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ABSTRACT Bacillus mycoides GM6LP is an endophyte isolated from plant tissues of
Lolium perenne L. Here, we report its draft genome sequence (6.2 Mb), which con-
tains 96 contigs and 6,129 protein-coding genes. Knowledge about its genome will
enable us to evaluate the potential use of GM6LP as a plant growth-promoting bac-
terium.

Several Bacillus species colonize the plant endosphere (1, 2) and are frequently
isolated as endophytes (3, 4). These bacteria have been found to promote plant

growth and health due to their ability to induce plant systemic resistance and/or to
produce antimicrobial compounds (5, 6). The genome sequence of Bacillus mycoides
GM6LP will facilitate further studies on the potential use of these bacteria as producers
of antimicrobial substances.

The strain B. mycoides GM6LP was isolated from surface-sterilized aerial tissues of
healthy Lolium perenne plants. Genomic DNA was extracted using the MasterPure
complete DNA purification kit (Epicentre, Madison, WI, USA). The obtained DNA was
used to generate an Illumina shotgun paired-end sequencing library. Sequencing was
performed employing a MiSeq system and the MiSeq reagent kit version 3 (600 cycles),
as recommended by the manufacturer (Illumina, San Diego, CA, USA). Quality filtering
using Trimmomatic version 0.32 (7) resulted in 2,714,322 paired-end reads. De novo
genome assembly was performed with the SPAdes genome assembler version 3.8.0 (8).
The assembly resulted in 96 contigs (�500 bp) and an average coverage of 87-fold.
The assembly was validated and the read coverage determined with QualiMap
version 2.1 (9).

The draft genome of GM6LP consists of 6,015,410 bp, with an overall GC content of
35.07%. Gene prediction and annotation were performed using Rapid Prokaryotic
Genome Annotation (Prokka) (10). The draft genome harbored 15 rRNA genes, 69 tRNA
genes, 2,358 protein-coding genes with functional predictions, and 3,773 genes coding
for hypothetical proteins. Multilocus sequence typing (MLST) based on seven genes
(glp, gmk, ilvD, pta, pur, pyc, and tpi) suggested by Priest et al. (11) was performed as
described by Hollensteiner et al. (12). The analysis revealed that strain GM6LP belongs
to the Bacillus cereus sensu lato group and clusters with strains of the species Bacillus
weihenstephanensis, which has been recently reclassified as a heterotypic synonym of
Bacillus mycoides (13).

A total of 46 potential gene clusters involved in secondary metabolite production,
including 3 nonribosomal polyketide synthetase (NRPS) clusters with no or low simi-
larity (�40%) to known gene clusters, were identified using antiSMASH 3.0.5 (14). We
identified a gene cluster involved in bacteriocin production which might be beneficial
for plant growth (15). A lasso peptide cluster was identified, with each gene sharing
similarity to a paeninodin biosynthesis gene cluster (16). In addition, a gene cluster with
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83% of the genes sharing similarity to a petrobactin biosynthesis gene cluster (17) and
a gene cluster with 38% of the genes exhibiting similarity to a bacillibactin biosynthesis
gene cluster known from Bacillus subtilis (18) were identified. Petrobactin and bacilli-
bactin are common siderophores produced by Bacillus species (19). Bacterial sidero-
phores play an important role in competition between microorganisms (20) and may
promote plant growth and health by suppressing pathogenic organisms (21). In
summary, B. mycoides strain GM6LP contains multiple gene clusters involved in pro-
moting plant growth and health.

Accession number(s). The whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number MKZQ00000000. The version de-
scribed here is version MKZQ01000000.
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