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Time-ordered dysregulated ceRNA networks reveal disease
progression and diagnostic biomarkers in ischemic and dilated
cardiomyopathy
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Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two main causes of heart failure (HF). Despite similar
clinical characteristics and common “HF pathways”, ICM and DCM are expected to have different personalized treatment strategies.
The underlying mechanisms of ICM and DCM have yet to be fully elucidated. The present study developed a novel computational
method for identifying dysregulated long noncoding RNA (lncRNA)–microRNA (miRNA)–mRNA competing endogenous RNA
(ceRNA) triplets. Time-ordered dysregulated ceRNA networks were subsequently constructed to reveal the possible disease
progression of ICM and DCM based on the method. Biological functional analysis indicated that ICM and DCM had similar features
during myocardial remodeling, whereas their characteristics differed during progression. Specifically, disturbance of myocardial
energy metabolism may be the main characteristic during DCM progression, whereas early inflammation and response to oxygen
are the characteristics that may be specific to ICM. In addition, several panels of diagnostic biomarkers for differentiating non-heart
failure (NF) and ICM (NF-ICM), NF-DCM, and ICM-DCM were identified. Our study reveals biological differences during ICM and DCM
progression and provides potential diagnostic biomarkers for ICM and DCM.
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INTRODUCTION
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy
(DCM) are the two most commonly occurring etiologies for heart
failure (HF). Despite similar clinical characteristics, ICM and DCM
respond differently to the same medication and ICM has a worse
prognosis [1]. Nowadays, the understanding of ICM and DCM
remains incomplete. Moreover, due to strong similarities between
the two diseases, the clinical differentiation between ICM and
DCM currently depends mainly on the results of coronary
angiography, a procedure that is both invasive and expensive [2].
Currently, great effort is being made to investigate common HF

pathways and disease-specific characteristics in ICM and DCM [3–11].
At the transcription level, for one thing, microarray gene expression
profiles of myocardial samples and peripheral blood mononuclear
cells have been confirmed to be able to distinguish ICM from DCM
[3, 5, 6]. A study reported that the significantly differentially expressed
(SDE) genes shared in common between ICM and DCM were mainly
involved in cell proliferation and signal transduction, whereas the
uniquely expressed genes of ICM usually had catalytic activity, and
those of DCM were frequently involved in metabolism [4]. For
another, sequencing-based data have been applied to analyze the
expression levels of myocardial mRNAs, microRNAs (miRNAs), and
long noncoding RNAs (lncRNAs) in failing human hearts, and research
revealed that the expression profiles of lncRNAs had a higher
classification capability for failing hearts of different pathologies

compared with mRNAs and miRNAs [7]. At the proteome and
metabolome levels, gender-specific pathways in ICM and DCM have
been unveiled in myocardial samples [10]. In the same period,
commonalities of HF pathways and disease-specific metabolic
features were founded through the analysis of plasma samples, and
metabolite biomarkers for differentiating patients with ICM and DCM
were identified [11]. However, the underlying biological mechanisms
of ICM and DCM contributing to HF have yet to be fully elucidated,
and the above-mentioned studies were all performed at the single
molecular level, ignoring the interactions among molecules.
Both theoretical and experimental studies have demonstrated

that different types of RNA transcripts contain numerous miRNA
binding sites, and they can communicate with and regulate each
other through competing for shared miRNAs, thus acting as
competing endogenous RNAs (ceRNAs) [12, 13]. LncRNAs could
compete with miRNA target mRNAs for miRNAs, and thus realizing
mutual regulation [13]. This type of ceRNA has been reported in
cardiovascular diseases. For example, lncRNA NONMMU022555
contributes to cardiac fibrosis via acting as a ceRNA of let-7d, as
determined through a combination of in vitro and in vivo studies
on myocardial infarction hearts of mice [14]. LncRNA CYTOR might
function as a ceRNA of miR-155 to counteract miR-155-mediated
repression of IKBKE, and played a protective role in mice cardiac
hypertrophy [15]. However, the potential crosstalk of ceRNAs in
ICM and DCM has yet to be systematically investigated.
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In the present study, dysregulated lncRNA–miRNA–mRNA
ceRNA triplets (LMM-CTs) in ICM and DCM were systematically
identified, and time-ordered dysregulated ceRNA networks for the
two diseases were constructed. The workflow is shown in Fig. 1.
Characteristics of the disease progressions between ICM and DCM
were also compared, and several panels of diagnostic biomarkers
associated with ICM and DCM were identified.

RESULTS
Dysregulated LMM-CTs in ICM and DCM
Using sample-matched RNA-seq and miRNA-seq data, the method
developed in this study was applied to identify dysregulated
LMM-CTs in ICM and DCM. As a result, 1271 dysregulated LMM-
CTs including 97 lncRNAs, 85 miRNAs, and 675 mRNAs in ICM were
obtained, and 1298 dysregulated LMM-CTs consisting of 107
lncRNAs, 96 miRNAs, and 727 mRNAs in DCM were identified
(Supplementary Table S1).
Subsequently, the proportions of SDE genes and the known

disease-associated genes (DisGenes) in dysregulated LMM-CTs
were respectively investigated. SDE genes were selected using
DESeq2 with p < 0.01 and |log2 fold change (FC) | > 1.2. The results
showed that the proportions of SDE genes and DisGenes in
dysregulated LMM-CTs were both significantly higher than that of
NF LMM-CTs (hypergeometric test, SDE genes: p= 5.71 × 10−3 for
ICM, and p= 8.30 × 10−3 for DCM; and DisGene: p= 1.57 × 10−2

for ICM, and p= 5.02 × 10−3 for DCM).

Time-ordered background ceRNA networks (TO-BCeN) in NF
To construct TO-BCeN in NF, hsa-miR-3615 and hsa-miR-580-3p
were chosen as the initial nodes because these two miRNAs were

both in the top 10% lowest dysregulated score in ICM and DCM
(for details, see Materials and methods). The TO-BCeN was then
obtained using the breadth-first search (BFS) algorithm, and single
gene-based networks were then converted into LMM-CT-based
networks.
The TO-BCeN consisted of 9 time-ordered levels (denoted

L1–L9). As shown in Fig. 2A and Supplementary Table S2, the
dysregulated LMM-CTs of ICM and DCM were then respec-
tively mapped to the TO-BCeN. The results revealed that the
majority of the dysregulated LMM-CTs were distributed in
L3–L7 levels.

Validation of rationality and stability of the TO-BCeN
When constructing the TO-BCeN, it was assumed that its initial
nodes should be relatively stable, which would otherwise cause
the instability of the entire TO-BCeN. Therefore, the distribution of
dysregulated scores of LMM-CTs among nine time-ordered levels
for ICM and DCM were respectively examined (Supplementary
Table S2). As shown in Fig. 2B, C, as the time-ordered level
increased, the dysregulated scores of LMM-CTs for DCM gradually
increased, a finding that was consistent with our hypothesis. ICM
presented the same phenomenon, with the exception of L6 and
L7 levels.
ICM has a clear causal precipitant (myocardial ischemia). Taking

ICM for example, the rationality of the TO-BCeN was validated
from the perspective of its biological functions. For ICM-
dysregulated LMM-CTs at each time-ordered level, based upon
the mRNAs at those levels, significantly enriched Gene Ontology
biological process (GO BP) terms were acquired with false
discovery rate < 0.05 using the R package “clusterProfiler”
(Supplementary Table S3).
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Fig. 1 Workflow of the present study. Step 1: CeRNA networks in NF were constructed using sample-matched RNA-seq and miRNA-seq data
and experimentally supported interaction information. Step 2: Dysregulated LMM-CTs in ICM and DCM were identified applying our method,
which integrated the dysregulation extent of gene expression, gene interactions, and the influence of the dysregulated LMM-CTs. Step 3: TO-
BCeN in NF was constructed based on the breadth-first algorithm. After mapping dysregulated LMM-CTs of ICM and DCM to the TO-BCeN, its
rationality and stability were verified. Step 4: The disease progressions of ICM and DCM were compared based on the TO-BCeN, and diagnostic
biomarkers for ICM and DCM were identified.
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To clearly illustrate our results, significantly enriched GO BP
terms typically associated with ICM are partially shown in Fig. 2D.
At L2 time-ordered level, functions associated with vascular
dysfunction were significantly enriched, including “blood vessel
remodeling” and “autonomic nervous system development”.

Vascular dysfunction was able to promote plaque development,
leading to coronary stenosis and the formation of coronary artery
disease [16]. By contrast, functional categories associated with
signal transport were overrepresented at L4. At the L5 level,
functions associated with responses after myocardial ischemia

Fig. 2 The constructed TO-BCeN and validation of its rationality. A Global landscape of the TO-BCeN and summary of dysregulated LMM-
CTs for ICM and DCM in the TO-BCeN. L1–L9 represents time-ordered levels for the TO-BCeN. The numbers presented in circles indicate the
number of LMM-CTs at a particular level. The numbers inside and outside of the parentheses denote the number and proportion of
dysregulated LMM-CTs at the corresponding level, respectively. B, C The violin diagrams and heatmaps of the dysregulated score distribution
of LMM-CTs among nine time-ordered levels for ICM and DCM, respectively. For each level in the heatmap, dysregulated scores were divided
equally into five parts, and the number of LMM-CTs in each part was computed. The color of the square denotes the corresponding standard
score. D Significantly enriched biological functions for mRNAs in ICM dysregulated LMM-CTs at each time-ordered level are shown. The
numbers in the plot (Top) corresponded to the index number of significantly enriched functions listed in the table (Bottom). The pink, green,
blue, and orange colors represent the stages of vascular dysfunction, signal transport, responses after myocardial ischemia and myocardial
remodeling, respectively.
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were found to be significantly enriched, including the “response to
oxygen levels”, “neutrophil activation”, “regulation of response to
biotic stimulus”, and “autophagy”. Inflammation and autophagy
are known to play crucial roles in myocardial ischemia [17], and
neutrophils participate in a series of pathophysiological processes
following ischemia [18]. Compared with L2–L5, mRNAs at L6
mainly functioned in processes relevant to myocardial remodel-
ing. The overrepresented functional categories included “autop-
hagy”, “regulation of transforming growth factor-β (TGF-β)”,
“mononuclear cell and cardiac muscle cell proliferation”, “regula-
tion of leukocytes”, and “macroautophagy and lymphocyte
differentiation”. The myocardial remodeling process usually
includes the removal of dead cardiomyocytes and the activation
of cardiac fibroblasts into myofibroblasts, which trigger inflam-
matory and immune reactions [19]. Taken together, the results
indicated that the TO-BCeN we constructed offered a reasonably
good reflection of the state of ICM progression.
In this study, hsa-miR-3615 and hsa-miR-580-3p were chosen as

the initial nodes to construct the TO-BCeN. To test the stability of
the TO-BCeN, two other genes at L1 level of the original TO-BCeN
were randomly selected as initial nodes, and the differences in
each level for the new TO-BCeN were calculated compared with
the original one. This procedure was repeated 10 times, and the
results are shown in Table 1. It was found that both the means and
standard deviations (SDs) of the overall level changes for new TO-
BCeNs were very small. It was also noted that the majority of the
changes manifested at the previous and the following time-
ordered levels, which may be due to the fact that the constructed
TO-BCeN was not single node-based, but was an LMM-CTs-based
network. These results demonstrated that the original TO-BCeN
was stable.

Comparison and analysis of ICM and DCM progression
The number and the proportion of common dysregulated LMM-
CTs at each time-ordered level for ICM and DCM are shown in Fig.
3A. The increases observed in the proportion values suggest that
the two diseases might have more similarities in the latter stages.
The correlations among different time-ordered levels for ICM and
DCM were also examined. For a given level of ICM, the gene set
variation analysis (GSVA) was applied to estimate the variation
activity of ICM dysregulated LMM-CTs for each sample [20].

Pearson’s correlation coefficient (PCC) was subsequently calcu-
lated between any two levels. Unsupervised hierarchical clustering
was performed based on the PCC using the R package “pheatmap”
according to the Euclidean distance and the complete linkage
method. As shown in Fig. 3B, C, both ICM and DCM obtained three
clusters, L2, L3–L5, and L6–L8, demonstrating similar disease
progress of the two diseases.
It was possible to infer some of the processes for DCM based on

the TO-BCeN. Significantly enriched GO BP terms were obtained at
each level for DCM (Fig. 3D and Supplementary Table S4). The
result revealed that there were no overrepresented biological
functions at the L2 level. For the DCM progression stage
(corresponding to levels L3–L5), each level was observed to have
functions associated with energy metabolism, including processes
such as “protein targeting to the mitochondria”, “positive
regulation of cellular and protein catabolism”, and the “regulation
of lipid catabolism”. This indicated that disturbance of myocardial
energy metabolism might be the main characteristic during DCM
progression. A previous study demonstrated that disorders of
myocardial energy metabolism could lead to impaired myocardial
function, thereby causing the initiation of DCM [21]. In addition,
the establishment of an endothelial barrier at the L4 level was
overrepresented, and functional categories including “immunity”,
“autophagy”, “vascular-associated smooth-muscle cell apoptosis”,
and “oxidative stress response” were significantly enriched at the
L5 level. Similarly to ICM, mRNAs of DCM dysregulated LMM-CTs at
L6 level were also significantly enriched in myocardial remodeling-
associated functions, including “regulation of fibroblast prolifera-
tion”, “cardiac muscle cell proliferation”, “lymphocyte activation”,
“autophagy”, “leukocyte cell–cell adhesion”, and “regulation of the
TGF-β signaling pathway”.
Simultaneously, differences between ICM and DCM were

identified. Certain functional categories associated with early
inflammation of myocardial ischemia were overrepresented at ICM
L5 level, including “neutrophil activation” and “neutrophil-
mediated immunity”. In addition, the “response to oxygen” was
overrepresented at ICM L5 level. But functions associated with
inflammation and oxygen were not detected at DCM L5 level. At
present, no evidence has been gathered to support that
myocardium in non-ischemic HF experiences oxygen
limitation [22].

Table 1. Summary of level order changes with different initial nodes.

Initial node No. of not
changed

No. of cross
1 level

No. of cross
2 levels

No. of cross
multiple levels

Mean of
level change

SD of
level change

ADARB1,MIRLET7BHG 2311 4344/−4180 0 0 0.015 0.886

HMGCS1,RPL15 1065 8135/−1635 0 0 0.599 0.736

HMGCS1,
MIRLET7BHG

970 8419/−1310 0/−66 0/−65 0.622 0.779

HMGCS1,THUMPD3-
AS1

918 8699/−1218 0 0 0.69 0.662

GIGYF1,THUMPD3-
AS1

2287 4817/−3668 0/−41 0/−22 0.092 0.899

HMGCS1,LUC7L3 1065 8135/−1635 0 0 0.6 0.736

MAT2B,MIRLET7BHG 2843 1803/−6189 0 0 −0.405 0.757

MAT2B,THUMPD3-
AS1

2004 2587/−6176 0/−46 0/−22 −0.346 0.852

MIRLET7BHG,ZBTB39 2853 4334/−3648 0 0 0.063 0.856

MIRLET7BHG,
THUMPD3-AS1

2786 3619/−4430 0 0 −0.074 0.858

Note: For a node, the positive and negative number denotes its level changes to the previous or the next level, respectively, in the newly generated TO-BCeN
contra the original one. ‘Zero’ denotes that there was no change between the two TO-BCeNs. If a node belonged to level 3 in the original TO-BCeN and is
classified into level 2 in the new TO-BCeN, then the change number is considered as −1. Multiple levels indicate that the level change spans more than two
levels. No. the abbreviation of number, SD standard deviation.
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Potential ICM and DCM diagnostic biomarkers
Based on the identified dysregulated LMM-CTs in ICM and DCM,
two types of diagnostic biomarkers were identified. One was for

distinguishing ICM/DCM patients from the NF controls (denoted as
NF-ICM and NF-DCM), and the other was for differentiating ICM
from DCM patients (denoted as ICM-DCM).

Fig. 3 Comparison and analysis of ICM and DCM progression. A The number and the proportion of common dysregulated LMM-CTs at each
time ordered level for ICM and DCM. The number in parentheses denotes the proportion of common dysregulated LMM-CTs at that level.
B, C The hierarchical clustering of the PCC among different time-ordered levels for ICM and DCM, respectively. D The overrepresented
functions using mRNAs in DCM dysregulated LMM-CTs at each time-ordered level. The numbers in the plot (Top) correspond to the index
number of significantly enriched functions listed in the table (Bottom). The blue and orange colors represent DCM at the progressed and
advanced stage, respectively.
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For the identification of NF-ICM diagnostic biomarkers, 1271 sig-
nificantly dysregulated ICM LMM-CTs were investigated, including
675 mRNAs, 85 miRNAs, and 97 lncRNAs. By applying our method,
optimal NF-ICM biomarkers were then obtained. The results are
shown in Table 2; three panels of NF-ICM biomarkers defined by
two mRNAs (CCDC113 and ZCCHC3), two miRNAs (hsa-miR-155-5p
and hsa-miR-221-3p), and three lncRNAs (KCTD21-AS1,
AC010969.2, and AC026356.1) were acquired. Similarly, three
panels of NF-DCM biomarkers defined by one mRNA (CHDH),
three miRNAs (hsa-miR-222-3p, hsa-miR-301b-3p, and hsa-miR-
320b), and three lncRNAs (AC015802.4, HCG11, and LINC01278)
were obtained. The accuracies and area under the receiver
operating characteristic curve (AUC) values in the training and test
set based on leave-one-out cross-validation (LOOCV) are shown in
Table 2. This analysis revealed that the identified biomarkers could
effectively differentiate patients with ICM/DCM from the controls.
The identification of ICM-DCM diagnostic biomarkers under-

went the same procedure. As a result, three panels of ICM-DCM
biomarkers defined by two mRNAs (H2AFX, FOXK2), one miRNA
(hsa-miR-545-5p), and two lncRNAs (LINC01089 and SDCBP2-AS1)
were obtained (Table 2). Compared with biomarkers of NF-ICM
and NF-DCM, the ICM-DCM biomarkers showed similar classifica-
tion capabilities in the training set, but a poor performance in the
test set.
To further explore the capability of the dysregulated LMM-CTs

in distinguishing ICM from DCM samples, a multiple regression
model was employed to compute a dysregulated score for each
patient for a given dysregulated LMM-CT (for details, see the
Materials and methods). In the same way, one LMM-CT including
TNRC6A, hsa-miR-3065-3p, and OTUD6B-AS1 was identified,
showing both accuracy and an AUC value of 0.938 in the training
set using LOOCV.

DISCUSSION
To investigate the similarities and differences between ICM and
DCM based on ceRNA mechanisms, this study proposed a novel
computational approach for identifying dysregulated LMM-CTs in
ICM and DCM, which integrated the dysregulation extent of gene
expression, gene interactions, and the influence of the dysregu-
lated LMM-CTs. The disease progression of both ICM and DCM was

subsequently systematically compared and analyzed by construct-
ing time-ordered dysregulated ceRNA networks. Additionally,
multiple panels of diagnostic biomarkers associated with ICM
and DCM were identified.
Our study has concentrated on the origin and development of

the disease. Therefore, ICM and DCM were both compared with NF
samples. Time-series gene expression data are capable of
providing more valuable information than steady-state, although
this type of data for cardiomyopathy was unavailable up to this
point. Based on the topological structure of the networks, time-
ordered dysregulated ceRNA networks for ICM and DCM were
constructed, and the rationality and stability of the networks were
verified. This method did not require correction or standardization
of expression values among different time points and conditions.
Furthermore, the method was able to be combined with time-
series sequencing data to reveal even more precise and clear
biological processes during disease progression.
Biological functions at each time-ordered level for DCM and ICM

were analyzed. Based on the results, shared functions among
different levels were not observed. However, certain functions did
belong to the same functional category, and so some overlap
existed among the time-ordered levels. Simultaneously, it was
found that inflammation appeared in the early stage of ICM,
whereas DCM did not exhibit this phenomenon. This observation,
however, did not mean that the early stages of DCM have nothing
to do with inflammation since viral myocarditis could lead to the
initiation of DCM. One possible reason may be an absence of
inflammation-induced DCM in enrolled patients. Additionally, the
NF donor heart samples collected for the present study were
taken from individuals who had experienced an acute and
ultimately fatal event, and they were therefore different from
the normal hearts. Due to the limitations of clinical heart biopsies,
transcriptome analysis for the study of HF remains a challenge.
The present study has also presented a multiple regression

model for identifying LMM-CT-based biomarkers to distinguish
ICM from DCM. However, owing to a lack of sample-matched
mRNA, miRNA, and lncRNA expression data of ICM and DCM, the
efficiencies of the identified LMM-CT biomarkers in the test set
were not clear, and further studies are required. Our study has
provided a strategy for identifying multiple types of combinations
of molecules as diagnostic biomarkers, which not only considered

Table 2. Classification performance of the identified diagnostic biomarkers associated with ICM and DCM based on LOOCV.

Biomarker RNA Combination Training set (accuracy/AUC) Test set (accuracy/AUC)

NF-ICM mRNA CCDC113
ZCCHC3

0.938/0.984 GSE116250 0.778/0.725
GSE1145 0.738/0.777

lncRNA KCTD21-AS1
AC010969.2
AC026356.1

0.875/0.828 GSE116250 0.704/0.610

miR hsa-miR-221-3p
hsa-miR-155-5p

0.938/0.984 GSE53080 0.952/0.962

NF-DCM mRNA CHDH 0.938/1.000 GSE116250 0.843/0.932
GSE1145 0.816/0.721

lncRNA LINC01278
HCG11
AC015802.4

0.938/1.000 GSE116250 0.804/0.801

miR hsa-miR-222-3p
hsa-miR-301b-3p
hsa-miR-320b

0.875/0.969 GSE53080 0.897/0.952

ICM-DCM mRNA H2AFX
FOXK2

0.875/0.844 GSE116250 0.760/0.539
GSE1145 0.466/0.611

lncRNA SDCBP2-AS1
LINC01089

0.875/0.875 GSE116250 0.740/0.593

miR hsa-miR-545-5p 0.875/0.938 GSE53080 0.618/0.606

ceRNA TNRC6A/hsa-miR-3065-3p/OTUD6B-AS1 0.938/0.938 /
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the expression variation of the molecules but also reflected
potential interactions among them. This idea can be applied to
other diseases.
In conclusion, we systematically investigated the shared and

distinct biological features during ICM and DCM progression by
constructing time-ordered dysregulated ceRNA networks and
provided a new idea for the identification of multiple types of
molecules combined as diagnostic biomarkers. Our results will
shed new light on deciphering the underlying pathogenetic
mechanisms of ICM and DCM, and provide a basis for developing
etiology-specific therapies for HF patients in the future.

METHODS
Data collection and pre-processing
The sample paired FASTQ format RNA-seq and miRNA-seq data of
GSE46224 [7] were downloaded from the ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/), which were derived from left ventricular
myocardial tissue. The dataset included eight patients with ICM, eight
patients with DCM, and eight NF individuals (Supplementary Table S5). For
RNA-seq data, the adapter sequences were removed using Trimmomatic
[23] (version 0.36), the RNA annotations were retrieved from GENCODE
(release 32), and the sequencing reads were aligned against the human
genome (hg38) using STAR [24] (version 2.5.4). Read counts were then
obtained using HTSeq-count [25] (version 0.11.2), and transcripts per
million (TPM) were used to measure the mRNA and lncRNA expression
levels. For miRNA-seq data, the data set was processed using sRNAbench
[26]. Reads per million (RPM) were used to measure miRNA expression
levels. mRNAs with at least 5 reads, and miRNAs and lncRNAs with at least
1 read, in >50% of the samples were retained for further analysis. SDE
genes were obtained using DESeq2 [27].
In addition, FASTQ format RNA-seq data of GSE116250 [9] and miRNA-

seq data of GSE53080 [28] were also downloaded from the ArrayExpress
database. GSE116250 and GSE53080 contained 13 and 14 ICM samples, 37
and 22 DCM samples, and 14 and 10 NF individuals, respectively. The data
were processed using the same pipeline as above, with the exception of
the sequencing library protocol of miRNA-seq. The microarray data of
GSE1145 were downloaded from the Gene Expression Omnibus database,
which included 31 ICM samples, 27 DCM samples, and 11 NF individuals.
Probe sets corresponding to multiple gene symbol identifiers were
removed, and the expression values of each gene detected by at least
two probes were averaged. These three datasets were subsequently used
as the test sets (Supplementary Tables S5 and S6).
Experimentally verified miRNA–mRNA interactions were collected from

Tarbase [29] (version 8.0), miRTarbase [30] (version 7.0) and miRrecords
[31] (version 4). Experimentally supported miRNA–lncRNA regulatory
associations were retrieved from the Encyclopedia of RNA Interactomes
database (http://starbase.sysu.edu.cn/index.php) and DIANA-LncBase [32]
(version 3). An overall total of 758,195 mRNA-miRNA and 114,951 mRNA-
lncRNA interactions were acquired.
ICM- and DCM-associated mRNAs were collected from the DisGeNET [33]

(version 7.0) database, which combines several currently and widely used
gene-disease association databases. ICM- and DCM-associated miRNAs and
lncRNAs were retrieved using a comprehensive literature review. Relevant
articles were compiled in two ways. One is from HMDD [34] (version 3.2)
and LncRNADisease [35] (version 2.0) databases using the search phrases
“ischemic cardiomyopathy” and “dilated cardiomyopathy”. And another is
from PubMed using the search phrases “ischemic cardiomyopathy AND
microRNA”, “dilated cardiomyopathy AND microRNA”, “ischemic cardio-
myopathy AND (lncRNA OR long non-coding RNA)”, and “dilated
cardiomyopathy AND (lncRNA OR long noncoding RNA)”. Each article
was manually searched for miRNAs and lncRNAs that were aberrantly
expressed in ICM and DCM. Finally, 103 mRNAs, 9 lncRNAs, 25 miRNAs
associated with ICM, and 828 mRNAs, 7 lncRNAs, and 56 miRNAs
associated with DCM were obtained.

Identification of LMM-CTs in NF
In this study, it was assumed that LMM-CTs would exist in NF samples and
that their dysfunction would lead to disease initiation and progression.
LMM-CTs in NF samples were identified based on ceRNA mechanisms. An
LMM-CT was identified if it met all the following criteria: (i) The mRNA and
the lncRNA shared a significant number of miRNAs, as determined by a

hypergeometric test (P < 0.01); and (ii) the PCCs of lncRNA–mRNA,
miRNA–mRNA, and miRNA–lncRNA interactions were >0.7, <−0.7, and <
−0.7 with a P-value < 0.05, respectively. Ultimately, 10,860 LMM-CTs
comprising 192 lncRNAs, 155 miRNAs, and 2834 mRNAs in NF samples
were obtained. A ceRNA network for the NF samples including these LMM-
CTs was thereby constructed.

Identification of dysregulated LMM-CTs in ICM and DCM
Dysregulated LMM-CTs were identified in ICM and DCM using sample-
matched lncRNA, miRNA, and mRNA expression data. A dysregulated LMM-
CT was identified by considering the following three factors: (i) The
dysregulation extent of gene expression (nodes); (ii) the dysregulation
extent of gene interactions (edges); and (iii) the influence of the
dysregulation of the LMM-CT on genes that directly interacted with it in
the NF ceRNA network.
First, according to the extent of differential expression, the node score of

LMM-CT was calculated using Eqs. (1) and (2) [36]

DotScore ¼ FZðzÞ ¼ P Z � zf g ¼ 1�
ffiffiffiffiffiffiffiffi

2
πσ2

r

Z 1

0
e� x2=2σ2þλz=xð Þdx; z � 0

(1)

z ¼ � log10 Pð Þ � j log2 FCj (2)

where FC is the corresponding FC of expression, FZ(z) is the cumulative
distribution function (CDF) of z-statistics, λ= ln10 and σ2 is the variance of
FC, and P is the P-value reflecting the significance of differential expression
calculated by DESeq2.
Secondly, the edge score was computed according to Eqs. (3)–(6)

EdgeScore ¼ φΠ Y � ½FðrcaseÞ � FðrcontrolÞ�f g (3)

φΠðxÞ ¼ P Π � xf g ¼ 1

σ
ffiffiffiffiffiffi

2π
p

Z x

�1
exp �ðt � uÞ2

2σ2

 !

dt;�1< x < þ1

(4)

FðrÞ ¼ 1
2
ln

1þ r
1� r

� �

(5)

Y ¼ 1; rcontrol < 0

�1; rcontrol > 0

�

(6)

Where φΠ xð Þ is the CDF of the normal distribution. μ ¼ Y �
ðμFðrcaseÞ � μFðrcontrolÞÞ and σ2 ¼ σ2FðrcaseÞ þ σ2FðrcontrolÞ. F is the Fisher transforma-
tion function, which makes the data approximately follow the normal
distribution [37], and rcase and rcontrol are the PCCs of gene expression in
case and control samples, respectively.
Thirdly, the influence score of the dysregulation of an LMM-CT on genes

was calculated using Eq. (7)

InfluenceScore ¼ ISmiRjlncRNA þ ISmRNAlncRNAjmiRNA þ ISmiRjmRNA (7)

where ISmiRjlncRNA denotes the influence score of the lncRNA in the LMM-CT
under consideration on miRNAs that directly interact with the lncRNA, and
ISmiRjlncRNA is defined as 1− (P-value), where the P-value is computed using
Fisher’s exact test, which reflects the significance level of the miRNAs
directly interacting with the lncRNAs that are enriched in SDE miRNAs (P <
0.01 and |log2FC | >1.2). Similarly, ISmRNAlncRNA|miRNA and ISmiR|mRNA were
then computed.
Finally, the dysregulated score S of an LMM-CT was calculated by

combining the node score, edge score, and the influence score as follows

S ¼
X

node2LMM CT DotScoreþ
X

edge2LMM CT EdgeScoreþ InfluenceScore

(8)

In addition, the statistical significance of each LMM-CT was estimated
using a permutation test. RNA labels of samples were randomly shuffled to
construct a random LMM-CT, and the LMM-CT score was then recomputed.
The above procedure was repeated 10,000 times, and the null distribution
for the LMM-CT score was subsequently obtained. For each LMM-CT, an
empirical P-value was defined as the proportion of randomly obtained
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LMM-CT scores larger than the real LMM-CT score, as shown in Eq. (9)

P � value ¼ Number of Srandom > Sð Þ=10; 000 (9)

In this study, LMM-CTs with a P-value < 0.05 were selected as the
dysregulated LMM-CTs.

Construction of time-ordered background ceRNA networks in
NF
By combining the LMM-CTs in NF identified above, a ceRNA network was
obtained. The largest net component was defined as the background
ceRNA network in NF, which included 10,835 LMM-CTs consisting of 181
lncRNAs, 143 miRNAs, and 2810 mRNAs. To investigate disease progres-
sion, a previous method was employed to construct TO-BCeN in NF [38].
Initial nodes were selected based on the following hypothesis: To maintain
the organism in the normal state, the initial nodes in the TO-BCeN needed
to be relatively stable, otherwise, their dysregulation would lead to the
instability of the entire TO-BCeN. Therefore, nodes having the lowest
dysregulated scores were chosen as the initial nodes. Since a node may be
involved in multiple LMM-CTs, the dysregulated score of a node was
defined as the mean of the dysregulated scores of the LMM-CTs in which it
participated. Using the initial nodes, a BFS on the NF background ceRNA
networks was employed, and the TO-BCeN was constructed. To facilitate
subsequent analysis, a single gene-based network was converted into an
LMM-CT-based network; that is, if one node in an LMM-CT first appeared in
a time-ordered level, the LMM-CT was considered as being in that level.
Simultaneously, the LMM-CT was deleted in the following levels.

An LMM-CT-based dysregulated score of each patient
In the present study, a method has been presented for identifying disease-
associated dysregulated LMM-CTs based on the ceRNA mechanism. To
further investigate the classification efficiency of these dysregulated LMM-
CTs in distinguishing patients with ICM from those with DCM, a multiple
regression model was proposed to yield a dysregulated score for each
patient according to the ceRNA hypothesis. For one LMM-CT, the mRNA
expression level was presumed to be affected both by the expression level
of the miRNA and the interaction between the miRNA and lncRNA;
therefore, the multiple regression was modeled according to Eq. (10)

ExpmRNA ¼ a1 ´ ExpmiRNA þ a2 ´ ExpmiRNA ´ ExplncRNA þ c (10)

where Exp denotes the gene expression level, a1 and a2 represent
regression coefficients, and c denotes the error. It is worth noting that the
effects of interactions among multiple LMM-CTs were not taken into
consideration for the sake of maintaining the simplicity of the analysis.
As mentioned above, it was assumed that LMM-CTs exist in NF

individuals and that a normal biological stable state is maintained.
Therefore, it would be possible to obtain a1, a2, and c under normal
conditions using NF samples. For a patient and a given LMM-CT, an
estimated mRNA expression value could be calculated by Eq. (10) using
corresponding miRNA and lncRNA expression information. The LMM-CT-
based dysregulated score (DS) of a patient was defined as the difference
between the estimated mRNA expression and the real expression levels,
according to Eq. (11)

DS ¼ Expcase�mRNA � ExpcasemRNA (11)

where Expcase�mRNA and ExpcasemRNA denote the estimated and real mRNA
expression levels, respectively.

Identification of diagnostic biomarkers
In this study, two types of diagnostic biomarkers were identified: one was
for distinguishing patients with ICM/DCM from the controls, and the other
was for differentiating ICM from DCM patients.
A random forest supervised classification model was used to select

genes that were strongly associated with the disease diagnosis [39]. At
each step, an important score was calculated for each gene by using a
permutation test, and the genes that fell into the category of having the
lowest one-third important scores were discarded. In this manner, those
genes that were most strongly associated with the diagnosis were
reserved. Finally, classification accuracy for all combinations of these
remaining genes was computed using the support vector machines (SVM)
classification algorithm, and the optimal diagnostic biomarkers were
identified, taking into account the balance between classification accuracy
and the number of genes.

Random forest and SVM algorithms were performed using the R packages
“randomForest” and “e1071”, respectively. Classification accuracy and the AUC
based on the LOOCV were applied to measure the performance.
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