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P H Y S I C S

Many-body topological invariants from randomized 
measurements in synthetic quantum matter
Andreas Elben1,2*, Jinlong Yu1,2*, Guanyu Zhu3†, Mohammad Hafezi3,4, Frank Pollmann5,6, 
Peter Zoller1,2, Benoît Vermersch1,2,7‡

Many-body topological invariants, as quantized highly nonlocal correlators of the many-body wave function, are at 
the heart of the theoretical description of many-body topological quantum phases, including symmetry-protected 
and symmetry-enriched topological phases. Here, we propose and analyze a universal toolbox of measurement 
protocols to reveal many-body topological invariants of phases with global symmetries, which can be implemented 
in state-of-the-art experiments with synthetic quantum systems, such as Rydberg atoms, trapped ions, and super-
conducting circuits. The protocol is based on extracting the many-body topological invariants from statistical 
correlations of randomized measurements, implemented with local random unitary operations followed by site- 
resolved projective measurements. We illustrate the technique and its application in the context of the complete 
classification of bosonic symmetry-protected topological phases in one dimension, considering in particular the 
extended Su-Schrieffer-Heeger spin model, as realized with Rydberg tweezer arrays.

INTRODUCTION
There is an increasing interest in realizing topological quantum 
phases in synthetic quantum systems (1–5), including ultracold 
atoms in optical lattices (2), Rydberg atoms (3), trapped ions (4), 
and superconducting qubits (5). These experimental platforms 
offer unique possibilities for preparing, controlling, and probing 
quantum states, with prospects of studying these exotic states of 
matter, e.g., the fractional Hall state (6, 7), and in light of possible 
applications such as topological quantum computing (8). The char-
acterization and identification of topological phases in an experi-
mental setting represents, however, a substantial challenge: In 
contrast to symmetry-breaking phases of Landau’s theory with local 
order parameters (9), topological phases are characterized by global 
properties, which cannot be revealed with local probes. Thus, measure-
ment protocols need to be developed to access these global properties. 
For noninteracting systems, the measurement of topological invariants 
(such as the Chern number) has been achieved in seminal experi-
ments in cold atom setups (10–13), microwave networks (14), and 
photonic systems (15). Below, we address the generic interacting 
case, and we present measurement protocols that allow us to access 
many-body topological invariants (MBTIs) of interacting topological 
states with global symmetries (16, 17).

MBTIs are highly nonlocal quantized correlators of the many- 
body wave function that have been originally derived in the context 
of the description of symmetry-protected topological (SPT) order 
(18), and in particular from the classification of unidimensional 
bosonic SPT phases (16, 17, 19). An MBTI identifies from a many- 
body wave function the projective representation of a global sym-
metry (16, 17). For any realization of a topological state with a given 

symmetry, for instance, the spatial reflection symmetry or the 
time-reversal symmetry, the corresponding MBTI takes a non-zero 
quantized value. MBTIs can be considered as generalizations of 
string order parameters that were introduced (20) and measured 
(21, 22) to detect SPT phases protected by internal symmetries. MBTIs 
can particularly identify all one-dimensional bosonic SPT phases, 
even in the absence of internal symmetries, and therefore of string 
order (17, 23). MBTIs are not restricted to the description of SPT 
phases: They have been now understood in the general mathematical 
framework of topological quantum field theory (17, 24, 25), suggest-
ing that they can identify many types of topological phases beyond 
SPT orders. In particular, recent theoretical works have shown that 
MBTIs can identify fermionic SPT phases (24, 26) and topological 
quantum phase transitions (27) and can also distinguish various 
symmetry-enriched topological (SET) phases with intrinsic topo-
logical orders (28, 29). Whereas MBTIs have become key quantities 
to characterize topology in synthetic quantum systems, the question 
of their measurement has remained so far elusive.

Our approach to measure MBTIs consists in using the information 
contained in statistical correlations between randomized measure-
ments. These measurements are realized by applying to a quantum 
state a sequence of random unitary operations before performing 
projective measurements. Recently, randomized measurement protocols 
have been developed to measure entanglement (30, 31), including 
an experimental demonstration in a trapped-ion quantum simulator 
(32), and out-of-time order correlators (33). Here, our approach is 
based on local random unitaries that can be implemented in exper-
iments with high fidelities (32), and the key idea is to use distribu-
tions of such random unitaries with different symmetries. From the 
statistics of such “symmetric” randomized measurements, one can 
extract the MBTI associated with a particular symmetry. Our analysis 
of the protocol, including the study of statistical errors, shows that 
MBTIs can be measured via our protocols with current technology 
in various spin systems, such as Rydberg atoms, trapped ions, and 
superconducting qubits, and can be used to experimentally classify 
interacting many-body topological quantum phases.

Our article is organized as follows. Having in mind current ex-
perimental possibilities, e.g., with Rydberg atom quantum simula-
tors (22), we study a model Hamiltonian with SPT phases as ground 
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states. We consider MBTIs associated with reflection and time- 
reversal symmetries to identify the trivial/nontrivial topology of the 
SPT phases as well as the symmetry-broken phase, and present the 
corresponding measurement protocols as experimental recipes; 
the other MBTIs and corresponding protocols are presented in the 
Supplementary Materials. We then discuss the role of statistical errors 
and imperfections in our scheme. We also illustrate our protocols 
via two physical examples that can be realized in experiments: We 
show how to monitor the dynamical building-up of topology by 
these MBTIs during adiabatic state preparation, and we also discuss 
how the breaking and protection mechanisms of symmetries can be 
probed experimentally. Last, we discuss how our protocols can be 
applied beyond the case of SPT phases.

RESULTS
Model
For concreteness, we present our approach in the context of the 
extended bosonic Su-Schrieffer-Heeger (SSH) model (Fig. 1A) 
(22, 34–37)

    
  H  eSSH   =   J ─ 2     ∑ 

i=1
  

N/2
   (    σ 2i−1  x   σ 2i  

x   +  σ 2i−1  y   σ 2i  
y   +  δσ 2i−1  z   σ 2i  

z   )   
     

                 +    J′ ─ 2     ∑ 
i=1

  
N/2−1

   (    σ 2i  
x    σ 2i+1  x   +  σ 2i  

y    σ 2i+1  y   +  δσ 2i  
z    σ 2i+1  z   )   

   (1)

Here,    i  
   ( = x, y, z) are the Pauli matrices for the spin state at site i. 

J and J′ are alternating nearest-neighbor spin-exchange coefficients, 
and  denotes the exchange anisotropy. The case of  = 1 corresponds 
to the bond-alternating Heisenberg model (35, 36), whereas the case 
of  = 0 corresponds to the bosonic version of the (non-interacting) 
SSH model (34), as realized recently with Rydberg atoms (22). Note 
that, expect for  = 0 and  = 1, the model is generally not integrable 
and thus has no single-particle correspondence. The alternating spin- 
exchange coefficients can be engineered, e.g., by loading bosonic 
atoms into optical superlattices (37) or dimerized optical tweezer 
arrays (22), or by coupling bosonic atoms to dynamical gauge fields 
(38, 39). As a final remark, we emphasize that all protocols presented 
below can also be generalized to other spin Hamiltonians, e.g., spin-1 
Haldane chain (40), straightforwardly.

As shown below, the model Hamiltonian in Eq. 1 hosts three 
different phases: a trivial phase, a topological Haldane phase (40), 
and a symmetry-broken antiferromagnetic phase. The trivial and 
topological phases are SPT phases protected by any one of the 
following three symmetries (23, 41): reflection (inversion) symmetry 
at the center bond, time-reversal symmetry, and dihedral group D2 
of -rotations of spins around the x, y, and z axes.

Partial reflection invariant
We now show how to measure MBTIs via randomized measurements. 
First, SPT phases protected by reflection symmetry can be classified 
using the partial reflection MBTI     ̃  Z   ℛ   =  Z  ℛ   /  √ 

__________________
   [  Tr (    ρ  I  1    

2   )   + Tr (    ρ  I  2    
2   )   ]   / 2      

(17), with

    Z  ℛ   = Tr (    ρ  I    ℛ  I   )       (2)

Here, I = TrS − I(|⟩⟨|) is the reduced density matrix of a many- 
body quantum state |⟩, and the interval I = I1 ∪ I2 consists of two 
partitions I1 and I2, each with n sites; S denotes all the sites of the 

system. The nonlocal operator ℛI “spatially swaps” I1 and I2 with 
respect to the reflection center. On every basis state |sI⟩ = |s1,s2, …, 
s2n⟩ (si = ↑, ↓ for i ∈ I), it acts as ℛI|sI⟩ = |s2n, s2n − 1, …, s1⟩ ≡ |ℛI(sI)〉. 
This operation is graphically shown in Fig. 1B, where the state of each 
site of I, represented as a blue line, is “contracted” with the state of 
the mirror symmetric site.

The MBTI     ̃  Z   ℛ    probes the action of the reflection symmetry on 
the many-body state |⟩. Using tensor-network theory, one can 
show analytically that, for the ground state of a gapped many-body 
Hamiltonian (e.g., HeSSH),     ̃  Z   ℛ    approaches a quantized value in the 
thermodynamic limit n, N → ∞ (17). The typical value of n required 
to achieve convergence is determined by the correlation length in 
the system and is discussed in detail below. For our model Eq. 1, the 
phase diagram evaluated by the MBTI     ̃  Z   ℛ   , calculated numerically 
using the density matrix renormalization group (DMRG) method (see 
Materials and Methods for details), is shown in Fig. 1C. Three phases 
can be identified therein: (i) a phase with antiferromagnetic order 
where reflection symmetry is spontaneously broken with     ̃  Z   ℛ   = 0 , 
(ii) the trivial SPT phase with     ̃  Z   ℛ   = + 1 , and (iii) the nontrivial SPT 
phase with     ̃  Z   ℛ   = − 1 .

The MBTI     ̃  Z   ℛ   , which is a highly nonlocal and nonlinear functional 
of the reduced density matrix I, can be measured with randomized 
measurements, with the following recipe (as illustrated in Fig. 1D): 
(i) One first prepares the ground state |⟩ via, e.g., adiabatic state 
preparation (see a later section for details). (ii.a) One applies to |⟩ 
a unitary operation   U  ℛ    of the form   U  ℛ   =  ⊗ i=1  2n    U  i   , with Ui = U2n−i+1. 
The unitaries Ui (i = 1,2, …, n) are drawn randomly from the circular 
unitary ensemble (CUE) defined on the local Hilbert spaces of in-
dividual spins. This type of random unitaries with spatial reflection 
symmetry (i.e., with a configuration U1U2…Un | Un…U2U1 as shown 
schematically in Fig. 1D) will be essential to be able to extract     ̃  Z   ℛ    
from randomized measurements. Each local unitary Ui can be de-
composed in products of spin rotations along two axes (x,z) and can 
thus be generated with high fidelity in quantum simulators with 
single-site control, as also shown in recent experiments (32). Note 
that the impact of potential imperfections, such as miscalibration 
and decoherence, has been studied in detail in (42), showing the 
robustness and the applicability of protocols relying on randomized 
measurements in state-of-the-art quantum devices based on Rydberg 
atoms, trapped ions, or superconducting qubits. (ii.b) One measures 
the occupation probabilities    P   U  ℛ    ( s  I   ) = 〈  s  I   |   U  ℛ     I   U  ℛ  †    |   s  I   〉   of the basis 
states sI, by performing projective measurements in the basis sI. 
(iii) One repeats (i) to (ii) for many independently sampled random 
unitaries Uℛ.

Given the set of outcome probabilities PUℛ(sI), one obtains first 
  Z  ℛ    from

   Z  ℛ   =  2   n  ∑ 
 s  I  
      (− 2)   − 1 _ 2 D[ s  I  , ℛ  I  ( s  I  )]    ̄   P   U  ℛ    ( s  I  )    (3)

Here,   ⋯    ¯    denotes the ensemble average over the random unitaries 
and D[sI, ℛ(sI)] ≡ #{i ∈ I|si ≠ s2n−i + 1} is the Hamming distance be-
tween |sI⟩ and |ℛI(sI)〉. Equation 3 can be proven using the two- 
design identities of the CUE (see Materials and Methods) and shows 
that the MBTI   Z  ℛ    can be directly extracted from the statistics of 
randomized measurements. Second, the purity   Tr (      I  1    

2   )     (and similarly 
  Tr [      I  2    

2   ]    ) is estimated using the relation (31, 32)

   Tr (      I  1    
2   )   =  2   n    ∑ 

 s   I  1    ,s ′   I  1    
    (− 2)   −D[ s   I  1    ,s ′   I  1    ]    ¯̄  ̄           P   U  ℛ     ( s   I  1    )  P   U  ℛ    (s  ′   I  1    )    (4)
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with the reduced probabilities    P   U  ℛ    ( s  I   ) = Tr (   |  s   I  1     〉〈  s   I  1     |  U  ℛ      I    U ℛ  †   )    . Thus, 
we obtain the normalized MBTI from the second-order correlations 
of randomized measurements, implemented with local random 
operations with a distribution that is tailored to identify a certain 
symmetry (here, the reflection symmetry) of the many-body quantum 
state. This is the key idea in our approach, and we show below how 
to apply it to measure any MBTI. For illustration, we show in Fig. 1E 
the value of     ̃  Z   ℛ    (i) calculated from the DMRG method (line) and 
(ii) estimated from simulated randomized measurements (dots). They 
coincide with each other within the statistical errors that originate 
from the finite number of unitaries NU and the finite number of 
projective measurements per unitary NM. A detailed discussion 
about the statistical errors and imperfections for the MBTIs (    ̃  Z   ℛ    
here and     ̃  Z   T    below) estimated from randomized measurements can 
be found in a later section and the Supplementary Materials.

Partial time-reversal invariant
We now present the protocol to measure the MBTI associated with 
the time-reversal symmetry     ̃  Z   T   =  Z  T   /  (   [  Tr (      I  1    

2   )  +Tr (      I  2    
2   )   ]   / 2 )     

3/2
   

(17, 25), with
    Z  T   = Tr (    ρ  I    u  T    ρ I  

 T  1     u T  †   )     (5)

Here, T1 denotes the partial transpose operation on the partition 
I1, and   u  T   =  ∏ i∈ I  1         i  

y   is the unitary part of the time-reversal operator. 
The contraction operation resulting in   Z  T    is illustrated graphically 
in Fig. 2A.

The MBTI     ̃  Z   T     is a nonlinear functional of two copies of the 
(partially transposed) density matrix I, which can be measured 
via the following recipe (Fig. 2B). After (i) the state preparation, we 
perform two experiments: (ii.a.1) In the first experiment, we apply 

A

B

D E

C

′

′

′

δ
δ

δ

Fig. 1. Measuring the MBTI   Z  ℛ    for the extended bosonic SSH model. (A) Schematic illustration of the model Eq. 1, where the nearest-neighbor spin-exchange coefficients 
alternate between the bonds. (B) The partial reflection invariant   Z  ℛ    (Eq. 2) is defined as the expectation value of a partial reflection operator ℛI (visualized by the blue 
lines) for the many-body state |〉. The dashed line between the intervals I1 and I2 indicates the reflection center. (C) In terms of the normalized invariant      ̃ Z   ℛ   , the full-phase 
diagram of the extended bosonic SSH model is revealed here for a system size of N = 48 spins and n = 6 reflected pairs of spins. We find three phases with different quantized 
values of     ̃ Z   ℛ   . (D) Protocol to measure     ̃ Z   ℛ    via statistical correlations between randomized measurements, implemented with local random unitaries applied symmetrically 
around the central bond. (E) The results of simulated experiments allow us to identify topological phase transitions. The solid lines are results from DMRG, whereas the 
dots with error bars represent estimations from simulated randomized measurements with NU = 512 unitaries and NM = 256 measurements per unitary.
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  U T  (1)  =  U   I  1      u  T   ⊗  U   I  2     , with   U   I  1     =  ⊗ i=1  n    U  i    and   U   I  2     =  ⊗ i=n+1  2n    U  i   , each Ui 
being taken independently from the CUE. (ii.b.1) We measure the 
probabilities   P   U T  (1)   ( s  I  )  (see the left panel of Fig. 2B). (ii.a.2) In a second 
experiment, we use the unitaries   U T  (2)  =  U  I  1    *   ⊗  U   I  2     . (ii.b.2) We mea-
sure   P   U T  (2)   ( s  I  )  (see the right panel of Fig. 2B). (iii) We repeat the two 
experiments (i and ii) with different unitaries Ui and estimate

   Z  T   =  2   2n    ∑ 
 s  I  ,s ′  I  

    (− 2)   −D[ s  I  ,s ′  I  ]    ̄ ¯  ̄             P   U T  (1)   ( s  I   )  P   U T  (2)   (s  ′  I  )   (6)

from cross-correlations of the two experiments. In addition, the 
purity to normalize   Z  T    to     ̃  Z   T    is obtained from the same experimental 
data using the relation Eq. 4.

Equation 6, which is also proven in Materials and Methods, 
shows that the partial time-reversal MBTI can be accessed from 
correlations between measurements using random unitary opera-
tions, which are complex conjugated. In Fig. 2C, we compare values 
of     ̃  Z   T    obtained with the DMRG method with the ones estimated 
from finite number of randomized measurements. We see similar 
behavior of     ̃  Z   T    in Fig. 2C compared with the one of     ̃  Z   ℛ    as in Fig. 1E 
but with larger error bars and deviation. This is because of the fact 
that the statistical errors scale differently as functions of NU, NM, 
and n (see the Supplementary Materials). The deviation and error 
bars can be reduced by increasing both NU and NM. Moreover, the 
solid lines in Figs. 1E and 2C are similar for the current case, 
because both the reflection and time-reversal symmetries are present 
in the Hamiltonian. The MBTIs can behave completely different for 
the case that one of the protecting symmetries is broken but the 
many-body ground state is still topological (see below and the sec-
tion on ‘Probing the breaking and the protection of symmetries’).

In Fig. 2D, we also show that by extracting     ̃  Z   T    (or similarly,     ̃  Z   ℛ   , 
which is not shown here for conciseness) for different n, one can 
measure the correlation length  of SPT phases, i.e., the characteristic 
length above which MBTIs become quantized. In particular, one 
can identify quantum critical points separating different SPT phases 
from the divergence of .

The two examples given above illustrate how to access MBTIs 
from the statistics of measurements performed after correlated local 
random unitary operations. In the Supplementary Materials, we 
show how to access MBTIs for internal symmetries and combination 
of symmetries. We also show how to identify the breaking/protection 
of different symmetries in a later section. Combined together, they 
provide a complete set of protocols to experimentally probe the 
classification of one-dimensional bosonic SPT phases.

Statistical errors and imperfections
Having described our main results relating randomized measure-
ments to the MBTIs     ̃  Z   ℛ    and     ̃  Z   T   , we now comment on various 
potential sources of errors in implementing our protocol. First, 
statistical errors are due to the finite number of repetitions of the 
experiment used to estimate the statistical correlations between 
randomized measurements. As detailed in the Supplementary 
Materials, we find that the typical required number of measure-
ments to access MBTIs within a given accuracy (scaling as 21.5n to 
access   Z  ℛ    for instance) are very similar to the requirements to mea-
sure state purities (31, 32) and thus compatible with state-of-the-art 
experimental platforms of Rydberg atoms, trapped ions, and super-
conducting qubits with high repetition rates. Randomized measure-
ments also feature a natural robustness with respect to decoherence, 

A

B D
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σ σ

σ σ

σ

σ

δ
δ

′

′

′

Fig. 2. Probing the MBTI   Z  T    with randomized measurements. (A) Graphical representation of the definition of the time-reversal invariant ZT (Eq. 5) involving partial 
transpose (red lines) and partial swap (blue lines) operations. (B) Experimental protocol to measure   Z  T    with two experiments, which are correlated using randomized 
measurements. To account for the anti-unitarity of the time-reversal symmetry, the local random unitaries applied in I1 (red) in the two experiments are complex conjugate 
to each other. (C) Simulated measurements of     ̃  Z   T    (dots with statistical error bars, with NU = 768, NM = 512), revealing the topological phase transitions in the extended 
bosonic SSH model as a function of J′ = J for two values of . Solid lines are calculated with the DMRG method, in a system with N = 48 sites, and n = 6 per interval I1 and I2. 
(D)     ̃  Z   T    converges as a function of the partition size n to the quantized values ±1 for the case of  = 0.25. Different colors represent different values of J′ = J. Inset: The 
divergence of the corresponding correlation length , extracted from an exponential fit on the first three values of n, can be used to detect the quantum critical point 
between the topological trivial (with     ̃  Z   T    = 1) and nontrivial (with     ̃  Z   T    = −1) phases.
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readout errors, and errors in the implementations of random 
unitaries (33, 42), because they are based on extracting relevant 
quantities from ensemble averages (and not from individual mea-
surements). We thus expect our protocols to allow faithful measure-
ments of MBTIs in various experimental platforms. In the following, 
we illustrate our protocols by means of two important applications: 
the dynamical building-up of nontrivial topology during the adiabatic 
preparation of an SPT phase and the identification of the protecting 
symmetry group.

Monitoring the dynamical building-up of topology
The MBTIs     ̃  Z   ℛ    and     ̃  Z   T    can be defined for an arbitrary many-body 
quantum state |⟩ besides the ground state as described above. Thus, 
we can also use the presented measurement protocols to monitor 
the preparation of an SPT state |(t)⟩ as a function of time, which 
facilitates the visualization of the dynamical building-up of topology 
experimentally. For concreteness, we consider the adiabatic state 
preparation with a time-dependent Hamiltonian

  H(t ) =  H  eSSH   + f (t ) H  N e ́  el    (7)

where   H  N e ́  el   =   ∑ i      (− 1)   i    i  
z   is a staggered magnetic field term with 

a strength  ≫ J′, J. We always set the function f(t) to satisfy f(t = 0) = 
1 and f(t = tF) = 0. At time t = 0, the system is initialized in the Néel 
state |(t = 0)⟩ = |↓↑↓ …⟩. As an example, we adopt the function 
f(t) = (t/tF − 1)4 to adiabatically drive the system to the ground state 
of HeSSH at the final time t = tF. Our protocols give access to the 
time-dependent values of MBTI     ̃  Z   T   (t ),     ̃  Z   ℛ  (t) , obtained using the 
experimental recipe described above with random unitaries applied 
on the time-dependent many-body quantum state |(t)⟩. We illustrate 
the emergence of quantized values of the MBTI     ̃  Z   ℛ  (t)  [the results 
for     ̃  Z   T   (t)  are similar and are not shown for conciseness], associated 
with the preparation of the SPT phases, in Fig. 3A. Note that the 
preparation time JtF = 20 is compatible with the coherence time 
achieved in the Rydberg experiment realizing the Haldane phase of the 
bosonic SSH model (22). As shown in Fig. 3B, the values of     ̃  Z   ℛ  ( t  F  )  
at the end of the preparation t = tF can be used to detect the quality 
of the preparation of an SPT phase: For JtF ≫ 1, the preparation is 
perfectly adiabatic, and the values of the MBTI correspond to the 
ones of the ground state wave function (as presented in Figs. 1 and 2). 

For JtF ∼ 1, the correlations in the wave function do not extend over 
the full system, as in the true SPT ground state, but only extend to 
certain characteristic length scale nc. Consequently, for n ≫ nc, the 
many-body invariant tends to zero. We expect a similar behavior for 
a scenario where |(t = tF)⟩ is replaced by a thermal state, and nc by 
a “thermal length” describing the range of correlations. Our protocols 
can also be used to probe topology in non-equilibrium systems (43).

Probing the breaking and the protection of symmetries
The MBTIs     ̃  Z   ℛ    and     ̃  Z   T    behave similarly (cf. Figs. 1E and 2C) for the 
model Hamiltonian HeSSH in Eq. 1, because both reflection and 
time-reversal symmetries are respected. In addition to identifying 
the topology, measuring MBTIs also provides us with the ability to 
experimentally study the protection mechanism of SPT phases. In 
particular, SPT order can still exist in the absence of certain internal 
symmetries (thus, string order being absent), provided at least one 
protecting symmetry is present (41). To illustrate this effect with MBTIs, 
we add here the term

    H  B   = B  ∑ 
j=1

  
N−1

   (     j  x    j+1  z   −   j  z    j+1  x   )     (8)

to the original Hamiltonian HeSSH. In the Hamiltonian H = HeSSH + 
HB, the reflection and D2 symmetries are explicitly broken, but the 
time-reversal symmetry is respected (43). Thus, the ground state of 
H = HeSSH + HB can still exhibit nontrivial SPT order, protected solely 
by the time-reversal symmetry. This is encoded in the values of the 
MBTIs and can thus be revealed experimentally via our protocols. 
As shown in Fig. 4, the partial time-reversal MBTI     ̃  Z   T    converges to 
±1 for n → ∞, whereas the partial reflection MBTI     ̃  Z   ℛ    approaches 0 
as n → ∞.

DISCUSSION
To conclude, the use of randomized measurements to probe topo-
logical properties of the wave function is a new paradigm that 
enables the experimental classification of many-body topological 
quantum phases. While we have focused our study on unidimensional 
SPT phases, our protocols also open the possibilities for probing 
two-dimensional SPT phases (44), as well as identifying different 

A B
′

′

′

Fig. 3. Monitoring the adiabatic preparation of an SPT state. (A) Starting from a trivial Néel state without reflection symmetry     ̃  Z   ℛ  (t) , the ground state of HeSSH is 
adiabatically prepared. This is monitored by the evolution of     ̃  Z   ℛ  (t) , which evolves to quantized values ±1 at late times. The dynamical buildup of long-range SPT order—
for intermediate times up to a certain length scale—is indicated at intermediate times by the increasing magnitude of     ̃  Z   ℛ  (t)  for decreasing number n of reflected pairs of 
spins. Here, we set JtF = 20. (B) The convergence of     ̃  Z   ℛ  ( t  F  )  to ±1 as a function of the total preparation time tF indicates that, for sufficiently long preparation times, the 
ground states in trivial and topological states are prepared with high fidelity. For the simulations, we use the time-evolving block decimation (TEBD) algorithm (as detailed 
in Materials and Methods) and set the parameters as  = 0.25,  = 40J, and N = 48.
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SET phases (28, 29, 45, 46). The accompanied symmetries, e.g., 
reflection and time-reversal symmetries, for SET phases (29) can be 
distinguished via the same MBTIs as for SPT phases (defined in 
compactified one-dimensional geometries) and thus can also be probed 
via randomized measurements. We also note that our protocol—
presented in this work for spin systems—can also be realized in fer-
mionic systems (24) via global random unitaries implemented for 
example with random quenches in Hubbard systems (31).

As a future direction, our work also suggests that anyonic statistics 
describing the essence of topologically ordered states can be accessed 
via randomized measurements, extending, in particular, approaches 
based on impurities (47) or linear response (48) to measure the many- 
body Chern number of fractional quantum Hall states. Moreover, 
modular matrices revealing anyonic statistics (49) can be expressed as 
spatial reflection operators in a form analog to     ̃  Z   ℛ    on torus geometries 
(50) and could thus be measured via randomized measurements.

MATERIALS AND METHODS
In this part, we present the proofs of Eqs. 3 to 6, relating MBTIs to 
statistical correlations of randomized measurements, together with 
the details on our DMRG and TEBD (time-evolving block decimation) 
simulations. Here, we also focus on the case of spin-1/2 systems. Our 
formulas can, however, be extended straightforwardly to the cases 
with higher internal dimensions (spins 1, 3/2, etc.).

Random unitary calculus
We begin by summarizing elementary properties of random unitaries 
from the CUE. We discuss the minimal case of two spins, each with 
Hilbert space ℋ. These can be either (i) two spins located at different 
lattice sites in a single many-body system (partial inversion invariant) 
or (ii) two spins located at the same site but realized in two different, 
sequentially performed, experiments (time-reversal invariant). Given 
a two-spin operator O acting on both spins with total Hilbert space 
H⊗2, we define the unitary twirling channel

  (O ) ≡   ̄ ¯  ̄    U   †  ⊗  U   †  OU ⊗ U    (9)

where   …    ¯   denotes the average over random unitaries U taken from 
the CUE (i.e., the average with respect to the Haar measure on the 
group of unitary matrices on ℋ). Using the two-design identities of 
the CUE, we find (51).

  (O ) =   1 ─ 3   (  Tr [ O ] −   1 ─ 2   Tr [ 𝕊O ]  )    1  2   +   1 ─ 3   (  Tr [ 𝕊O ] −   1 ─ 2   Tr [ O ]  )  𝕊  

where  𝕊 =  ∑ s,s′     | s, s′〉〈s′, s|  denotes the swap operator. We also define 
the closely related isotropic twirling channel (52)

  (O ) ≡    
¯¯¯

                 U   †  ⊗  ( U   * )   †  OU ⊗  U   *   =  [( O    T  2    )]   
 T  2  

   (10)

Here, ( · )T2 denotes the partial transpose with respect to the second 
spin. For the following proofs, we will use an operator    ̃  O   ≡ 2  ∑ s, s ′        
(− 2)   −D[s, s ′  ]  | s,  s ′  ⟩⟨s,  s ′  | , which is diagonal in the computational basis, 
and fullfills (51)

  (  ̃  O   ) = 𝕊,  (11)

  Ψ(  ̃  O   ) =  𝕊    T  2    =  ∑ 
s,s′

     | s, s〉〈 s ′  ,  s ′   | ≡ 𝕋  (12)

In the following, we show how to use the identities (Eqs. 11 and 12) 
to prove Eqs. 3 to 6 relating randomized measurements and MBTIs.

Partial reflection invariant from randomized measurements
The MBTI Zℛ is inferred from statistical correlations of randomized 
measurements, performed on a quantum state I, which are im-
plemented by applying spatially correlated local random unitaries 
of the form   U  ℛ   =  ⊗ i=1  2n    U  i   , with Ui = U2n−i+1 for i = 1, …, n. To prove 
Eq. 3, we first note that its right-hand side can be rewritten as an 
expectation value of an operator OR

    

  E  ℛ   ≡  2   n   ∑ 
 s  I  

      (− 2)   − 1 _ 2 D[ s  I  , ℛ  I  ( s  I  )]   ̄   P   U  ℛ    ( s  I  ) 

      = Tr  [      ̄ ¯   U ℛ    †    O   ℛ    U   ℛ       I   ]       

     = Tr  [     ⊗  
i=1

  
n   

    ̄ ¯¯  ̄ 

      

 (    U  i  
†  ⊗  U i  

 †  )    O  ℛ,i   (    U  i   ⊗  U  i    )     I   ]    

   

with   O  ℛ   =  ⊗ i=1  n    O  ℛ,i   , which is a tensor product of operators

   O  ℛ,i   = 2  ∑ 
 s  I[i]  

     (− 2)   − 1 _ 2 D[ s  I[i]  , ℛ  I  ( s  I[i]  )]  |  s  I[i]   〉〈  s  I[i]  |  (13)

acting on pairs of spins I[i] = (i, 2n − i + 1). We also used the inde-
pendence of the unitaries Ui and Ui′ (for i ≠ i′ with i, i′ = 1, …, n) 

A B

′ ′
Fig. 4. Detecting the protecting symmetries for the SPT states. In the presence of the symmetry-breaking perturbation HB (Eq. 8), the topological phase in the modified 
Hamiltonian H = HeSSH + HB is (only) protected by the time-reversal symmetry. (A) This is detected by the partial time-reversal MBTI     ̃  Z   T   —converging to the quantized 
values ±1 for increasing n—which still identifies the topological phase transition. (B) On the contrary, the partial reflection MBTI     ̃  Z   ℛ   —approaching 0 with increasing 
n—shows that the reflection symmetry is explicitly broken for a nonzero B in Eq. 8. We choose B = 0.1J,  = 0.3, and N = 48.
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applied to different pairs of spins I[i] and I[i′], respectively. Using 
Eq. 11 with the identification   ℛ  I[i]   → 𝕊 , and   O  ℛ,i   →   ̃  O   , we find

     ̄ ¯¯¯    (    U i  
†  ⊗  U i  

†  )   O  ℛ,i   (    U  i   ⊗  U  i    )   =  ℛ  I[i]     

and therefore obtain

    E  ℛ   = Tr [     ⊗  
i=1

  
n
    ℛ  I [  i ]      ρ  I   ]   =  Z  ℛ     

Partial time-reversal invariant from randomized 
measurements
The MBTI   Z  T     is inferred from the statistical correlations of correlated 
randomized measurements on two (sequential) experiments, both 
preparing a quantum state I. These are implemented by applying 
to the sites in an interval I = I1 ∪ I2 local random unitaries   U T  (1)  =  U   I  1      
u  T   ⊗  U   I  2      (experiment 1) and   U T  (2)  =  U  I  1    

*   ⊗  U   I  2      (experiment 2) 
with   U   I  1,2     =  ⊗  i∈ I  1,2      U  i    and   u  T   =  ⊗  i∈ I  1       i  

y  , respectively. To prove Eq. 6, 
we rewrite its right-hand side as

     

   E  T   ≡  2   2n   ∑ 
   s  I  , s  I  ′ 
       (   − 2 )     −D [   s  I  , s  I  ′  ]     ¯¯  ̄             P    U T  

 

 (  1 )      (     s   I   )    P    U T  

 

 (  2 )      (     s   I   ′  )   

     
     = Tr [  

   
  ̄
¯¯¯

 ̄   
 

 (    U   T   (  1 )    )     
†
  ⊗   (    U

 
  T   (  2 )    )     

†
   O   T     U   T   (  1 )    ⊗  U   T   (  2 )     (    ρ  I   ⊗  ρ  I   )    ]   

     
    = Tr [      ⊗  

i∈ I  1    
    
¯¯¯¯

     U  i  
†  ⊗   (     U  i  

*  )     
†
   O  T,i    U   i    ⊗  U  i  

*   
    

       ⊗  
i∈ I  2    

    ̄ ¯  ̄    U  i  
†  ⊗  U  i  

†   O   T,i    U  i   ⊗  U  i    (      ̃  ρ   I   ⊗  ρ  I   )   ]   

    
   

  (14)

Here, we have defined      ~ ρ   I   ≡  (    u  T   ⊗  1   I  2     )    ρ  I    (    u T  †   ⊗  1   I  2     )     and used the 
(spatial) tensor product structure of the operator   O  T    = ⊗i ∈ I  O  T   , i with

   O  T,i   = 2   ∑ 
 s  i  , s  i  ′ 

      (   − 2 )     −D [   s  i  , s  i′   ]    |  s  i   〉〈  s  i   | ⊗ | s  i  ′  〉〈  s  i  ′ |  (15)

Using Eqs. 11 and 12 with the identification   𝕊  i   → 𝕊 ,   𝕋  i   → 𝕋 , and 
  O  T,i   →   ̃  O   , we thus directly obtain

   
  E  T   = Tr [     ⊗  

i∈ I  1  
    𝕋  i     ⊗  

i∈ I  2  
    𝕊  i   (      ̃  ρ   I   ⊗  ρ  I   )   ]    

    
 = Tr [     (      ̃  ρ   I   )      T   I  1       ρ  I   ]   =  Z  T   

    (16)

Details on the DMRG and TEBD simulations
DMRG and TEBD simulations for the ground states and time- 
dependent states, respectively, were realized using the ITensor 
Library (http://itensor.org) in the framework of matrix product 
states. To get a ground state, the model was numerically solved with 
open-boundary conditions, with an additional small pinning field 
acting on the first site     p     1  z   , with p = 0.05J, to select one of the two 
degenerate ground states present in the topological phase for open 
boundary conditions (53). Note that in experiment with large system 
size N, the system would always choose one of the degenerate ground 
states because a cat state (i.e., the superposition of the two degenerate 
ground states) is always fragile to perturbations (as simulated by the 
small pinning field). We used a maximum bond dimension of D = 512. 

The quasi-exact MBTIs were extracted from direct contractions of 
the matrix product states representing the ground states (as shown 
by the solid lines in Figs. 1, 2, and 4). The estimations for randomized 
measurements were obtained using a sampling algorithm of the 
occupation probabilities PU(s) for matrix product states (54).

The simulations for the time-dependent state for the adiabatic state 
preparation (as in Fig. 3) were realized via the TEBD algorithm with 
a time step Jdt = 0.001 and a maximum bond dimension D = 512.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/15/eaaz3666/DC1
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