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Abstract
Background: The human placenta, a non-neuronal tissue, contains an active cholinergic system
comprised of acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase (AChE),
and high affinity muscarinic receptors. The cell(s) of origin of placental ACh and its role in
trophoblast function has not been defined. These studies were performed to define the cellular
location of ACh synthesis (ChAT) in the human placenta and to begin studying its functional role.

Results: Using immunohistochemical techniques, ChAT was observed primarily within the
cytotrophoblasts of preterm placentae as well as some mesenchymal elements. Similar intense
immunostaining of the cytotrophoblast was observed for endothelium-derived nitric oxide
synthase (eNOS) suggesting that ACh may interact with nitric oxide (NO)-dependent signaling
pathways. The ability of carbamylcholine (CCh), an ACh analogue, to stimulate a rise in intracellular
Ca++ and NO production in trophoblasts was therefore tested using the BeWob30 choriocarcinoma
cell as a model system. First, CCh significantly increased intracellular calcium as assessed by
fluorescence microscopy. We then examined the ability of CCh to stimulate NO production by
measuring total nitrite/nitrate production in conditioned media using chemiluminescence-based
analysis. CCh, alone, had no effect on NO production. However, CCh increased measurable NO
approximately 100% in the presence of 10 nM estradiol. This stimulatory effect was inhibited by 1
(micro)M scopolamine suggesting mediation via muscarinic receptors. Estradiol, alone, had no
effect on total NO or eNOS protein or mRNA.

Conclusion: These data demonstrate that placental ChAT localizes to the cytotrophoblast and
some mesenchymal cells in human placenta. It further suggests that ACh acts via muscarinic
receptors on the trophoblast cell membrane to modulate NO in an estrogen-dependent manner.

Background
The presence of acetylcholine (ACh) in the human pla-
centa, a non-innervated tissue, was first reported in 1933
by Chang and Gaddum [1]. Subsequent studies have doc-
umented the presence of all components of the choliner-

gic system in this tissue [see ref. [2] for a review]. The
placenta-derived acetylcholine synthesizing enzyme,
choline acetyltransferase (ChAT), was identified and
reported by Comline in 1954 and purified to homogene-
ity by Hersh and Peete in 1977 [3,4]. Fant and Harbison
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later confirmed the presence of its degradative enzyme,
acetylcholinesterase (AChE), and identified the presence
of high affinity muscarinic receptors [5,6]. Subsequent
studies have confirmed that at least four of the five known
muscarinic receptor subtypes and all of the α-subunits of
the nicotinic receptor exist in placental tissue [7-10].
However, their temporal and cell-specific expression pat-
terns have not been fully defined.

Harbison and Sastry demonstrated that the placental con-
tent of ACh varies with gestational age, reaching a peak at
approximately 20–22 weeks gestation and declining
toward term [11]. This developmental pattern paralleled
the activity of ChAT, suggesting that the placental cholin-
ergic system may be involved in regulating developmental
processes relevant to placental growth. The cellular source
of placental ACh and its role(s) in placental biology are
not known. Initial interests focused on its potential role in
regulating placental vascular tone and in regulating amino
acid transport. However, those studies have not been con-
clusive. Carbamylcholine (CCh), an ACh agonist, was
shown to stimulate Ca++ uptake in membrane vesicles
derived from the microvillous membrane brush border of
the human placenta suggesting it may modulate Ca++-sen-
sitive signaling events at the plasma membrane [6]. Sub-
sequent studies have also demonstrated the expression of
the Ca++-dependent, endothelial isoform of nitric oxide
synthase (eNOS) in human placenta [12-14]. This iso-
form has been shown to respond to cholinergic stimula-
tion in other tissues [15,16], suggesting potential
signaling interactions may also exist in the placenta. The
purpose of this study was to determine the site(s) of ChAT
in the human placenta and to examine potential choliner-
gic/NO signaling interactions.

Results
Immunolocalization of placental ChAT and eNOS
Figure 1 represents a placental section obtained at 23
weeks gestation. As shown in Panels A-C, the cytotro-
phoblast stained intensely positive for ChAT. Some pla-
cental stromal cells were also positively stained. These
cells have not been identified but may represent placental
macrophages (Hofbaur cells) since they are known to
express ChAT. As seen in Panel C, the unstained multinu-
cleated syncytium can be clearly delineated from the
underlying, stained cytotrophoblasts. No immunostain-
ing was detected using non-immune serum (Panel D).
Sections taken from term placentae exhibit immunostain-
ing in the syncytiotrophoblast cell layer, as well, suggest-
ing the mature trophoblast is capable of producing ACh as
well (data not shown).

We also noted that the pattern of expression of ChAT was
very similar to that observed for the endothelial isoform
of nitric oxide synthase, eNOS. In Figure 2, the cytotro-

phoblast of a 23 week placenta also stained intensely for
eNOS. Less intense staining was noted in the syncytium.
Some capillary endothelial cells and perivascular stromal
cells were also noted to express eNOS immunoreactivity.

Effect of CCh on Ca++ rise in the BeWob30 cell
The observed overlap in expression of ChAT and eNOS
suggested that the placental cholinergic system could
interact with NO-dependent signaling pathways to regu-
late trophoblast function. To begin to examine this we
used the BeWob30 choriocarcinoma cell line as a model
system. This system is an appropriate model because this
cell line is derived from human cytotrophoblasts and has
been shown to express both eNOS and ChAT [17,18].
Since eNOS activity is sensitive to calcium, we first deter-
mined if CCh stimulated Ca++ rise in the BeWob30 cell. As
shown in Figure 3, CCh stimulated a rapid rise of Ca++,
over a concentration range of 1 (micro)M – 1 mM.

Effect of CCh on total NO release
We next sought to determine if CCh stimulated the pro-
duction of NO in the BeWob30 cell. To study NOS activity,
we determined the release of NO as measured by total
nitrite/nitrate content in the conditioned media using a
chemiluminescence analyzer. The cells were grown to
confluence and placed in serum-free medium 24 for
hours. The cells were then treated with 10 mM CCh or 50
ng/ml vascular endothelial cell growth factor (VEGF) for
30 minutes. Based on previously published data [5] using
a related choriocarcinoma cell line (JEG-3) we used a con-
centration of CCh that was necessary to inhibit 80% of
[3H]-QNB binding to cell surface muscarinic receptors (10
mM) and likely to elicit a measurable effect (Ki = 0.13
mM). The Kd value for [3H]-QNB binding in this cell line
is 180–245 pM, consistent with classic muscarinic recep-
tors. Tandem plates were pre-treated with 10 nM estradiol
for 16 hours prior to stimulation with CCh or VEGF. Estra-
diol was dissolved in 100% ethanol at a concentration of
100 (micro)M. This stock solution was diluted to the final
contentration of 10 nM in DMEM, 0.1% BSA immediately
prior to its addition to the cells. The media was then har-
vested and analyzed for total nitrite/nitrate content. Etha-
nol diluted to 0.01% was also added to the cells not
containing estradiol to control for potential diluent
effects. The cells were washed and re-fed with fresh
DMEM, 0.1%BSA prior to the addition of CCh or VEGF.
The values were expressed as a percentage of control. As
shown in Figure 4, both CCh and VEGF had no effect on
NO release in the BeWob30 cells. However, when the cells
were pretreated with 10 nM estradiol, CCh stimulated a
100% increase in NO release in BeWob30 cells. VEGF, by
contrast, continued to have no effect on NO release.
Finally, 1 (micro)M scopolamine was able to completely
inhibit the effect of CCh in the presence of estradiol sug-
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gesting that the effect of CCh was mediated by one or
more of the muscarinic receptor subtypes.

Effect of estradiol on eNOS activity
The mechanism by which estradiol sensitized the
BeWob30 cells to CCh is unknown. We therefore sought to
determine if estradiol increased cellular levels of eNOS by
assessing eNOS protein levels by immunoblot analysis
and eNOS mRNA using semi-quantitative RT-PCR.

As shown in Figure 5 estradiol treatment did not increase
immunoreactive eNOS or eNOS mRNA. These data sug-
gest that estradiol does not up-regulate total cellular eNOS
in the BeWob30 cell. The possibility that estradiol increases
enzymatic activity has not been examined.

Discussion
We have demonstrated that multiple placental cells
express immunoreactive ChAT. Preterm placentae
strongly express ChAT in the cytotrophoblast as well as
some stromal elements. This is consistent with the report
by Sastry and Janson [18] demonstrating the presence of
ChAT enzymatic activity in BeWo and JAR choriocarci-
noma cell lines. The ability of multiple placental cell types
to express ChAT, as indicated by this study, suggests it
potentially regulates a variety of cell functions within the
placenta. We have previously shown that the placenta
expresses muscarinic receptors [5,6]. Subsequent reports
by others have suggested that multiple muscarinic recep-
tor subtypes (M1-M4) as well as all subtypes of the nico-
tinic receptor α-subunit are present in the placenta [7-10].
Each receptor subtype possesses distinct signaling capabil-

ities and thus determines the pharmacologic and biologic
specificity of cholinergic agonists. Potential cellular tar-
gets of cholinergic stimulation, therefore, are likely to
include several cell types influencing cell proliferation,
ion flux, secretory processes, cell motility, and cell differ-
entiation. The cell-specific expression of these receptor
subtypes and their expression throughout gestation have
not been defined but are likely to define important deter-
minants of its cholinergic responsiveness.

Placental ChAT expression overlaps that of eNOS, suggest-
ing that locally produced acetylcholine may stimulate
eNOS activity via Ca++-dependent mechanisms. The regu-
lation of calcium flux in the trophoblast is critical to fetal
and placental development. Molecular systems involved
in the cellular uptake and extrusion of calcium have been
identified in the BeWob30 choriocarcinoma cell [19,20].
We have provided evidence that CCh, an acetylcholine
analog, can stimulate a rise in cellular Ca++ and NO release
via muscarinic receptor-mediated pathways (scopolamine
sensitive) in the BeWob30 cell line. The mechanism(s) by
which CCh modulates intracellular Ca++ in this cell line is
not known. Interestingly, this stimulatory effect requires
the pretreatment with estradiol. The mechanism(s) by
which estradiol sensitizes the cell to CCh was not deter-
mined. Possibilities include genomic as well as non-
genomic mechanisms. Based on these studies, estradiol
pretreatment does not appear to regulate eNOS protein
levels or gene expression. We have not determined if estra-
diol regulates functional aspects of eNOS activity or alters
its subcellular location that may facilitate modulation of
eNOS activity, independent of its expression level. Alter-

Human placenta obtained at 23 weeks gestation was stained with anti-ChAT antibody as previously describedFigure 1
Human placenta obtained at 23 weeks gestation was stained 
with anti-ChAT antibody as previously described. Panels A-
C: Positive staining is noted in the cytotrophoblast layer and 
some cells within the mesenchymal compartment (100×). 
Panel D: Non-immune serum (40×).

Panels A – C: Human placenta obtained at 23 weeks gesta-tion was stained with anti-eNOS antibodies as previously describedFigure 2
Panels A – C: Human placenta obtained at 23 weeks gesta-
tion was stained with anti-eNOS antibodies as previously 
described. Panel A = 100×, Panel B = 100×, Panel C = 40×. 
Panel D: Non-immune serum (40X)
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natively, pathways important for NO degradation may be
affected, resulting in increased measurable NO.

The role of CCh-modulated NO in the trophoblast is not
known. Clearly secreted NO may play roles in maintain-
ing low resistance in the maternal and fetal vascular com-
partments. Several studies have suggested that NO may
play a role in angiogenesis and cell differentiation [21-
23]. Additional reports by Sakuragawa and colleagues
[24,25] have demonstrated non-neuronal ACh in amni-
otic epithelial cells, as well, indicating that cholinergic
regulatory activity is ubiquitous at the maternal-fetal
interface. The physiological significance of ACh-regulata-
ble NO at the placental-maternal interface remains to be
established.

Conclusion
This report demonstrates that ACh modulates the release
of NO by cells of trophoblastic lineage in an estrogen-
dependent manner. Additionally, they establish that the
expression of ChAT overlaps the expression of eNOS in

the human placenta suggesting that these signaling inter-
actions are likely to be physiologically relevant at the
maternal-fetal interface. Collectively, these findings sup-
port the hypothesis that the placental cholinergic system
interacts with nitric oxide and estrogen signaling path-
ways to regulate placental cell growth and/or function.

Methods
Source of placental tissue
Human placental tissue was obtained at various gesta-
tional ages immediately after delivery in accordance with
a protocol approved by the University of Texas-Houston
Medical School. The tissue was rinsed and fixed in phos-
phate-buffered formalin for 16–24 hours and imbedded
in paraffin.

BeWob30 cell culture
The b30 clone of the BeWo choriocarcinoma cell line was
propagated in Dulbecco's Modified Eagles Medium
(DMEM) supplemented with 10% fetal bovine serum
(FBS) in the presence of 100 units/ml penicillin and 100
(micro)g/ml streptomycin. When the cells were approxi-
mately 90% confluent, they were washed in serum free
media and placed in Keratinocyte Basal Media (KBM),
0.2% BSA, for 48 hours. Total RNA was then obtained
using the RNAeasy kit (Qiagen) per protocol. The RNA
was then size fractionated on a 1.5% formaldehyde agar-
ose gel to assess RNA quality. Cellular protein was
obtained by lysis of confluent plates of cells using 1 ml of
standard RIPA buffer (150 mM NaCl, 10 mM Tris, pH 7.2,
0.1% SDS, 1.0% Triton X-100, 1% Na-Deoxycholate, 5
mM EDTA) in the presence of 1 mM PMSF (phenylmeth-
ylsulfonyl fluoride) and 100 uM Na-orthovanadate. The
cells were lysed on ice and detached by scraping. The
detached cells were then aspirated through a 22 gauge
needle 10 times and centrifuged at 10,000 × g for 5 min-
utes and the pellet discarded. Protein content of the cell
lysate was determind using the Bio-Rad Protein Assay DC

per protocol.

Immunohistochemistry
Immunoreactive ChAT was detected using standard
immunohistochemical methods using a monoclonal anti-
body specific for ChAT (Chemicon) following the
Vectastain Elite protocol as previously described [26].
Similarly, eNOS was detected utilizing a monoclonal anti-
body purchased from BD Biosciences (San Jose, Califor-
nia). Small 0.5 × 0.5 cm. segments were cut and rinsed in
ice cold PBS. The tissue was then placed in phosphate
buffered formalin and imbedded in paraffin. Sections
were cut, deparaffinized and washed × 3 in phosphate
buffered saline, pH 7.4 (PBS) followed by 1% H2O2 in
PBS to block endogenous peroxidase activity. The sections
were then incubated for 30 minutes at 22°C in normal
goat serum (1:50 dilution in 1% bovine serum albumin).

CCh-stimulated Ca++ rise in BeWob30 choriocarcinoma cellsFigure 3
CCh-stimulated Ca++ rise in BeWob30 choriocarcinoma cells. 
Intracellular Ca++ was measured in response to various con-
centrations of CCh, 1 – 1000 (micro)M as previously 
described. Each line represents a distinct cell. Scopolamine 
1(micro)M completely inhibited the rise in CCh-stimulated 
Ca++ in the cells.
Page 4 of 7
(page number not for citation purposes)



Cell Communication and Signaling 2006, 4:4 http://www.biosignaling.com/content/4/1/4
The tissue was then rinsed and incubated overnight with a
1:500 dilution of anti-ChAT antibody at 4°C. Finally, the
sections were washed and incubated with secondary anti-
body, biotinylated goat, anti-mouse IgG 1:200 in 1:200
normal goat serum with 1% BSA, for 30 minutes at 22°C.
The sections were then washed and incubated with
Vectastain (Vector Laboratories, CA) avidin:biotinylated
enzyme complex (ABC) 30 minutes followed by 3-
3'diaminobenzidine (DAB) for 3 minutes at 22°C per
instructions. Finally, the sections were counterstained
with hematoxylin. Tandem sections were incubated with
1:500 dilution of non-immune mouse serum to identify
non-specific staining.

Measurement of Ca++ flux
Glass coverslips with cells were incubated for 10 minutes
at 37°C with the fluorescent molecule FLUO4-AM, 3
micromolar final concentration (Molecular Probes,
Eugene OR) in DMEM buffered with HEPES. Cells were
rinsed with DMEM and then transferred to the heating
stage. 1.0 ml of DMEM was added to the chamber and
placed on the microscope. Measurements of fluorescence
intensity of the Ca++ fluoroprobe and sequential image
recording of events were made on a Perkin Elmer (Gaith-
ersburg, MD) Concord system incorporating a Spectra-
Master multi-wavelength controller. Images were
captured by an Olympix AstroCam CCD4100 Fast Scan
camera (12 bit; 768 × 576: 1000 frames/sec; 9 micron res-
olution) every 43 milliseconds. Fluorescence data was
analyzed with a Merlin High Performance Ratio Fluores-
cence Workstation (Olympus America, Melville, NY).
Baseline data was taken for 15–20 seconds, then carba-
chol was added and data acquisition was continued for 1–
2 minutes.

NO quantitation
A chemiluminescence method (Sievers #280 NOA Instru-
ments, Boulder, CO) was used to measure total nitric
oxide (NO) as previously described [27]. Briefly, NO
released by cells in culture is immediately converted to its
oxidative products nitrate and nitrite. Vanadium chloride
III, a very strong reducing agent, was used to reduce nitrate
and nitrite into NO gas. Sampled gas reacts with ozone to
produce activated nitrogen dioxide (NO2). NO2 reverts to
the ground state by emitting electromagnetic radiation
that is detected by a photomultiplier tube and generates a
computerized digital signal. This signal is expressed quan-
titatively as NO concentration. A standard curve based on
known nitrate concentrations was used to calculate
unknowns and the observed values were expressed in
nanomolar concentrations.

Semi-quantitative RT-PCR
eNOS mRNA was measured using relative RT-PCR stand-
ardized against 18S RNA using the Quantum RNA Kit
(Ambion) per protocol. Primer sequences for human
eNOS were as follows:

Forward: 5'-CTGCTGCCCGAGATATCTTC-3'

Reverse: 5'-AAGTAAGTGTGAGAGCCTGGCGCA-3'.

This produced an approximately 421 bp fragment derived
from base positions 2158–2579 of the coding sequence.
The 18S internal control represented a fragment of 324
bp. Briefly, the linear range for eNOS amplification was
determined (25 cycles) and subsequent assays performed
under these conditions. 18S primer:competimer ration of
2:8 was found in preliminary experiments to yield opti-
mal results, relative to eNOS abundance. Reverse tran-
scription was carried per protocol at 42°C. PCR was then

The effect of estradiol on eNOS mRNA and protein expres-sionFigure 5
The effect of estradiol on eNOS mRNA and protein expres-
sion. BeWob30 cells were maintained in culture and exposed 
to estradiol (10 nM) as described. Cellular protein and 
mRNA were obtained and assessed for eNOS protein by 
immunoblot analysis and mRNA transcripts by semi-quantita-
tive RT-PCR. Each lane represents a unique sample and is 
representative of 2 separate experiments. C1, 2, 3 = individ-
ual control samples; E1,2,3 = individual E2-treated samples

Effect of CCh and VEGF on NO releaseFigure 4
Effect of CCh and VEGF on NO release. BeWob30 cells were 
exposed to CCh (10 mM) and VEGF (50 ng/ml) in the pres-
ence or absence of 10 nM E2 (estradiol) as previously 
described. Data represents the mean of triplicate determina-
tions of total media content of NO (nM) from 3 separate 
experiments. Mean ± S.E.M; * p ≤ .05.
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carried out following the vendors protocol for 25 cycles
(94°C × 30 sec, 55°C × 30 sec, 72°C × 30 sec.).

Immunoblot analysis
BeWob30 cells were grown in culture. 50 (micro)g aliquots
of total BeWob30 cell lysate was subjected to 4–20% SDS-
PAGE under reducing conditions followed by transfer to
nitrocellulose membranes. The membranes were then
blocked in 5% dried milk and incubated for 2 hours in
anti-eNOS antiserum (1:500 dilution) followed by wash-
ing and detection using a chemiluminescence detection
system (Amersham) per instructions.

Statistical analyses
The effects of different treatments on measurable NO, and
their interactions, were assessed using a 2-way factorial
analysis of variance (ANOVA).
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