presented in Supporting information.

ETBE, ethyl tertiary-butyl ether; MTBE, methyl tertiary-butyl ether; SD rats, Sprague-Dawley (rats); TBA, tertiary-butyl alcohol.
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Schematic of the PBPK model for ETBE and its metabolite TBA in rats was adapted from Leavens and Borghoff (2009). Model equations, along

with the schematic for the description of ETBE and TBA binding to a2u-globulin in the male rat kidney is described in Leavens and Borghoff (2009).
Biochemical and physiological parameters and respective values are presented in Table 3. ETBE, ethyl tertiary-butyl ether; TBA, tertiary-butyl alcohol.

a2u-globulin nephropathy following exposure in drinking water
(NTP, 1995) and via inhalation (Borghoff et al, 2001; NTP, 1997)
and has been shown to bind reversibly to a2u—globulin (Williams
& Borghoff, 2001). Consequently, the changes in the kidney follow-
ing ETBE exposure may be due in part to TBA.

Given these observations of kidney toxicity (ETBE and TBA),
kidney tumors (TBA) and liver tumors (ETBE) in rats exposed
to ETBE and TBA, this study aimed to elucidate how these
responses are associated with the kinetics of ETBE and TBA
under different exposure scenarios. To accomplish these goals,
we developed a PBPK model that describes the kinetics of ETBE
and its metabolite TBA in male and female rats, including the
binding of both chemicals to a2u-globulin in the male rat kid-
ney. Although, Salazar et al. (2015) has previously published an
ETBE-TBA PBPK model, this current model structure was devel-
oped based on the previously described PBPK model for MTBE
and TBA (Leavens & Borghoff, 2009) and incorporates: (1) phys-
iologic parameters with compiled literature values from Brown
et al. (1997); (2) a description of ETBE and TBA binding to
a2u-globulin; (3) induction of TBA metabolism following
repeated exposures; and (4) a single oxidative pathway for
ETBE. Data sets identified in the literature, as well as cited and
available ETBE and TBA study reports, were used for the devel-
opment and verification of this model.

Materials and methods

Data sets used for model development and verification

The studies and selected data sets used for model development
and verification are listed in Table 2. If the data identified in peer-
reviewed publications were recalculated (i.e.,, units, background
subtraction, etc.), the actual description of this recalculation for
each data set is described in the Supporting information. If the
data identified were from a cited study report, the study design,
exposure and critical methods are described in the Supporting
information, along with the actual data used for model verification.
When available, the guidelines used to conduct the unpublished
study reports were identified.

Chemicals

For all studies, the source of ETBE and TBA is identified in the peer-
reviewed publication or, in the case of study reports, in the
Supporting information.

PBPK model for ETBE-TBA

This ETBE-TBA PBPK model structure was based on the MTBE-TBA
model published by Leavens and Borghoff (2009) with minor mod-
ifications (Fig. 1). The parameter values used in this ETBE-TBA PBPK
model (Fig. 1) are listed in Table 3. The compartments in this ETBE-
TBA model included fat, gastrointestinal, kidney, liver, poorly per-
fused tissues and rapidly perfused tissues. Borghoff et al. (2010)
provided data to show that there was little kinetic difference
among Sprague-Dawley and F344 rats administered MTBE via oral
gavage; therefore, the assumption of no significant strain-specific
differences in physiological or biochemical parameters was used
for ETBE. The physiologic parameters were set to mean values re-
ported for rats by Brown et al. (1997), except for alveolar ventila-
tion, where the lower limit reported by these authors was used
in this model to improve the fit to the data, and body weights were
set to gender- and study-specific values for the respective data
sets. The volume of fat was calculated according to the empirical
relationship for the F344 rat given in Brown et al. (1997). The me-
tabolism of both ETBE and TBA was assumed the same in male rats
as in female rats. In a change from the MTBE model, the metabo-
lism of ETBE to TBA was modeled in the liver as Michaelis-Menten
kinetics via one pathway rather than two, a model supported by
selected in vitro studies (Hong et al., 1999a, 1999b; Le Gal et al.,
2001; Turini et al, 1998). The V,,.x and K, for the low-affinity,
high-capacity pathway of MTBE metabolism were used for the sin-
gle metabolic pathway for ETBE.

The metabolism of TBA, as described in the Leavens and
Borghoff (2009) model, was a single, low-affinity pathway, inducible
following repeated exposures. Values for the metabolic parameters
for both ETBE and TBA metabolism were taken from Leavens and
Borghoff (2009). The MTBE-TBA model included urinary clearance
of TBA, but it was modeled as a first-order elimination rate from

J. Appl. Toxicol. 2017; 37: 621-640
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Table 3. Model parameters
Parameter Description Value Units Source
Qpe Alveolar ventilation 189° lh kg™ Brown et al. (1997)
R,.co Ventilation—perfusion ratio 1.0 Unitless Calculated from Borghoff
et al. (1996)
Compartment volumes?
BW Body weight 0.14-0.24 kg Measured
FVoi00d Fraction of body weight as blood 0.074 Unitless Brown et al. (1997)
FV¢ Fraction of body weight as fat 0.35-bw +0.00205  Unitless Brown et al. (1997)
FVy Fraction of body weight as kidney 0.0073 Unitless Brown et al. (1997)
FV Fraction of kidney as blood 0.16 Unitless Brown et al. (1997)
FVv, Fraction of body weight as liver 0.037 Unitless Brown et al. (1997)
F V;‘/’j"’ Total fraction of body weight that is poorly 0.757 Unitless Brown et al. (1997)
perfused tissues®
FVpp = FVE — FVy 0.755-0.35bw  Unitless Brown et al. (1997)
F Vﬁgm’ Total fraction of body weight that is richly 0.165 Unitless Brown et al. (1997)
perfused tissues®
FV,, =F Vﬁg“” — FVi — FV) — FVbiood 0.046 Unitless Brown et al. (1997)
FV,op Fraction of rest of body® 0.078 Unitless Brown et al. (1997)
Blood flows’
Qcc Cardiac index Qo/Ryco Ih kg™ Calculated
FQr Fraction cardiac output to fat 0.07 Unitless Brown et al. (1997)
FQ Fraction cardiac output to liver (hepatic 0.174 Unitless Brown et al. (1997)
and portal)
FQy Fraction cardiac output to kidney 0.14 Unitless Brown et al. (1997)
FQ;‘;{"’ Fraction cardiac output to poorly perfused 0.53 Unitless Brown et al. (1997)
tissues
FQpp = FQW — FQy 0.46 Unitless Brown et al. (1997)
FQﬁg"” Fraction cardiac output to richly perfused 0.479 Unitless Brown et al. (1997)
tissues
FQ,, . FQﬁg"” — FQ, — FQx 0.157 Unitless Brown et al. (1997)
Mass transfer coefficients
PEEE o ETBE blood/air partition coefficient 116 Unitless Kaneko et al. (2000)
PETEE o ETBE fat/blood partition coefficient 1.7 Unitless Kaneko et al. (2000)
Pritmeybiood  ETBE kidney/blood partition coefficient 29" Unitless Kaneko et al. (2000)
PErsE od  ETBE liver/blood partition coefficient 2.9 Unitless Kaneko et al. (2000)
P e tood ETBE poorly perfused/blood partition 1.9 Unitless Kaneko et al. (2000);
coefficient set equal to muscle
P iood ETBE richly perfused/blood partition 2.9 Unitless Set equal to richly perfused
coefficient
PR 1 ai TBA blood/air partition coefficient 481 Unitless Borghoff et al. (1996)
P o TBA fat/blood partition coefficient 0.40 Unitless Borghoff et al. (1996)
Piomeybiood  TBA kidney/blood partition coefficient 0.83 Unitless Borghoff et al. (1996)
Pl ood  TBAliver/blood partition coefficient 0.83 Unitless Borghoff et al. (1996)
P tood TBA poorly perfused/blood partition 1.0 Unitless Borghoff et al. (1996)
coefficient
P hiood TBA richly perfused/blood partition 0.83 Unitless Set equal to liver
coefficient
KETEE ETBE first order absorption constant 1.6 h™ Leavens and Borghoff
(2009) for MTBE
ke TBA first order absorption constant 5.0 h™ Salazar et al. (2015)
FIBA ed Fraction of TBA absorbed in alveolar region 0.6 Unitless Medinsky et al. (1993)
Cary Urinary clearance of TBA 0.015 lh™"kg™®”® Estimated
(Continues)
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Table 3. (Continued)
Parameter Description Value Units Source
Metabolic parameters
VETBE Scaled maximum metabolic rate of ETBE 499 pmolh 'kg™®7>  Rao and Ginsberg (1997)
KETBE Michelis-Menten constant for ETBE 1248 pmol I Rao and Ginsberg (1997)
Ve Scaled maximum metabolic rate of TBA 54 umolh™ kg™ Borghoff et al. (1996); Rao and
Ginsberg (1997)
K,T,fA Michelis—-Menten constant for ETBE 379 pmol I Borghoff et al. (1996); Rao and
Ginsberg (1997)
Ind,%:a Maximum percentage increase in V& 124.9 unitless Leavens and Borghoff (2009)
ymetba Rate constant for ascent to Ind*m< 0.3977 day™ Leavens and Borghoff (2009)
a2u—globulin binding parameters
C“SZS“ Steady-state concentration of free 550’ pmol I Leavens and Borghoff (2009)
a2u-globulin in kidney
Kf,’;jm,ysis First order rate constant for hydrolysis of 0.32 h™! Leavens and Borghoff (2009)
free a2u-globulin
Kot i First order rate constant for hydrolysis of 0.11 h! Leavens and Borghoff (2009)
bound a2u-globulin
KIEA Second order binding rate constant for TBA 13 lumol 'h™! Leavens and Borghoff (2009)
to a2u-globulin
KIEA 02u-globulin dissociation constant for TBA 120 umol ' Leavens and Borghoff (2009)
4 First order rate constant for unbinding of K{PA-KIPA h™
TBA from a2u-globulin
KETBE Second order binding rate constant for ETBE 0.15 [umol™" h™" Leavens and Borghoff (2009)
to a2u-globulin
KETEE a2u-globulin dissociation constant for ETBE 1 pmol I Leavens and Borghoff (2009)
KETEE First order rate constant for unbinding of KETBE . KETBE h™' Leavens and Borghoff (2009)
ETBE from o.2u-globulin
ETBE, ethyl tertiary-butyl ether; MTBE, methyl tertiary-butyl ether; TBA, tertiary-butyl alcohol.
Lower limit of of alveolar ventilation values for rat reported in Brown et al. (1997).
PTotal volume of the body weight of the rat was divided fractionally as follows: 1.0 = FVﬁZf‘” + FVS;’“” + FViob
“Poorly perfused tissues were defined as those having relative flow rates <100 mImin~' 100 g, including muscle, skin, fat and bone.
dRichly perfused tissues were defined as those having relative flow rates of >100mImin~' 100g, including adrenal, blood , brain,
gastrointestinal tissues, heart, kidney, liver, lungs and thyroid.
“Rest of body not perfused, including gut contents, hair, nails and urine.
Total cardiac output was divided between the total richly perfused and poorly perfused: 1.0 = FQﬁZ“” + FQ;‘:;"’
9Brown et al. (1997) only accounted for 94% of cardiac output for fraction of flows. For this model, the unaccounted 6% was assumed to
be in the richly perfused tissues.
PETBE kidney/blood ratio measured in male rats was reported to be 11 (Kaneko et al., 2000). For a rapidly perfused tissue, this is a high
value that suggests that uptake into this tissue is most likely dependent on solubility and an active process such as binding, which was
the case for MTBE by Poet and Borghoff (1997). As such, the partition coefficient in kidney was set to rapidly perfused tissues and
binding of ETBE to a:2u-globulin described within the male, but not female rat kidney.
Values in literature range from ~160 to 1000 um for a2u-globulin kidney concentration (Carruthers et al., 1987; Charbonneau et al.,
1987; Olson, Garg et al,, 1987; Stonard et al., 1986).

the kidney venous blood. For the ETBE-TBA model, the model struc-
ture for urinary elimination was changed to a clearance rate from
the central venous blood. The distribution of both ETBE and TBA
was assumed to be blood-flow limited, except in the kidney, where
binding to a2u-globulin was simulated in the tissue.

For TBA, the blood/air and tissue/blood partition coefficients
(PCs) were taken from Borghoff et al. (1996); for ETBE, the
blood/air and tissue/blood PCs were those reported by Kaneko
et al. (2000), except for the ETBE kidney/blood PC. Kaneko et al.
(2000) showed a higher ETBE kidney/blood PC compared to
liver/blood PC, suggesting that factors other than solubility were
involved in the uptake of ETBE into the male rat kidney. A high
kidney/blood PC compared to liver has been demonstrated for

MTBE, a chemical that is structurally similar to ETBE and is shown
to bind directly to a2u—globulin (Borghoff et al., 1996; Poet et al.,
1997). Poet et al. (1997) demonstrated that the PC in the female
rat kidney is very similar to the liver, which was not the case for
the male rat kidney. Further analysis demonstrated that the in-
creased uptake of MTBE into the male rat kidney was due to bind-
ing to a2u—globulin. Unlike MTBE, there is no direct evidence for
ETBE binding to the male-rat-specific protein a2u-globulin. How-
ever, there is indirect evidence - including evidence that ETBE
causes a2u—globulin accumulation in the male rat kidney follow-
ing inhalation exposure to ETBE (Medinsky et al., 1999), as well as
the reported high male rat kidney/air PC (Kaneko et al., 2000) -
suggesting that, besides solubility in the male rat kidney, there
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Figure 2. TBA blood concentration in male (A) and female (B) F344 rats following a single IV administration of TBA at dose levels of 37.5, 75, 150 or
300mg kgf1 bw. Symbols represent the mean = SD of the actual data collected (Poet et al., 1997; see Table 2 and Supporting information) with model
simulations (lines) based on model parameter values provided in Table 3. IV, intravenous; TBA, tertiary-butyl alcohol.

is another process affecting the uptake of ETBE into the tissue.
Based on this specific information on MTBE, which is structurally
similar to ETBE, along with the fact that other chemicals such as
methanol, ethanol, 2-propanol and 2-methyl-2 propanol have
similar PCs in the liver and kidney (Meulenberg & Viverberg,
2000), assigning the same value to the kidney/blood PC and
the liver/blood PC is warranted. As far as TBA binding to a2u-
globulin, there is evidence in the literature to support this de-
scription (Williams & Borghoff, 2001).

Given this evidence, the model included a description of both
ETBE and TBA binding to a2u—globulin in the male rat kidney, iden-
tical to that used previously for MTBE-TBA (Leavens & Borghoff,
2009). The schematic for this sub-model, as well as the equations
used, are as described by Leavens and Borghoff (2009). The same
parameter values reported previously for MTBE were used for

ETBE, keeping the TBA parameter values (Table 3) the same as
those reported in Leavens and Borghoff (2009).

For simulations of drinking-water exposure to either ETBE or
TBA, the estimated daily dose (mgkg™" bw day™') was used with
the animal body weight to calculate a constant infusion rate
(mgh™") into the gut lumen over a 12h simulation period. The
absorption from the lumen compartment was modeled identically
for oral gavage of ETBE and TBA.

Model simulations and parameter estimation

The model was coded in acsIXtreme® software (currently not com-
mercially available; originally from AEgis Technologies Group,
Huntsville, AL, USA). As described in “PBPK model for ETBE-TBA,”
the structure of the model (Fig. 1) and the parameters (Table 3)
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Figure 3. TBA blood concentration in male (A) and female (B) F344 rats following inhalation exposure of TBA at nominal concentrations of 250, 450 or
1750 ppm. Symbols represent the actual data collected (Leavens & Borghoff, 2009; see Table 2 and Supporting information), with model simulations (lines)
based on model parameter values provided in Table 3. TBA, tertiary-butyl alcohol.

were taken from previous modeling for MTBE, due to the similar-
ity in chemical structure (see Leavens & Borghoff, 2009, for model
equations and more detailed model structure description). One
parameter that was estimated for this model was the urinary
clearance of TBA from the central venous blood. The value for
Clurinary Was estimated by visually comparing the model with
plasma concentration of TBA after intravenous (IV) administra-
tion in rats (Poet et al., 1997).

Model evaluation and comparison

For a quantitative measure of the goodness of fit, the sum of
squares of the standard error (SSE) of model predictions versus

experimental data was used. For comparison, the SSE was calcu-
lated for both the current model and for a previously published
PBPK model for ETBE (Salazar et al., 2015). The model code used
for the Salazar et al. (2015) model was available in the HERO data-
base (hero.epa.gov, accessed June 24, 2016). The quantitative
goodness of fit measure was calculated using the following for-

mula: 37, (Observed; — Predicted,-)2 in Excel (version 2013).

Results

The TBA sub-model (Fig. 1) in this model for ETBE was adapted
from previous modeling efforts for MTBE (Leavens & Borghoff,
2009), which presented model comparisons against data from
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single and repeated inhalation studies to TBA. One change from
the previously published model was how urinary elimination was
expressed, from a first-order rate constant from the kidney venous
blood to a clearance rate from the central venous blood. This
allowed for more direct comparison of the scaled urinary clearance
with the scaled metabolic clearance. TBA urinary clearance of
0.0151h™ kg™’ was determined by visual comparison of model
simulations versus measured data for TBA blood concentration in
rats (Fig. 2A,B, for male and female rats, respectively) following a
single IV administration of TBA at dose levels ranging from 37.5
to 300mgkg ™' bw (Table 2; Supporting information; Poet et al.,
1997). The value was chosen so that the simulations fell within
the majority of the standard deviations of measured concentra-
tions at each time point. As seen in Fig. 3, the change in the model
structure for urinary elimination of TBA did not affect the model’s
ability to adequately simulate TBA blood concentrations in male
(Fig. 3A) and female (Fig. 3B) rats following inhalation exposure,
which was simulated previously in Leavens and Borghoff (2009).
To provide an additional assessment of the TBA sub-model’s
ability to predict the in vivo kinetics of TBA, simulations were com-
pared with oral gavage in rats from a study conducted by ARCO
(1983) (Table 2; Supporting information) in which the
toxicokinetics of TBA were evaluated following oral, inhalation or
IV administration of '“C-TBA. The majority of the data reported
in the study could not be used for modeling purposes, because
blood and urine concentrations were reported either as a percent-
age of administered dose or as equivalents of TBA, which are not
specific for TBA alone but include TBA and its metabolites. How-
ever, there were data from two oral experiments that, when
merged, included adequate information to estimate blood con-
centrations of TBA following a single oral gavage of 1 or
500mgkg " bw '"C-TBA (see Supporting information; Table 2).
The TBA model was able to predict TBA blood levels following a

TBA Oral Administration

Male Rats
10005
< 10048 .
o ]
E H
c
o 10;
=
£
c
S 1ds...
c e, .
S Ee...
3 .
B o = e,
o LTI
m e,
oM 0.015 .
= . .
0.001 T T - .
0 5 10 15 20
Time (hrs)

= 1 mg//kg data
e 500 mg/kg data
» 1 mg/kg model

= 500 mg/kg model

Figure4. TBA blood concentration in male Sprague-Dawley rats following
a single oral administration of C-TBA at dose levels of 1 or 500 mg kgf1 bw.
Symbols represent the actual data collected (ARCO, 1983; see Table 2 and
Supporting information), with model simulations (lines) based on model pa-
rameter values provided in Table 3. TBA, tertiary-butyl alcohol.

very low TBA dose of 1Tmgkg™' bw (Fig. 4), but over-predicted
blood levels of TBA following a 500 mg kg ' bw dose. The increase
in blood TBA concentrations following the 500 mgkg™' bw dose
compared with the 1mgkg ™' bw dose was less than would be
predicted for either nonsaturable or saturable kinetics; therefore,
there is uncertainty in the estimated blood concentrations from
the ARCO study. Because the study report did not give information
on potential differences in radioactivity in blood versus plasma,
calculations of the blood concentrations of TBA from the study
data assumed that the percentage radioactivity attributable to
TBA would be the same in blood as in plasma; this assumption
may not be accurate if there are significant differences in
partitioning into blood cells between TBA and its metabolites. In
addition, the total radioactivity in the plasma was not accounted
for in the plasma samples in which TBA was separated from the
metabolites. The ARCO report also noted loss of volatile radioac-
tive species during analysis of urine samples, which may also have
affected results of the blood and plasma samples.

To evaluate the ETBE-TBA PBPK model (Fig. 1), along with the lit-
erature values for physiological and biochemical parameters as
identified in Table 3, the model was used to simulate studies that
measured ETBE and TBA concentrations in various matrices,
including blood, urine and exhaled breath, following ETBE oral
administration and inhalation exposure (see Supporting informa-
tion). As seen in Figs 6-8 and 9, only very limited time-course data
are available for either ETBE or TBA during or following ETBE
exposures. For a "*C-ETBE oral gavage study reported by JPEC
(2008b), the model was able to predict the concentration of TBA
in blood with time post-administration at either 400 or 5mgkg "
bw (Fig. 5A); however; the model over-predicted the cumulative
TBA in the urine measured at 24 h post-administration at both
dose levels (Fig. 5B). The model predicted urinary concentrations
following inhalation exposure to 40 ppm ETBE (Amberg et al.,
2000) (Fig. 6C), although the predictions of the TBA blood concen-
trations after inhalation exposure (Fig. 6B) were not as close to the
observed data as for oral gavage (compare Fig. 5A). The ETBE
blood concentrations were well-predicted for the 4ppm ETBE
exposure (Fig. 6A), but over-predicted for 40 ppm.

The model was also compared to data from a repeat exposure
study (Fig. 7) in which '*C-ETBE was administered by oral gavage
to rats at 5mgkg ™" bw day ' orally for 14 days, and TBA blood
concentrations were measured 8h after the seventh and 14th
doses (JPEC, 2008c). The measured TBA blood concentration was
higher at 8 h post-exposure after repeated dosing than at 8 h fol-
lowing a single dose (JPEC, 2008b), due to accumulation. However,
because the model included induction of TBA metabolism follow-
ing repeat exposure, which decreases the half-life of TBA, the pre-
dicted blood concentrations of TBA are similar at 8 h following the
repeat doses and the single dose. Therefore, the model under-
predicted TBA blood concentrations after 7 and 14 days of repeat
dosing (Fig. 7). As shown in Salazar et al. (2015), TBA blood concen-
trations after repeated exposures can be better predicted by a
model that does not assume metabolic induction with repeated
exposure to ETBE. For further evaluation, the model was also used
to simulate the percentages of dose either exhaled or excreted in
urine, for comparison with data from studies reported in the liter-
ature and available study reports (Fig. 8). The model simulated
the trend of an increase in percentage exhaled and a decrease in
percentage excreted in urine with an increase in dose (Fig. 8A) fol-
lowing a single oral gavage of "*C-ETBE (JPEC, 2008b) and the
model also accurately simulated the percentage of dose excreted
in the urine (Fig. 8B) following both 4 and 40 ppm ETBE inhalation
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Figure 5. TBA blood concentration (A) and cumulative amount of TBA in u
400 mg kgf1 bw). Symbols represent the actual data collected (JPEC, 2008b; see
on model parameter values provided in Table 3. ETBE, ethyl tertiary-butyl ether;

exposures (Amberg et al, 2000). In another study in which rats
were exposed by nose-only inhalation to '*C-ETBE at 500, 1750
or 5000 ppm (Borghoff & Asgharian, 1996), the model simulated
the increase in the percentage of dose exhaled and the decrease
in the percentage of dose excreted in urine with increasing expo-
sure concentrations for both male (Fig. 8C) and female (Fig. 8D)
rats. When the composition of the exhaled breath was analyzed
for ETBE and TBA, the model predicted the cumulative amount
of ETBE exhaled over time in female rats (Fig. 9A), but
over-predicted the cumulative amounts of ETBE exhaled in male
rats and the TBA exhaled in male and female rats, respectively
(Fig. 9B-D). In contrast to the model-predicted blood concentra-
tions of ETBE and TBA, the model-predicted cumulative exhaled
amounts of ETBE and TBA were greater in the male versus female
rat. This is due to the greater absolute ventilation in the male rat

rine (B) in male rats orally administered a single dose of '*C-ETBE (5 or
Table 2 and Supporting information), with model simulations (lines) based
TBA, tertiary-butyl alcohol.

due to greater body weight. In the model, the exhaled amounts
or ETBE and TBA are estimated according to the equation:

Cvenous

Amount  Exhaled = Q, %
P blood /air

where

Qp = Qpexbw

Qpc is the scaled alveolar ventilation (I1h~'kg™"), bw is the body
weight (kg), Q;, is the absolute alveolar ventilation (| h™"), Cuenous
is the venous blood concentrations of ETBE or TBA, and Pyo0d/air
is the blood/air PC for ETBE or TBA. Therefore, the amount exhaled
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Figure 6. ETBE blood concentration (A), TBA blood concentration (B), and
cumulative amount of TBA in urine (C) of F344 rats exposed to 4 or 40 ppm
(nominal concentrations) ETBE following a single 4 h inhalation exposure.
Symbols represent mean + SD of the actual data collected (Amberg et al.,
2000; see Table 2 and Supporting information), with model simulations
(lines) based on model parameter values provided in Table 3. ETBE, ethyl
tertiary-butyl ether; TBA, tertiary-butyl alcohol.

of ETBE and TBA will increase proportionately to the increase in Q,
Simulations of the observed values would be more predictive if the
model parameters were adjusted to describe lower ventilation
rates and possible absorption of TBA in airways on exhalation.
Overall, the agreement of model predictions with observed data
was comparable between the model developed in this study and

ETBE:
1 and 14 Days Repeat Oral Administration
Male Rats
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cahwbhuoNwoOD MW
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Figure 7. TBA blood concentration in male Sprague-Dawley rats orally
administered 5 mg kgf1 bw dayf1 14CETBE for 1 or 14 days. Symbols rep-
resent the actual data collected 8 h following dosing on days 1, 7 and 14
(JPEC, 2008a, 2008b; see Table 2 and Supporting information), with model
simulations (lines) based on model parameter values provided in Table 3.
ETBE, ethyl tertiary-butyl ether; TBA, tertiary-butyl alcohol.

the model previously published by Salazar et al. (2015). When
the SSE results (Table 4) were compared against the model
reported in Salazar et al. (2015), this model had lower SSE for the
majority of the simulations. One important distinction between
this model and that of Salazar et al. is this model’s incorporation
of a2u—globulin, an important factor for predicting gender differ-
ences in the kidney concentrations of rats. Because the kidney is
a target tissue for TBA, it is critical that the TBA model was able
to predict TBA concentrations in the kidneys of exposed male
and female rats. As mentioned in the Materials and methods sec-
tion, the model included binding of both ETBE and TBA to
a2u—globulin in the male, but not female, rat. The model structure
for describing chemical binding to a2u-globulin was reported pre-
viously for the MTBE-TBA model (Leavens & Borghoff, 2009).
Figure 10 compares the model-predicted versus observed
kidney/blood TBA concentration ratios following single (Fig. 10A,
B) or repeated (Fig. 10C,D) TBA inhalation exposure of male and
female rats, respectively. Inclusion of binding in the model for male
rats allowed prediction of the time- and dose-dependent changes
in the kidney/blood ratio observed specifically in male rats,
confirming the importance of describing TBA binding to
a2u-globulin. This feature of the model will be invaluable when
relating kidney concentrations of ETBE and/or TBA following vari-
ous exposure scenarios to either of these chemicals and compar-
ing the different responses.

To determine exposure concentrations above which the kinetics
of ETBE and TBA become nonlinear, the model was used to simu-
late ETBE blood AUC,_., following either single oral gavage admin-
istration or 6 h inhalation exposure to ETBE at the concentrations
used in two separate cancer bioassays (Saito et al., 2013; Suzuki
et al, 2012); the results are presented in Fig. 11. Following ETBE
inhalation exposure in male rats, the kinetics of ETBE and TBA in
blood begin to move from linear to nonlinear kinetics between
exposure concentrations of 1800 and 2000 ppm (Fig. 11A,B). This
corresponds to a daily inhaled dose of ~400-450mgkg™" bw
day ™' estimated from using the model to simulate dose (mgkg™")
retained (Fig. 12). However, following oral administration by
gavage of ETBE, the model shows a trend towards nonlinear kinet-
ics of ETBE and TBA in blood with daily dose levels of
~200-300mg kg~ bw day ' (Fig. 11C,D). The difference between
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nose-only.

these two exposure scenarios is likely caused by both first-pass
metabolism that would occur with oral, but not inhalation expo-
sures and the rate of the administered dose. A transition from lin-
ear to nonlinear kinetics is also highlighted in model simulations of
the maximum rate of ETBE metabolism following exposure to ETBE
as presented in Fig. 13. The rate of ETBE and TBA metabolism is
simulated following exposure to ETBE via inhalation exposure for
6 h (A), ETBE exposure via drinking water (B) and orally administra-
tion by gavage ETBE (C) showing that the metabolism of ETBE
becomes saturated at greater than 800mgkg ' inhaled ETBE
inhaled dose (~5000 ppm), a dose level that is higher than that pre-
dicted by the model to be achieved during the ETBE drinking
water study. Further evidence for saturation of ETBE metabolism
is provided in Fig. 8(A,B) in which the percentage of the adminis-
tered dose of ETBE exhaled is increased with ETBE exposure con-
centration with a corresponding decrease in the percentage
eliminated in urine.

Discussion

An ETBE-TBA PBPK model was developed, verified and used to
provide insight on how the kinetics under different exposure sce-
narios results in kidney toxicity (ETBE and TBA), kidney tumors

(TBA), and liver tumors (ETBE) in exposed rats. Model inclusion
of TBA binding to a2u—globulin in the male rat kidney was used
to predict the kidney concentration of TBA under different expo-
sure scenarios that have been observed to result in pathological
features of a2u—globulin nephropathy (ETBE and TBA) and kid-
ney tumors (TBA). This model was also used to determine
whether the ETBE inhalation exposure concentrations associated
with the liver tumor response in male rats result in nonlinear
kinetics of ETBE and TBA. Although the data sets used to develop
and verify this model were identical to the ones used by Salazar
et al. (2015) for a recently reported ETBE-TBA PBPK model in rats,
for transparency proposes, these data sets are cited, and the
actual data captured and recalculated are reported in the
Supporting information. In addition, this model incorporates
structural features and slightly different physiological and bio-
chemical parameters and parameter values from the model of
Salazar et al. (2015).

The structural features that differed between this model and the
Salazar et al. (2015) model include: (1) omission of the TBA blood
sequestration that Salazar noted was necessary to predict TBA
blood concentrations specifically following IV administration of
TBA (Poet et al., 1997); (2) ETBE metabolism via one oxidative path-
way rather than two; and (3) modeling binding of ETBE and TBA to
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a2u-globulin in the kidney. In our TBA model, we found that TBA
blood sequestration was not necessary to predict TBA in blood fol-
lowing exposure by IV, oral or inhalation routes. In addition, there
are no experimental data to support plasma protein binding of
TBA in the rat. Poet et al. (1997) reported the estimated volume
of distribution at steady state (Vs), ranging from 0.67 to 1.31kg ™"
after TBA IV administration, which indicates distribution outside
the central compartment and is not consistent with protein bind-
ing. Unlike MTBE, there is in vitro evidence that ETBE is metabolized
by CYP2B1 (Turini et al., 1998) with a study in P450 2E1 knockout
mice showing that this enzyme has a negligible contribution
(Hong et al., 1999b). As such, ETBE was modeled in the liver as
Michaelis—-Menten kinetics via one pathway rather than two.
Salazar et al. (2015) did not include the binding of ETBE and TBA
to the male rat-specific protein a2u—globulin. In this model, ETBE
and TBA binding to a2u-globulin was described in the male, but
not female, rat kidney, because this protein is measured at high
concentrations in male rats, with a lack of accumulation in
female rats (Borghoff et al,, 2001). As shown in Fig. 5, inclusion of
binding in the male rat kidney is important for describing sex-
specific dose- and time-dependent kidney/blood concentration
ratios of TBA in rats.

The developed model contained structural features that
enabled it to predict important characteristics in the observed
kinetics of ETBE and TBA, such as gender differences in kidney

concentrations, and dose-dependent changes in the percentage
of dose either excreted or exhaled. However, differing experiments
produced some discrepancies between model-predicted and
observed values. Some of these discrepancies could be improved
with changes in model parameters or assumptions. Model com-
parisons of the percentage of dose exhaled and excreted could
be improved by reducing the alveolar ventilation rate during inha-
lation exposure, particularly when via nose-only inhalation.
Johanson and Filser (1992) reported that use of literature reference
values for alveolar ventilation would likely over-predict the inhala-
tion uptake rate of most volatiles. Model predictions of TBA blood
concentration following repeated dosing of ETBE could be
improved if the model did not assume TBA metabolic induction
with repeated ETBE exposure. As described in Leavens and
Borghoff (2009), data from a mouse study (McComb and Goldstein,
1979) was used for estimating the extent of metabolic induction
from repeated exposures to TBA. While TBA has been shown to
induce metabolic enzymes in rats (Aarstad et al., 1985), literature
data are not available to evaluate interspecies extrapolation; there-
fore, the mouse data from McComb and Goldstein (1979) were
used for the rat. In addition to possible interspecies differences,
the induction of metabolism would be expected to be concentra-
tion dependent (Aarstad et al., 1985); however, there are insuffi-
cient data in the literature to establish a correlation that could be
incorporated into the model at this time. Other potential sources
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Table 4. Comparison of model predictions in blood with observed data using Sum of Square Error (SSE)
Study SSE® Ratio of SSE for current
model compared
ETBE-TBA model Salazar et al. (2015) with Salazar et al. (2015)°
presented

TBA IV (Poet et al., 1997) 1.24E+ 06 3.89E +06 0.3

TBA inhalation (Leavens & Borghoff, 2009); 7.14E+ 04 7.74E + 04 0.9
includes both single and repeat

TBA gavage (ARCO, 1983; unpublished report); blood 3.71E+05 1.36E+05 2.7

TBA gavage (ARCO, 1983; unpublished report); 5.27E+03 8.26E +03 0.6
urinary excretion percentage

TBA blood concentrations following ETBE 6.42E + 01 2.17E+03 0.03
gavage (JPEC, 2008b; single)

TBA blood concentrations following ETBE 3.17E+00° 2.3E+00° 14
gavage (JPEC, 2008c; repeated)

TBA cumulative in urine following ETBE 2.22E+01 1.13E-01¢ 2.0E2
gavage (JPEC, 2008b; single)

Percentage dose exhaled versus excreted 9.94E + 01 2.85E+04 0.004
following ETBE gavage (JPEC, 2008b; single)

ETBE blood concentrations following ETBE 1.25E+00 3.45E-01 3.6
inhalation study (Amberg et al., 2000)

TBA blood concentrations following ETBE 7.11E-01 3.40E +00 0.2
inhalation study (Amberg et al., 2000)

Percentage dose excreted following ETBE 241E+01 1.45E+02 0.2
inhalation study (Amberg et al., 2000)

Cumulative TBA in urine following ETBE 7.65E-05 8.22E-03 0.01
inhalation study (Amberg et al., 2000)

ETBE, ethyl tertiary-butyl ether; TBA, tertiary-butyl alcohol.

Estimated from square of difference between predicted value and observed data for study.

PRatios less than one indicate a better prediction of data with current model and are shaded for emphasis.

“Fits for both models are improved if no induction is assumed for TBA metabolism.

9Note that the TBA urine was closer to the measured because of lower urinary elimination, which results in TBA blood concentrations

with a larger discrepancy compared to measured values.

of discrepancies between model-predicted and experimental
values include uncertainty and error in experimentally observed
data values extracted from the literature. For example, in the ARCO
(1983) TBA toxicokinetics report, the final TBA blood concentra-
tions were only 100-fold higher following a dose of 500 mgkg ™"
bw than following a dose of 1mgkg ™" bw. This also appears to
be the case with the data extracted from the Amberg et al.
(2000) study: the concentrations are well below levels where met-
abolic saturation would occur, and yet the ETBE blood concentra-
tion following exposure to the high concentration of 40 ppm is
not 10-fold higher than the concentrations following 4 ppm expo-
sure. In the Amberg et al. study, the data reported may not have
captured the time collected and blood concentration analyzed im-
mediately at the end of the exposure, because these factors would
have contributed to lower-than-predicted blood concentrations
based on the volatility of ETBE. In the ARCO (1983) study, because
no information was provided on potential differences in radioac-
tivity in blood versus plasma, calculations of the blood concentra-
tions of TBA from the study data assumed that the percentage
radioactivity attributable to TBA would be the same in blood as
in plasma; this assumption may not be accurate if there are signif-
icant differences in partitioning into blood cells between TBA and
its metabolites. In addition, the total radioactivity in the plasma
was not accounted for in plasma samples where TBA was sepa-
rated from the metabolites.

Challenges also are presented by data sets collected from nose-
only inhalation exposure; parameters such as ventilation rate may
fluctuate during exposure (Alarie, 1973), and loss of volatile
chemicals may occur during collection and extraction from charcoal
traps or analysis of the compounds. Despite these potential sources
of error,and considering the diversity of the data sets available, over-
all, the predictions of this ETBE-TBA model compared well with
experimental time—concentration profiles following exposure to
ETBE or TBA in male and female rats under a number of different
exposure scenarios.

As mentioned previously, this model incorporated ETBE and TBA
binding to a2u-globulinin the male but not female rat, as described
by Leavens and Borghoff (2009). There is evidence that TBA binds to
a2u-globulin (Williams & Borghoff, 2001), but there is no direct
evidence that ETBE binds to this protein. However, indirect evidence
supports ETBE binding to a2u—globulin, from a study in which ETBE-
exposed male rats developed pathological features associated with
a2u-globulin nephropathy (Medinsky et al., 1999). a2u-Globulin
nephropathy is a syndrome associated with chemical binding to
a2u-globulin, which results in decreased catabolism of this protein
and its accumulation in the kidney in the form of protein droplets.
With chronic exposure, exacerbation of protein droplets ensues,
leading to necrosis, increased cell proliferation and kidney tumors
in male rats (US EPA, 1991). In addition, Kaneko et al. (2000) showed
a higher ETBE kidney/blood PC compared to liver/blood PC,
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Figure 10. TBA kidney/blood ratio in male (A, single 6 h exposure; C, repeated exposure 6 h dayf1 for 8 days) and female (B, single 6 h exposure; D, re-
peated exposure 6 hday ' for 8 days) F344 rats at various time points following inhalation exposure to TBA at nominal concentrations of 250, 450 or
1750 ppm. Each bar represents the mean kidney/blood ratio calculated from the study data (Leavens & Borghoff, 2009; see Table 2 and Supporting informa-
tion) with model simulations of these ratios based on model parameter values provided in Table 3. As described by Leavens and Borghoff (2009), TBA bind-
ing to a2u-globulin is described in the male, but not female rat kidney. TBA, tertiary-butyl alcohol.

suggesting that factors other than solubility were involved in the up-
take of ETBE into the male rat kidney. A high kidney/blood PC com-
pared to liver has been demonstrated for MTBE, a chemical
structurally similar to ETBE and shown to bind to a2u-globulin
(Borghoff et al., 1996; Poet et al., 1997).

Although no data sets were available to test the model’s ability to
predict ETBE levels in the male vs. female rat kidney following ETBE
exposure, there was a comprehensive data set of TBA observations
in rats exposed by inhalation to TBA that was used in the previous
MTBE-TBA model (Leavens & Borghoff, 2009). This model
reproduced the time and concentration dependence of the ratio
of TBA kidney/blood concentrations observed in the male rat, and
the lack of time and concentration dependence observed in the
female rat (Fig. 10). The ability to predict TBA in the kidney
indicates that the model would be useful for simulating the cancer
bioassay exposure scenarios for both ETBE and TBA, to determine
whether differences exist in the dose in the target tissue that are as-
sociated with the different kidney tumor responses that occur with
these two chemicals. In fact, when the model was used to predict
TBA AUC in the kidney following exposure to ETBE or TBA by the
route and exposure concentrations used in their respective cancer
bioassays (Table 1), the results following exposure to ETBE were very
similar to the results following exposure to TBA (Fig. 14). The
similarity in kidney TBA AUCs predicted for ETBE and TBA exposures
suggests that the kidney dose of TBA alone does not explain the

different tumor responses observed following exposure to ETBE
and TBA (Table 1), even though a2u-globulin nephropathy is ob-
served following exposure to both chemicals. Rather, the different
tumor responses are most likely influenced by other differences re-
ported in these two bioassays, such as severity of chronic progres-
sive nephropathy. Because the male rat-specific renal tumors
induced by TBA operate through modes of action (a2u-globulin ne-
phropathy and chronic progressive nephropathy) that are not rele-
vantin humans (Hard & Khan, 2004; Hard & Seely, 2005; Hard et al.,
2009), the lesions associated with either of these syndromes should
not be used to develop a point of departure in a risk assessment for
either ETBE or TBA.

Inseveral studies thatfocused on the identification of the mode of
action for the ETBE-induced liver tumors in rats, Kakehashi et al.
(2013, 2015) provided evidence to support a high-dose mode of
action similar to that of phenobarbital: induction of cell proliferation
due to oxidative stress and DNA modification-dependentactivation
of receptors, including constitutive androstane receptor, pregnane-
X-receptor and peroxisome proliferator-activated receptors. This
mode of action for liver tumors in rats is considered not to be oper-
ative in humans (Kakehashi et al., 2013). Moreover, these tumors
occur in rats only at a dose level of at least 1000 mgkg~' bw day ™
following promotion with N-ethyl-N-(2-hydroxyethyl)nitrosamine,
or 2 years of inhalation exposure to 5000 ppm ETBE, an exposure
concentration in which this model predicts a inhaled dose of
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Figure 12. Model simulations of ETBE dose (mg kgq) at ETBE exposure

concentrations up to 5000 ppm for a 6 h inhalation exposure. Estimated
dose is the amount of ETBE systemically retained (difference in inhaled
and exhaled) over the 6 h exposure. Inhalation exposure concentration of
5000 ppm results in a dose of 869-878 mg kgf1 bw in female and male rats,
respectively. ETBE, ethyl tertiary-butyl ether.

~850mg kg ' day'.Considering that the human kinetics of ETBE is
similar to what has been shown in rodents and that the high ETBE in-
halation exposure concentrations used in animal studies are not en-
vironmentally relevant (~200-fold higher than the ACGIH TLV of
25 ppm), the evidence strongly supports a low risk.

As also noted in the model simulations presented using this
PBPK ETBE-TBA model, the high incidence of hepatocellular ade-
nomas following exposure to 5000 ppm ETBE appears to correlate

with nonlinear toxicokinetic behavior. Saito et al. (2013) estimated
that an exposure concentration of 5000 ppm corresponded to a
dose level of 4442 mgkg ' bw day ', assuming 100% absorption.
However, as noted in Fig. 12, this model predicts that an inhalation
exposure of 5000 ppm corresponds to an inhaled dose level of
~842-860 mgkg ™" bw day ™. This dose level is ~1.5-fold higher
than the oral dose in the ETBE drinking-water study in which no
liver tumors were observed (Suzuki et al, 2012), suggesting that
tumors in the male rat develop an ETBE concentration at which
the metabolism is saturated.

Some rodent tumor responses occur only at high test doses;
therefore, their relevance to human health hazard may be
questioned. Saturation of metabolic processes at high-dose/
exposure concentrations may result in transition to novel modes
of action unique to those high-dose levels, unrelated to modes of
action that operate at lower doses also used in animal studies,
and at substantially lower real-world human exposures (Barton
et al.,, 2006; Carmichael et al.,, 2006; Doe et al., 2006; Foran, 1997;
Slikker et al., 2004a, 2004b). The high-dose toxicity findings are
observed only under exposure concentrations that exhibit satura-
tion of metabolic processes, and this lack of human relevance has
been recognized in OECD guidance for the dose selection process
in animal bioassays (OECD, 2011). Although the OECD guidance
was provided for a reproduction study, this recommendation is
also appropriate for dose selection in other animal studies, includ-
ing carcinogenicity assays; it is particularly appropriate for sub-
stances that are not regarded as genotoxic, such as ETBE
(McGregor, 2007; Noguchi et al., 2013).

Applying OECD guidance to select the top test concentration
based “at, or just slightly above the inflection point for transition
to nonlinear toxicokinetic behaviour” would likely have justified a
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top inhalation exposure concentration for ETBE well below
5000 ppm. If this strategy had been employed, it is most likely that
5000 ppm ETBE would not have been identified as a high exposure
concentration to be used in the chronic 2-year bioassay, a
concentration that resulted in increased hepatocellular adenomas
in male rats.

In conclusion, an important finding of this ETBE-TBA PBPK model
analysis is that the male rat liver tumor response that followed inha-
lation but not drinking-water exposure to ETBE occurred under
conditions of nonlinear kinetics and questioning its use for
predicting human risk. Toxicity findings under high exposure con-
ditions that exhibit these behaviors have limited human health
hazard and risk implications, particularly if the inflection point for

onset of nonlinear toxicokinetics is significantly above real-world
human exposures, as appears to be the case for ETBE.
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