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Abstract

Background: Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in
diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical
for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was
designed to address this issue.

Methods and Findings: Single-channel recordings of cardiac KATP channels were performed in both cell-attached and
inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular
cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective
phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from
HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective
PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-
channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was
abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein
kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact
cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in
intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these
channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions.

Conclusion: The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including
marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in particular), calmodulin and CaMKII,
alongside of moderate channel suppression likely mediated by direct PKG phosphorylation of the channel or some closely
associated proteins. The novel cGMP/PKG/ROS/calmodulin/CaMKII signaling pathway may regulate cardiomyocyte
excitability by opening KATP channels and contribute to cardiac protection against ischemia-reperfusion injury.
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Introduction

The ATP-sensitive potassium (KATP) channel functions as a

high-fidelity metabolic sensor which couples intracellular meta-

bolic state to membrane excitability [1–3]. The KATP channel is a

hetero-octameric protein [4,5] composed of four inwardly

rectifying potassium channel subunits (Kir6.2 or Kir6.1) [6,7]

and four sulphonylurea receptors (SUR1, SUR2A, or SUR2B)

[8,9]. The molecular compositions of KATP channels exhibit tissue

specificity, which offers substantial diversity across organs. For

example, in cardiac and skeletal muscles KATP channels are

composed of Kir6.2 and SUR2A subunits [9,10], whereas in

central neurons and pancreatic b-cells they are composed of

Kir6.2 and SUR1 subunits [11]. KATP channels are widely

expressed in excitable tissues and serve a variety of important

cellular functions, including glucose-stimulated insulin secretion,

neurotransmitter release, vascular tone, and protection of neurons

and cardiomyocytes under metabolic stress [12].

KATP channels are modulated by post-translational mecha-

nisms, such as protein phosphorylation mediated by cAMP-

dependent protein kinase (PKA) [13–15], Ca2+/phospholipid-

dependent protein kinase (PKC) [16–20], and extracellular signal-

regulated kinase (ERK) [21]. The cGMP-dependent protein

kinase (PKG), a serine/threonine protein kinase, is increasingly

becoming appreciated as an important component of many signal

transduction processes in diverse cell types. Functional modulation

of KATP channels by cGMP, presumably through activation of

PKG, has been demonstrated in vascular smooth muscle cells [22]
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and pancreatic b-cells [23]. Our earlier study unravels that PKG

bidirectionally regulates the function of neuronal KATP (i.e.,

Kir6.2/SUR1) channels, encompassing a predominating stimula-

tory action, which can be reproduced by nitric oxide (NO) via

activation of a cGMP/soluble guanylyl cyclase (sGC)/PKG

signaling cascade, and a moderate inhibitory action, which likely

involves direct PKG phosphorylation of the channel or some

closely associated regulatory protein(s) [24]; more specifically, our

findings suggest that the stimulatory action of PKG on neuronal

KATP channels is mediated by intracellular signaling through the

5-hydroxydecanoate (5-HD)-sensitive factor (possibly the mito-

chondrial KATP channel), reactive oxygen species (ROS), calcium,

and calmodulin [25]. On the other hand, it has been reported that

PKG may directly enhance the activity of sarcolemmal KATP

(sarcKATP) channels in cell-free membrane patches obtained from

rabbit ventricular cardiomyocytes [26,27]; however, the underly-

ing mechanism remains unclear.

To elucidate the molecular mechanism responsible for PKG

modulation of cardiac KATP channels, in the present study we

employed two model systems: human embryonic kidney (HEK)

293 cells expressing recombinant cardiac-type KATP channels and

acutely isolated ventricular cardiomyocytes containing endoge-

nous sarcKATP channels. Single-channel recordings of Kir6.2/

SUR2A channels, the KATP channel isoform present in the

sarcolemmal membrane of ventricular cardiomyocytes, were

performed in both cell-attached and inside-out patch configura-

tions to allow investigation of the functional effect of PKG

(activation) on Kir6.2/SUR2A channels as well as the potential

involvement of ROS, calmodulin, and calcium/calmodulin-

dependent protein kinase II (CaMKII) in signal transduction.

We also investigated the role of PKG signaling in modulating the

function of sarcKATP channels in ventricular cardiomyocytes

isolated from adult rabbits. Here we demonstrate for the first time

that PKG elicits bidirectional regulation of cardiac KATP channel

function, including a predominating stimulatory effect resulting

from intracellular signaling, plus a moderate inhibitory effect likely

resulting from direct PKG phosphorylation of the channel or some

closely associated regulatory proteins. Importantly, our findings

provide novel evidence suggesting that PKG stimulates cardiac

KATP channels primarily through generation of ROS, in particular

hydrogen peroxide (H2O2), and subsequently activation of

calmodulin and CaMKII, whereas direct PKG phosphorylation

of the channel is not involved in channel stimulation. Further,

activation of PKG renders changes in the single-channel open and

closed properties of cardiac KATP channels, which may form the

kinetic basis of channel stimulation.

Methods

Construction of cDNAs
To reconstitute cardiac-type KATP channels, cDNAs encoding

the pore forming subunit Kir6.2 (mouse) and the regulatory

subunit SUR2A (rat) were subcloned into mammalian expression

vectors pIRES-EGFP (Clontech, Mountain View, CA) and

pcDNA3 (Invitrogen, Carlsbad, CA), respectively. The plasmids

to be used for transient transfection were prepared with Qiagen

maxipreps and verified by DNA sequencing (Qiagen, Valencia,

CA).

Mammalian cell culture and transient transfection
HEK293 cells (ATCC, Manassas, VA) were maintained in

Dulbecco’s modified Eagle medium DMEM/F12 (Mediatech,

Herndon, VA) (supplemented with 2 mM L-glutamine, 10% fetal

bovine serum, 100 IU/ml penicillin, and 100 mg/ml streptomycin)

at 37uC in humidified 5% CO2. Cells were transiently transfected

with expression plasmids containing cDNAs of interest using the

FuGENETM 6 reagent (Roche, Indianapolis, IN) in a serum-free

medium according to the manufacturer’s protocol, or using a

modified calcium phosphate-DNA coprecipitation method

[28,29]. Positive transfection was marked by cistronic EGFP

expression provided by the vector pIRES-EGFP. The cells were

re-plated the following day at a density of 5,000–20,000 cells/dish

onto 12 mm glass coverslips pre-coated with 1.5 mg/ml fibronectin

(Sigma-Aldrich, St. Louis, MO) to be recorded 48–72 hr after

transfection [15].

Isolation of rabbit ventricular cardiomyocytes
Left ventricular myocytes were isolated from New Zealand

White rabbits, using a procedure approved by the Institutional

Animal Care and Use Committee of the University of California,

Davis (Protocol Number: 13259), in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. Rabbits

were deeply anesthetized by intravenous injection of pentobarbital

sodium (80–100 mg/kg) and all efforts were made to minimize

suffering. Hearts were excised, at which time rabbits died insensate

by exsanguination. Hearts were quickly placed on a Langendorff

apparatus and perfused retrogradely for 5–7 min with nominally

Ca2+-free Dulbecco’s minimum essential medium solution. Then

perfusion was switched to the same solution containing 1 mg/ml

collagenase with up to 0.1 mg/ml neutral protease. When the

heart became flaccid (,15–30 min), the ventricles were dispersed

and filtered. The cell suspension was washed several times in a

medium with the Ca2+ concentration ([Ca2+]) around 150 mM.

The cells were subsequently plated on 12 mm glass coverslips

coated with laminin to enhance cell adhesion for immediate

recordings.

Electrodes, recording solutions and single-channel
recordings

The recording electrodes were pulled from thin-walled

borosilicate glass with an internal filament (MTW150F-3; World

Precision Instruments, Sarasota, FL) using a P-97 Flaming Brown

puller (Sutter Instrument, Novato, CA), and they were then fire-

polished to a resistance of 5–10 MV. Inside-out and cell-attached

single-channel recordings [30] were performed using a recording

chamber (RC26; Warner Instruments, Hamden, CT) filled with

the intracellular (bath) solution and the recording pipette was filled

with the extracellular solution. For HEK293 cells, the intracellular

(bath) solution consisted of (in mM): KCl 110, MgCl2 1.44, KOH

30, EGTA 10, HEPES 10, Sucrose 30, pH to 7.2. The

extracellular (intrapipette) solution consisted of (in mM): KCl

140, MgCl2 1.2, CaCl2 2.6, HEPES 10, pH to 7.4. For

cardiomyocytes, the intracellular (bath) solution consisted of (in

mM): KCl 127, MgCl2 1, KOH 13, EGTA 5, HEPES 10, glucose

10, pH to 7.2. The extracellular (intrapipette) solution consisted of

(in mM): KCl 140, MgCl2 1, CaCl2 2, HEPES 10, glucose 10, pH

to 7.4. In addition, for inside-out recordings, 30 or 100 mM ATP

(magnesium salt) was added freshly to the bath recording solution

to prevent current rundown and to provide phosphate groups for

phosphorylation in the presence of kinases. The use of symmetrical

recording solutions (140-mM K+) resulted in an equilibrium

potential for potassium (EK) and a resting membrane potential

(Vm) around 0 mV, as determined from the I–V relationship of

the KATP channel. All recordings were carried out at room

temperature, and all patches were voltage-clamped at 260 mV

(i.e., with +60 mV intrapipette potentials) unless specified other-

wise. Single-channel currents were recorded with an Axopatch
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200B patch-clamp amplifier (MDS Analytical Technologies-Axon

Instruments, Sunnyvale, CA), low-pass filtered (3 dB, 2 kHz), and

digitized at 20 kHz on-line using Clampex 9 software (Axon) via a

16-bit A/D converter (Digidata acquisition board 1322A; Axon).

Preparations of drugs
Working solutions of 8-bromo-cGMP (8-Br-cGMP), 1,4-dihydro-

5-(2-propoxyphenyl)-7H-1,2,3-triazolo[4,5-d]pyrimidine-7-one (za-

prinast), KT5823, N-(2-mercaptopropionyl)glycine (MPG), cGMP,

adenosine 59-triphosphate magnesium salt (MgATP), SKF-7171A,

myristoylated autocamtide-2 related inhibitory peptide for CaMKII

(mAIP), and pinacidil were diluted from aliquots prior to use with

bath recording solutions. Stock solutions were prepared as followed:

zaprinast, KT5823, SKF-7171A, and pinacidil in DMSO, and 8-

Br-cGMP, cGMP, 5-HD, mAIP, MgATP, and MPG in H2O; all

were stored at 280uC in aliquots. On the other hand, H2O2 was

prepared fresh daily from the original 30% liquid stock (w/w,

approx. 9.8 M). Catalase (human erythrocyte) and PKG Ia
(holoenzyme or the catalytic subunit) were diluted from the aliquots

of original stocks immediately before use, with corresponding

vehicles diluted the same way serving as negative controls. Heat

inactivation of PKG was achieved by heating the enzyme at 95uC
for at least 15 min before MgATP and cGMP were added to

reconstitute the final working solution. All working drug solutions

were put on ice and kept away from light. Drugs were applied

through a pressure-driven perfusion system (BPS-8; ALA Scientific

Instruments, Westbury, NY) to the recording chamber via a

micromanifold positioned closely to the patches. The holoenzyme

and the catalytic subunit of PKG Ia were obtained from

Calbiochem (EMD Biosciences; San Diego, CA); other reagents

and chemicals were purchased from Calbiochem or Sigma-Aldrich

(St. Louis, MO).

Data Analysis
Data were analyzed as described before [15,21,24,25,31,32].

Single-channel currents: Digitized single-channel records of 120-s

durations were detected with Fetchan 6.05 (events list) of

pCLAMP (Axon) using 50% threshold crossing criterion and

analyzed with Intrv5 (Dr. Barry S. Pallotta, University of North

Carolina, Chapel Hill, NC; Dr. Janet Fisher, University of South

Carolina, Columbia, SC). Analysis was performed at the main

conductance level (approximately 70–80 pS). Only patches with

infrequent multiple-channel activity were used for single-channel

analysis. Duration histograms were constructed as described by

Sigworth and Sine [33], and estimates of exponential areas and

time constants were obtained using the method of maximal

likelihood estimation. The number of exponential functions

required to fit the duration distribution was determined by fitting

increasing numbers of functions until additional components could

not significantly improve the fit [34,35]. Events with duration less

than 1.5 times the system dead time were not included in the fit.

Mean durations were corrected for missed events by taking the

sum of the relative area (a) of each exponential component in the

duration frequency histogram multiplied by the time constant (t)
of the corresponding component. Each of the single-channel

properties was then normalized to the corresponding controls

obtained in individual patches (taken as 1). Multiple-channel currents:

In patches where multiple-channel activities of KATP channels

were observed for more than 10% of the recording time, the

digitized current records were analyzed using Fetchan 6.05

(browse) of pCLAMP to integrate currents in 120-sec segments.

The current amplitude (I) values (current amplitude = integrated

current/acquisition time) were then normalized to the corre-

sponding controls obtained from the same patches to yield

normalized NPo (control as 1), as the normalized current

amplitude was equivalent to the normalized NPo obtained from

single-channel analysis when the single-channel conductance

remains the same [32]. The normalized NPo values obtained from

both single-channel and multiple-channel patches were then

pooled.

Statistics
Data are presented as mean 6 standard error of the mean

(SEM). Statistical comparisons were made using Student’s two-

tailed one-sample, paired or unpaired t tests, or one-way ANOVA

followed by Dunnett’s multiple comparison tests. Significance was

assumed when P,0.05. Statistical comparisons were performed

using Prism (GraphPad Software, San Diego, CA).

Results

In the present study, we investigated the molecular mechanism

responsible for functional modulation of cardiac KATP channels

elicited by activation of PKG, focusing on two aspects: one is to

understand the direct and indirect effects of PKG activation on the

function of cardiac KATP channels, and the other is to elucidate

the roles of potential signaling partners of PKG in cardiac KATP

channel modulation. HEK293 cells expressing recombinant

Kir6.2/SUR2A (i.e., the cardiac-type KATP) channels and rabbit

ventricular cardiomyocytes containing endogenous sarcKATP

channels were employed here as model systems. By performing

single-channel recordings in HEK293 cells, we first determined

the effect of PKG activators on the activity of Kir6.2/SUR2A

channels acquired in the cell-attached patch configuration and

that of purified PKG in the inside-out patch configuration,

respectively. We subsequently investigated whether ROS, calmod-

ulin, and CaMKII are involved in mediating PKG modulation of

Kir6.2/SUR2A channels in intact cells. Further, we compared

how exogenous H2O2 modulates Kir6.2/SUR2A channels in cell-

attached versus inside-out patches. We then examined whether

H2O2 modulation of Kir6.2/SUR2A channels in intact cells is

dependent on activation of calmodulin and CaMKII. We also

investigated the effect of PKG activation and the roles of ROS and

CaMKII in mediating PKG’s action on sarcKATP channels in

intact rabbit ventricular cardiomyocytes. And lastly, the kinetic

changes caused by PKG activation and exogenous H2O2 on

Kir6.2/SUR2A channel opening and closing were delineated.

Stimulation of Kir6.2/SUR2A channels by PKG activation
in intact HEK293 cells

To define the role of PKG in cardiac KATP channel modulation,

we first examined how PKG activation modulates the activity of

Kir6.2/SUR2A (i.e., cardiac-type KATP) channels in intact cells.

Single-channel currents of Kir6.2/SUR2A channels were record-

ed in the cell-attached patch configuration to preserve the integrity

of the intracellular milieu for potential signaling. To induce PKG

activation, 8-bromo-cGMP (8-Br-cGMP), a membrane-permeable

cGMP analog, was applied by bath perfusion to intact cells. In

Fig. 1 and all other figures illustrating original recording data,

segments of current traces marked with a horizontal bar on top are

displayed at increasing temporal resolution in successive traces

(arranged from top to bottom). The single-channel activity of

Kir6.2/SUR2A channels was increased in the presence of 8-Br-

cGMP (500 mM) compared with the control currents recorded

before drug application from the same cell-attached patch

(Fig. 1A), resulting in an increase in the normalized open

probability (NPo) (control taken as 1) (2.9760.75; Fig. 1D, hatched

bar; 6 patches; P,0.05, two-tailed one-sample t test). Moreover,

PKG Modulation of Cardiac K(ATP) Channels
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zaprinast (50 mM), a membrane-permeable, selective inhibitor of

cGMP-specific PDE, also potentiated the single-channel activity of

Kir6.2/SUR2A channels in cell-attached patches; the apparent

opening frequency and open duration were both higher during

zaprinast application (Fig. 1B). To ascertain that the action of

zaprinast is specific, we examined whether the effect of zaprinast

on the single-channel activity of KATP channels in intact cells is

concentration-dependent. Zaprinast was administered at 0.05, 0.5,

5 or 50 mM by bath application in separate groups of cell-attached

patches. We found that zaprinast induced Kir6.2/SUR2A channel

activation in a concentration-dependent fashion: there was no

effect at 0.05 and 0.5 mM (Fig. 1D, 2nd and 3rd bras from the left;

8–9 patches), whereas at 5 and 50 mM zaprinast increased the

normalized NPo (i.e., the relative channel activity) of the channel to

4.0660.85 (Fig. 1D, 4th bar from the left; 11 patches; P,0.01,

one-sample t test) and 13.3863.05 (Fig. 1D, black filled bar; 12

patches; P,0.01), respectively. These results indicate that

zaprinast’s stimulatory effect on Kir6.2/SUR2A channels results

from its specific drug action. In the present study, 50 mM was

chosen in all experiments involving the use of zaprinast. In

addition, to ensure that the stimulatory effect of PKG activation

on the single-channel activity of Kir6.2/SUR2A channels is not

biased toward increases due to the low basal activity, the absolute

NPo (i.e., NPo without normalization) values obtained under control

and zaprinast-treated condition were also directly compared. Bath

perfusion of zaprinast (50 mM) elicited increases in the absolute

NPo of cardiac-type KATP channels to different levels in individual

cell-attached patches (see Fig. S1, a scatter plot of absolute NPo

obtained before and during zaprinast treatment); the averaged

absolute NPo values in the control and zaprinast-treated conditions

were 0.0460.01% and 0.4860.16%, respectively, manifesting a

significant increase by the PKG activator zaprinast (12 data pairs;

P,0.05, two-tailed paired t test). Our hypothesis that PKG

activation in intact cells stimulates the function of cardiac-type

KATP channels was supported.

Figure 1. Stimulation of Kir6.2/SUR2A channels by activation
of PKG in transfected HEK293 cells. Recombinant Kir6.2/SUR2A
channels were expressed in HEK293 cells by transient transfection.
Recordings were performed in symmetrical high potassium (140-mM)
solutions at room temperature in the cell-attached configuration and
the membrane potential was clamped at 260 mV. (A–C) Single-channel
current traces of the Kir6.2/SUR2A channel obtained from a represen-
tative cell-attached patch prior to (upper panel) and during (lower
panel) application of the membrane-permeable cGMP analog 8-Br-
cGMP (500 mM) (A), the cGMP-specific PDE inhibitor zaprinast (50 mM)
alone (B), or zaprinast (50 mM) plus a selective PKG inhibitor KT5823
(1 mM) following pretreatment with KT5823 for 15 min (C). Downward
deflections represent openings from closed states. For all current trace
figures, segments of raw recordings marked with a horizontal line on
top are shown in successive traces at increasing temporal resolution,
revealing singular openings (*) and bursts of openings (**). The
horizontal scale bars represent 1 s, 300 ms and 100 ms for traces from
top to bottom in each three-trace panel, and the vertical scale bar
represents 4 pA. (D) The averaged normalized open probability NPo (i.e.,
relative channel activity) of Kir6.2/SUR2A channels obtained during
application of drugs in individual groups of cell-attached patches. Data
obtained from patches treated with increasing concentrations of
zaprinast (0.05, 0.5, 5 and 50 mM) were also displayed to illustrate the
concentration dependence of zaprinast effects. NPo values of all groups
were normalized to the corresponding control (taken as 1; dashed line)
obtained prior to index drug application in individual patches to yield
the normalized NPo. Data are presented as mean 6 SEM of 6–12
patches (number of patches in individual groups provided in
parentheses). Significance levels are: *, P,0.05; **, P,0.01;
***, P,0.001 (two-tailed one-sample t tests within individual groups,
or unpaired t tests between groups).
doi:10.1371/journal.pone.0018191.g001
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Furthermore, to determine whether zaprinast modulates

Kir6.2/SUR2A channel function via activation of PKG, zaprinast

(50 mM) was coapplied with the membrane-permeable, selective

PKG inhibitor KT5823 (1 mM), following pretreatment with

KT5823 (1 mM) for at least 15 min at room temperature.

Zaprinast failed to alter the single-channel activity of Kir6.2/

SUR2A channels in the presence of the PKG inhibitor KT5823

(Fig. 1C,D, open bar; 11 patches; no significant change), leading to

complete abrogation of zaprinast-induced KATP channel stimula-

tion (Fig. 1D, black filled vs. open bars; P,0.01, unpaired t test).

The single-channel conductance remained the same. The

specificity of KT5823 at 1 mM to selectively inhibit activation of

PKG but not that of PKA has been verified in our recent study

[25]. Our new data thus indicate that zaprinast stimulated the

cardiac-type KATP channel Kir6.2/SUR2A via activation of a

cGMP/PKG mechanism in intact cells. This stimulatory effect of

PKG activation on cardiac-type KATP channels in intact HEK293

cells was reminiscent of a similar effect we observed on neuronal-

type KATP (i.e., Kir6.2/SUR1) channels expressed in two different

cell models [24,32] and, interestingly, appeared to resemble the

action of other PKG activators on sarcKATP channels in intact

rabbit ventricular cardiomyocytes [26,27].

Reduction in Kir6.2/SUR2A single-channel activity by
direct application of PKG in inside-out patches excised
from HEK293 cells

Does stimulation of the Kir6.2/SUR2A, the cardiac-type KATP,

channel by activation of PKG in intact cells (see Fig. 1) result from

direct PKG phosphorylation of the channel, or alternatively,

involve phosphorylation of some intermediary, regulatory protein

that in turn activates the channel? To distinguish between these

two possibilities, we applied the purified catalytic subunit of PKG

Ia (i.e., PKG-CA) directly to the cytoplasmic surface of inside-out

patches excised from transfected HEK293 cells that expressed

Kir6.2/SUR2A channels. One advantage of using PKG-CA is

that it allows examination of PKG-specific effects in the absence of

the PKG coactivator cGMP, thereby lessoning concerns about

potential cGMP-induced, exogenous PKG-independent effect on

the channel during inside-out recordings. The single-channel

activity of KATP channels was higher in inside-out patches than in

cell-attached patches (Figs. 2 vs. 1), which was as expected due to

partial relief of ATP inhibition upon patch excision. Single-

channel currents of Kir6.2/SUR2A channels in inside-out patches

were continuously acquired before and during bath perfusion of

solutions containing the following: MgATP (100 mM) for a

duration of 6 min or until the channel activity was stabilized,

and subsequently PKG-CA (0.5 U/ml) plus MgATP (100 mM) for

at least 10 min. The NPo obtained during coappliation of PKG-

CA and MgATP was normalized to the corresponding MgATP

control obtained in individual inside-out patches for statistical

comparisons. Intriguingly, PKG-CA reduced, rather than en-

hanced, Kir6.2/SUR2A single-channel activity recorded in the

inside-out patch configuration (Fig. 2A), while the heat-inactivated

PKG-CA administered in lieu of the live enzyme elicited no

change (Fig. 2B); the normalized NPo values were 0.6560.08

(control taken as 1) (Fig. 2E, 1st bar from the left; 6 patches;

P,0.01, one-sample t test) and 1.0860.04 (Fig. 2E, 2nd bar from

the left; 5 patches; no significant change), respectively. The single-

channel conductance remained unchanged. Hence, the inhibitory

effect of PKG-CA on Kir6.2/SUR2A channels was significantly

abolished by heat inactivation of the enzyme (Fig. 2E, 1st vs. 2nd

bars; P,0.01, two-tailed unpaired t test). These results indicate

that PKG-CA exerted a specific, inhibitory action on the function

of cardiac-type KATP channels expressed in HEK293 cells, which

became evident only in cell-free patches (Fig. 2A,B,E) but not in

intact cells.

Considering that PKG-CA has a smaller molecular weight

compared with the holoenzyme and therefore the accessibility (to

targets) may or may not be the same, we proceeded to verify the

effect of PKG-CA on Kir6.2/SUR2A channels using purified

PKG Ia holoenzyme (PKG). The single-channel activity of these

channels in inside-out membrane patches excised from transfected

HEK293 cells was monitored in the continuous presence of

MgATP (100 mM) before and during sequential addition of cGMP

(100 mM; for at least 6 min) and the PKG holoenzyme (1 U/ml;

for at least 10 min) to the cytoplasmic surface of patches. The NPo

obtained during application of the PKG holoenzyme mix was

normalized to the corresponding cGMP/MgATP control obtained

before enzyme application from the same patches. Similar to

PKG-CA, PKG holoenzyme reduced the apparent opening

frequency of Kir6.2/SUR2A channels acquired in the inside-out

patch configuration (Fig. 2C), while the single-channel conduc-

tance remained the same; the averaged normalized NPo was

0.8060.08 (control taken as 1) (Fig. 2E, 3rd bar from the left; 8

patches; P,0.05, one-sample t test). By contrast, the heat-

inactivated PKG was incapable of suppressing the activity of

Kir6.2/SUR2A channels (Fig. 2D); the normalized NPo obtained

from a group of five patches was 1.2860.18 (Fig. 2E, 4th bar; no

significant change). The significant abolishment of the inhibitory

effect of PKG holoenzyme by heat inactivation (Fig. 2E, 3rd vs.

4th bars; P,0.05, unpaired t test) once again indicates that that the

inhibitory action of PKG was specific. Our findings obtained from

both PKG-CA and PKG holoenzyme groups thus imply that in

addition to being stimulated by PKG (activation) in intact cells (see

Fig. 1), the Kir6.2/SUR2A channel was also subject to moderate

inhibition mediated by PKG-mediated phosphorylation, an effect

unmasked in the cell-free condition when intracellular signaling

was prevented.

Effects of ROS scavenging on PKG stimulation of Kir6.2/
SUR2A channels in intact HEK293 cells

Our results described thus far indicate that PKG exerted dual

functional regulation on cardiac-type KATP channels, with a

predominating stimulatory effect preserved in intact cells (see

Fig. 1) and a relatively mild inhibitory effect evident only in cell-

free patches (see Fig. 2), and therefore it is conceivable that an

indirect signaling mechanism rather than direct PKG phosphor-

ylation of the channel may be responsible for KATP channel

stimulation by PKG. PKG activation has been demonstrated to

account for NO-induced ROS generation in rat cardiomyocytes as

well as the anti-infarct effect of NO in intact, isolated heart [36],

which suggests that ROS generation may be induced by PKG

activation in cardiac tissues. Interestingly, our recent findings also

suggest that ROS are required for the acute, stimulatory action of

PKG on neuronal-type KATP channels [25]. Would ROS serve as

intermediate signals inducible upon activation of PKG to mediate

an acute effect of the enzyme on cardiac-type KATP channels? To

answer this question, we examined the effect of N-(2-mercapto-

propionyl)glycine (MPG), an ROS scavenger, on PKG stimulation

of Kir6.2/SUR2A channels in intact HEK293 cells. Following

pretreatment with MPG (500 mM) for at least 15 min at room

temperature, subsequent coapplication of the selective cGMP-

specific PDE inhibitor zaprinast (50 mM) and MPG (500 mM) via

bath perfusion did not alter the single-channel currents of Kir6.2/

SUR2A channels in cell-attached patches (Fig. 3A). The averaged,

normalized NPo obtained during coapplication of zaprinast and

MPG was 1.6860.42 (control as 1) (Fig. 3C, open bar; 6 patches;

no significant change, one-sample t test), which was significantly
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reduced from the marked increase obtained from patches treated

with zaprinast alone (Fig. 3C, filled vs. open bars; P,0.01,

Dunnett’s multiple comparison test following one-way ANOVA).

These data thus indicate that ROS were indispensible signals for

PKG stimulation of cardiac-type KATP channels in intact cells.

Effects of catalase, the H2O2 decomposing enzyme, on
Kir6.2/SUR2A channel stimulation induced by PKG
activation in intact HEK293 cells

Among ROS, H2O2 is a relatively stable form. The potential

involvement of H2O2 in mediating the stimulatory effect of PKG

on cardiac-type KATP channels was examined by coapplying

catalase, an enzyme that decomposes H2O2 to water and oxygen,

together with zaprinast to cell-attached patches obtained from

transfected HEK293 cells that expressed Kir6.2/SUR2A chan-

nels. We found that in the presence of catalase (500 U/ml),

zaprinast (50 mM) was incapable of activating Kir6.2/SUR2A

channels in individual cell-attached patches (Fig. 3B); the averaged

normalized NPo was 1.6460.38 (control as 1) (Fig. 3C, hatched

bar; 8 patches; no significant change, one-sample t test), which was

in sharp contrast to the significant increase in patches receiving

only zaprinast treatment (Fig. 3C, filled vs. hatched bars; P,0.01,

Dunnett’s multiple comparison test). These results indicate that

removal of H2O2 and related ROS prevented zaprinast from

exerting its stimulatory action on Kir6.2/SUR2A channels in

intact HEK293 cells, which supports our working model that ROS

(and especially H2O2) play a crucial role in mediating PKG

stimulation of cardiac KATP channels.

Suppression of calmodulin activity abolished
Kir6.2/SUR2A channel stimulation by activation of PKG in
intact HEK293 cells

Our recent study suggests that calmodulin mediates PKG

stimulation of neuronal KATP channels in intact cells [25].

Whether calmodulin is required for the functional effect of PKG

activation on cardiac-type KATP channels is not known. To

examine this possibility, SKF-7171A (10 mM), a cell-permeable

calmodulin antagonist, was coapplied together with the PKG

activator zaprinast (50 mM) to Kir6.2/SUR2A channels in cell-

attached patches obtained from transfected HEK293 cells,

following a 15-min pretreatment with SKF-7171A (10 mM). In

the presence of SKF-7171A, zaprinast failed to increase the single-

channel activity of Kir6.2/SUR2A channels in intact cells

(Fig. 4A), resulting in an averaged, normalized NPo of

1.2360.23 (control as 1) (Fig. 4C, open bar; 8 patches; no

significant change, one-sample t test). The positive zaprinast effect

on the normalized NPo of Kir6.2/SUR2A channels was

completely abolished by SKF-7171A (Fig. 4C, filled vs. open

bars; P,0.01, Dunnett’s multiple comparison test following one-

way ANOVA), indicating that the activity of calmodulin was

required for PKG stimulation of cardiac-type KATP channels in

intact cells.

Inhibition of CaMKII prevented PKG stimulation of Kir6.2/
SUR2A channel function in intact HEK293 cells

CaMKII is one of the major regulators of Ca2+ homeostasis in

the heart, phosphorylating cardiac contractile regulatory proteins.

CaMKII has been shown to affect the function of cardiac ion

channels [37–39]. Would CaMKII be part of the signal

transduction mechanism responsible for KATP channel stimulation

following activation of PKG and calmodulin? To determine

whether CaMKII activation mediates the stimulatory effect of

PKG on cardiac-type KATP channels, we pretreated cells with the

cell-permeable, myristoylated autocamtide-2 related inhibitory

peptide selective for CaMKII (mAIP; 1 mM) for at least 15 min at

room temperature, followed by coapplying the PKG activator

zaprinast (50 mM) plus mAIP (1 mM) during continuous cell-

attached patch recordings of Kir6.2/SUR2A channel currents.

We found that activation of PKG by zaprinast no longer enhanced

the single-channel activity of Kir6.2/SUR2A channels in the

presence of mAIP (Fig. 4B); the averaged normalized NPo was

1.4060.21 (Fig. 4C, hatched bar; 8 patches; no significant

change), which represented a significant blockade of PKG’s

stimulatory effect (Fig. 4C, filled vs. hatched open bars; P,0.01,

Dunnett’s multiple comparison test following one-way ANOVA).

These results indicate that PKG stimulation of cardiac-type KATP

channels was dependent on the activity of CaMKII in intact cells.

Kinetic effects on Kir6.2/SUR2A channel opening and
closing exerted by activation of PKG in intact HEK293
cells

Channel function and its modulation is determined by the

conformational changes that the channel undertakes to enable

opening or closure of the pore for ion permeation, as reflected by

the number of open and closed states it exhibits and the rates of

transitions between different states. To understand the effect

rendered by PKG activation on cardiac-type KATP channel gating,

we investigated whether zaprinast, by triggering cGMP/PKG

signaling, causes more frequent entry into the open state (i.e.,

increases the opening frequency), prolongs stay in the open state

(i.e., increases the open duration/time constant of certain open

state), decreases dwelling time in the closed states (i.e., decreases

the closed duration/time constant of certain closed state), stabilizes

or destabilizes the occurrence of a particular state (i.e., shifts the

relative distribution among states), or induces any combination of

the above.

Single-channel analysis of Kir6.2/SUR2A channel currents in

cell-attached patches obtained from HEK293 cells before and

during zaprinast treatment was conducted. The fitting results

revealed that open- and closed-duration distributions of the

Figure 2. Suppression of Kir6.2/SUR2A channel activity by direct application of purified PKG in excised inside-out patches. Single-
channel currents were obtained in the inside-out patch configuration from transiently transfected HEK293 cells. Recordings were conducted in
symmetrical high potassium (140-mM) solutions and the membrane potential was clamped at 260 mV. (A–D) Single-channel current traces of Kir6.2/
SUR2A channels in a representative inside-out patch prior to (upper panel) and during (lower panel) bath perfusion of the catalytic subunit of PKG
(PKG-CA; 0.5 U/ml) (A), heat-inactivated PKG-CA (B), purified PKG Ia holoenzyme (PKG; 0.5 U/ml) (C), or heat-inactivated PKG holoenzyme (D). Numbers
(from 0–2) marked at the right margin of current traces indicate the level of simultaneous channel opening: 0 for closed-channel, 1 for one-channel,
and 2 for two-channel level opening. Scale bars are the same as described in Fig. 1. The single-channel currents of KATP channels in inside-out patches
were usually higher than in cell-attached patches (Figs. 2A vs. 1A), as ATP inhibition of the channel was partially alleviated upon patch excision. (E)
Normalized NPo values of Kir6.2/SUR2A channels obtained during applications of live or heat-inactivated PKG in individual groups of inside-out
patches. The drug effect was compared with the corresponding control obtained from the same patch and NPo values were normalized as described
in Fig. 1D (control taken as 1; dashed line). The average data are presented as mean 6 SEM of 5–8 patches. Significance level is: *, P,0.05; **, P,0.01
(two-tailed one-sample t tests within individual groups, or unpaired t tests between groups).
doi:10.1371/journal.pone.0018191.g002
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Kir6.2/SUR2A channel could be best described by a sum of two

open components and a sum of three closed components,

respectively (Fig. 5A; a representative patch). During zaprinast

application, the Kir6.2/SUR2A channel exhibited a tendency to

open into the longer open state more frequently in comparison

with its opening pattern under the control condition (Fig. 5A,

Open; top panel: control; bottom panel: zaprinast); the relative area of

the longer open component (designated as O2) was increased while

that of the shorter open state (designated as O1) was reduced in the

same patch (Fig. 5, Open), which led to a small yet significant

increase in the normalized corrected mean open duration during

zaprinast treatment in individual patches (Table 1, Zaprinast; 7

patches; P,0.05, two-tailed one-sample t test). Besides an increase

in the corrected mean open duration, the opening frequency was

also increased by zaprinast (Table 1, Zaprinast; P,0.05), and the

combined effect was an elevated normalized NPo (P,0.05). With

regard to the closed duration distributions, during zaprinast

treatment the Kir6.2/SUR2A channel exhibited an increase in the

occurrence of closures at the shorter closed states while reducing

the occurrence of closures at the longest closed state (i.e., to shift

the relative area under the longest closed component toward the

shorter ones); moreover, the time constant (which depicts the

dwelling time) of the longest closed state (designated as C3) was

reduced compared with the corresponding control (Fig. 5A;

Closed; top panel: control; bottom panel: zaprinast). These changes in

the channel closing pattern largely accounted for a decrease in the

normalized mean closed duration observed during zaprinast

treatment (Table 1, Zaprinast; P,0.0001, one-sample t test).

Importantly, we found that the changes induced by zaprinast on

the relative distribution of open and closed states as well as other

single-channel properties were prevented when the PKG inhibitor

KT5823 (1 mM) was coapplied (Fig. 5B, a representative cell-

attached patch; Table 1, KT5823; 9 patches), indicating that the

aforementioned effects of zaprinast on cardiac-type KATP channel

gating were mediated by activation of PKG.

Changes in the single-channel open and closed
properties of Kir6.2/SUR2A channels by activation of PKG
exhibited dependence on the activities of ROS,
calmodulin, and CaMKII

To delineate the roles played by ROS, H2O2, calmodulin and

CaMKII in mediating the kinetic effects of PKG activation on

cardiac-type KATP channels, we analyzed the single-channel

properties of Kir6.2/SUR2A channels expressed in transfected

HEK293 cells, including NPo, opening frequency, corrected mean

open duration and mean closed duration, in patches suitable for

single-channel analysis (see Methods for details). Changes in the

single-channel properties of Kir6.2/SUR2A channels in intact

HEK293 cells caused by the PKG activator zaprinast (Table 1,

Zaprinast; one-sample t test), including the reduction in the mean

closed duration and increases in the opening frequency and the

Figure 3. The role of ROS, particularly H2O2, in mediating
Kir6.2/SUR2A channel stimulation downstream of PKG activa-
tion. Single-channel currents were obtained from cell-attached patches
obtained from transiently transfected HEK293 cells. Recordings and
drug application were administered as described in Fig. 1. (A–B) Single-
channel current traces of the Kir6.2/SUR2A channel obtained from a
cell-attached patch prior to (upper panel) and during (lower panel)
application of the cGMP-specific PDE inhibitor zaprinast (50 mM)
together with a membrane-permeable ROS scavenger MPG (500 mM)
after 15-min preincubation in MPG (A), or with catalase, a H2O2-

decomposing enzyme (500 U/ml) (B). There was no pretreatment for
cells in the catalase group because catalase is not membrane-
permeable. Scale bars are the same as described in Fig. 1. (C)
Normalized NPo values of Kir6.2/SUR2A channels obtained during
applications in individual groups of cell-attached patches. NPo values
were normalized to the corresponding control as described in Fig. 1D
(control taken as 1; dashed line). The zaprinast data (filled bar) are the
same as presented in Fig. 1D, and are included here for comparison
purpose. Data are presented as mean 6 SEM of 6–12 patches. The
significance level is: **, P,0.01 (two-tailed one-sample t tests within
individual groups, or Dunnett’s multiple comparison tests between
groups).
doi:10.1371/journal.pone.0018191.g003
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corrected mean open duration (which led to an increase in the

normalized NPo), were ablated not only by the PKG inhibitor

KT5823 as mentioned above (Table 1, KT5823), but also by the

ROS scavenger MPG (500 mM), the H2O2-decomposing enzyme

catalase (500 U/ml), the cell-permeable calmodulin antagonist

SKF-7171A (10 mM), and mAIP (1 mM), the myristoylated

autocamtide-2 related inhibitory peptide highly selective for

CaMKII, respectively (Table 1; 5–8 patches). Moreover, the shifts

in the open and closed duration distributions and changes in

individual time constants observed during application of zaprinast

(Fig. 5A) were abolished when mAIP was coapplied (Fig. 5C; a

representative cell-attached patch). Our results thus indicate that

PKG activation increased the activity of Kir6.2/SUR2A channels

in intact cells by altering the open and closed properties of these

channels in a ROS-, calmodulin- and CaMKII-dependent

manner.

Exogenous H2O2 increased the single-channel activity of
Kir6.2/SUR2A channels in cell-attached patches in a
concentration-dependent manner while suppressed
these channels in excised, inside-out patches

ROS play an important role in cell signaling. Most aspects of

(oxidant) signaling have been linked to the more stable derivative,

H2O2 [40]. To determine how H2O2 modulates the activity of

cardiac-type KATP channels in intact HEK293 cells, we examined

the changes in the single-channel currents of Kir6.2/SUR2A

channels before and during bath application of H2O2 using cell-

attached patch recordings. H2O2 (1 mM) increased the apparent

opening frequency and the open duration of Kir6.2/SUR2A

channels compared with the control obtained from the same cell-

attached patch before application of H2O2 (Fig. 6A), without

affecting the single-channel conductance. The averaged normal-

ized NPo was 8.6962.27 during 1 mM H2O2 application (control

as 1) (Fig. 6D, 3rd bar from the left; 11 patches; P,0.01, one-

sample t test), indicating that H2O2 stimulates cardiac-type KATP

channels in intact HEK293 cells. We also found that H2O2 at

10 mM was still capable of increasing the normalized NPo of the

Kir6.2/SUR2A channel (NPo = 2.4760.38; Fig. 6D, 2nd bar from

the left; 5 patches; P,0.05, one-sample t test) albeit the effect was

weaker compared with that obtained at 1 mM; in contrast, H2O2

at 0.1 mM failed to induce any detectable change (Fig. 6D, 1st bar

from the left; 3 patches; no significant change). The concentration

dependence of H2O2–induced stimulation of cardiac-type KATP

channels implies that the stimulatory action of H2O2 is specific.

Does H2O2 stimulation of Kir6.2/SUR2A channels in cell-

attached patches (see Fig. 6A,D) result from direct or indirect

modification of the channel protein? Previously we have

demonstrated that direct application of H2O2 to the Kir6.2/

SUR1, the neuronal-type KATP, channel in inside-out patches did

not increase but instead reduced the channel activity [25] even

though in cell-attached patches the effect of H2O2 is stimulatory,

which suggests that H2O2 achieves neuronal KATP channel

Figure 4. Roles of calmodulin and CaMKII in mediating PKG
stimulation of Kir6.2/SUR2A channels. Recombinant Kir6.2/SUR2A
channels were expressed in HEK293 cells by transient transfection. Cell-
attached patch-clamp recordings and drug application were adminis-
tered as described in Fig. 1. (A–B) Single-channel current traces of Kir6.2/
SUR2A channel obtained from a cell-attached patch prior to (upper
panel) and during (lower panel) application of the cGMP-specific PDE
inhibitor zaprinast (50 mM) together with the membrane-permeable,
selective calmodulin antagonist SKF-7171A (10 mM) (A), or with the
myristoylated autocamtide-2 related inhibitory peptide for CaMKII

(mAIP; 1 mM) (B). The scale bars are the same as described in Fig. 1.
(C) Normalized NPo of Kir6.2/SUR2A channels obtained during
application of drugs in individual groups. The zaprinast data (filled
bar) are the same as presented in Fig. 1D, and are included here for
comparison purpose. NPo values were normalized to the corresponding
control (taken as 1) as described in Fig. 1D. The dashed line indicates the
control level. Data are presented as mean 6 SEM of 8–12 patches. The
significance level is: **, P,0.01 (two-tailed one-sample t tests within
individual groups, or Dunnett’s multiple comparison tests between
groups).
doi:10.1371/journal.pone.0018191.g004
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stimulation by indirectly modifying the channel. To determine

whether H2O2 exerts a similar action on cardiac KATP channels in

the cell-free condition, we administered exogenous H2O2 by bath

perfusion to inside-out membrane patches excised from transfect-

ed HEK293 cells expressing Kir6.2/SUR2A channels. MgATP

(30 mM) was included in both bath and drug solutions during

inside-out recordings to prevent current rundown in the cell-free

condition [14,21,24,25]. The KATP channel activity in inside-out

patches (Fig. 6C) was much elevated compared with that in cell-

attached patches (Fig. 6A), likely due to partial relief of

intracellular ATP inhibition upon patch excision. We found that

H2O2 decreased the Kir6.2/SUR2A channel activity in inside-out

patches (Fig. 6C); the averaged normalized NPo was significantly

reduced to 0.6760.09 (control as 1) (Fig. 6D, rightmost bar; 7

patches; P,0.05, one-sample t test). These results indicate that in

addition to the stimulatory effect observed in intact cells (see

Fig. 6A,D), H2O2 suppressed Kir6.2/SUR2A channel function in

the cell-free condition, possibly by direct modification of the

channel or some closely associated regulatory protein(s). Because

H2O2 enhanced the activity of Kir6.2/SUR2A channels only in

intact cells but not in inside-out patches, the stimulatory action of

H2O2 was likely indirect. Moreover, as the combined (i.e., direct

plus indirect) effect of H2O2 on Kir6.2/SUR2A channels in intact

cells was channel activation, the stimulatory action of H2O2

appeared to be the primary effect exerted by ROS generation on

these channels.

Stimulation of Kir6.2/SUR2A channels by exogenous
H2O2 in intact cells was abolished by CaMKII inhibitors

Our findings described above revealed that ROS/H2O2,

calmodulin, and CaMKII were crucial for PKG stimulation of

Kir6.2/SUR2A channels in intact cells (see Figs. 1, 3 and 4 and

Table 1), it is therefore important to determine the relative

position (or order) of ROS/H2O2 and calmodulin/CaMKII in the

intracellular signaling pathway triggered by activation of PKG. If

H2O2 is generated along the PKG-induced signaling pathway

after the activation of CaMKII, the effect of exogenous H2O2 on

Kir6.2/SUR2A channels should not be affected by functional

suppression of CaMKII. To determine whether CaMKII is

positioned downstream (or upstream) of ROS/H2O2 in mediating

the KATP channel stimulation in intact HEK293 cells, mAIP, a

myristoylated inhibitory peptide highly selective for CaMKII, was

coapplied with H2O2 during cell-attached recordings of Kir6.2/

SUR2A channels. We found that in the presence of mAIP (1 mM),

exogenous H2O2 (1 mM) was unable to increase the single-

channel activity of Kir6.2/SUR2A channels (Fig. 6B; a represen-

tative cell-attached patch); the averaged, normalized NPo was not

different from the corresponding control in individual patches

(Fig. 6D, open bar; 5 patches; one-sample t test) but was

Figure 5. Effects of PKG activation on open- and closed-
duration distributions of Kir6.2/SUR2A channels in intact cells.
Data were obtained from transfected HEK293 cells expressing Kir6.2/
SUR2A channels. Frequency histograms of duration distributions fitted
from events obtained before (upper panel) and during (lower panel) the
application of zaprinast (50 mM) alone (A), zaprinast (50 mM) plus a
selective PKG inhibitor KT5823 (1 mM) (B), or zaprinast (50 mM) plus the
myristoylated CaMKII inhibitory peptide mAIP (1 mM) (C) in represen-
tative cell-attached patches. Cells were incubated with respective
inhibitors for at least 15 min before index drug perfusion. Frequency
histograms displayed are open-duration distribution (left column) and
closed-duration distributions (right column), respectively, for all
patches. Duration histograms were constructed as described in
Methods.
doi:10.1371/journal.pone.0018191.g005
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significantly reduced compared with the positive group H2O2

(Fig. 6D, 3rd vs. 4th bars from the left; P,0.05, Dunnett’s multiple

comparison test following one-way ANOVA). These findings were

compatible with the observation that H2O2 did not directly

stimulate Kir6.2/SUR2A channels (see Fig. 6A,C,D). Our data

thus indicate that the activity of CaMKII was required to mediate

stimulation of Kir6.2/SUR2A channels by ROS/H2O2 in intact

HEK293 cells. In other words, CaMKII activation may occur

downstream of ROS generation during activation of PKG to

achieve functional enhancement of cardiac KATP channels.

Effects of H2O2 on the single-channel open and closed
properties of Kir6.2/SUR2A channels in intact cells

The effects of exogenous H2O2 on the single-channel open and

closed properties of Kir6.2/SUR2A channels expressed in intact

HEK293 cells were analyzed in cell-attached patches suitable for

single-channel analysis. The normalized values of NPo, opening

frequency, corrected mean open duration, and mean closed

duration of Kir6.2/SUR2A channels obtained in intact HEK293

cells were significantly altered during H2O2 treatment (control as

1) (Table 2, H2O2; 9 patches; one-sample t test). The increases in

the opening frequency (P,0.01), the corrected mean open

duration (P,0.05), and consequently the NPo (P,0.05), plus the

reduction in the mean closed duration (P,0.0001), provided a

kinetic explanation for Kir6.2/SUR2A channel activation induced

by H2O2 (Table 2, H2O2). These changes in the single-channel

open and closed properties were similar to the kinetic effects

exerted by zparinast on the same KATP channel isoform in intact

cells (Table 1, Zaprinast). Furthermore, we found that H2O2–

induced changes in the normalized single-channel open and closed

properties of Kir6.2/SUR2A channels in intact HEK293 cells

were completely prevented when the potent and selective CaMKII

inhibitory peptide mAIP was coapplied (Table 2, mAIP). These

results indicate that exogenous H2O2 stimulated Kir6.2/SUR2A

channels in intact HEK293 cells by altering the gating properties

of the channel in a CaMKII-dependent manner.

Effects of PKG activation on sarcKATP channels in intact
ventricular cardiomyocytes isolated from adult rabbits

Finally, to confirm the relevance of the findings obtained from

recombinant cardiac-type KATP channels to the native system, we

examined the effect of PKG activators on the activity of sarcKATP

channels in cell-attached patches obtained from intact ventricular

cardiomyocytes acutely isolated from adult rabbits. The KATP

channel opener pinacidil (200 mM) was applied first to induce

sufficient baseline channel activity in the control condition for

subsequent pairwise comparisons. In the continuous presence of

pinacidil (200 mM), bath perfusion of the cGMP-seletive PDE

inhibitor zparinast (50 mM) effectively potentiated the single-

channel activity of sarcKATP channels (Fig. 7A); the normalized

NPo was 12.7463.21 (control in pinacidil taken as 1) (Fig. 7E, filled

bar; 8 patches; P,0.01, two-tailed one-sample t test). In contrast,

zaprinast was incapable of further enhancing pinacidil-induced

sarcKATP channel activity when KT5823, a selective PKG

inhibitor, was coapplied (Fig. 7B,E, open bar; 4 patches; no

significant change), yielding significant ablation of PKG-induced

channel stimulation (NPo = 2.6461.13; Fig. 7E, filled vs. open

bars; P,0.05, Dunnett’s multiple comparison test following one-

way ANOVA). These results indicate that zaprinast stimulated

sarcKATP channels in intact ventricular cardiomyocytes via

activation of PKG, which was in line with findings obtained from

recombinant cardiac-type KATP channels in HEK293 cells (see

Fig. 1).

Effects of ROS scavenging and inhibition of CaMKII on
PKG stimulation of sarcKATP channel activity in intact
ventricular cardiomyocytes

Because PKG did not activate Kir6.2/SUR2A channels in

excised, inside-out patches (see Fig. 2), it is less likely that the

channel subunits serve as direct targets of PKG for channel

stimulation. The key question to be addressed next is whether

PKG activation stimulates sarcKATP channels in cardiomyocytes

via intracellular signaling, as our recombinant channel data have

implied (see Figs. 1–6), or by phosphorylation of some regulatory

protein associated closely with the channel in the plasma

membrane, as indirectly inferred from the findings made by

Han et al. [26,27]. To determine the role of ROS in mediating

the stimulatory effect of PKG on sarcKATP channels, single-

channel recording experiments were performed in cell-attached

patches obtained from rabbit ventricular cardiomyocytes. SarcK-

ATP channels were preactivated with pinacidil (200 mM) to induce

basal activity sufficient for subsequent pairwise comparisons. We

found that coapplication of zaprinast (50 mM) and the ROS

scavenger MPG (500 mM) in the continuous presence of pinacidil

did not result in an increase in the single-channel activity of

sarcKATP channels (Fig. 7C); the normalized NPo was 2.4060.78

(Fig. 7E, 3rd bar from the left; 9 patches; no significant change,

one-sample t test), revealing a significant nullification of the

Table 1. Roles of ROS, calmodulin and CaMKII in mediating the stimulatory effects of PKG on the normalized single-channel open
and closed properties of recombinant Kir6.2/SUR2A channels expressed in intact HEK293 cells.

Properties Zaprinast +KT5823 +MPG +Catalase +SKF-7171A +mAIP

Open probability 13.7564.91* 1.1360.26 1.6160.51 1.4960.48 1.1260.23 1.4060.21

Opening frequency 8.8462.51* 1.0560.20 1.2760.26 1.3860.45 0.9260.17 1.3160.14

Mean open duration 1.4760.17* 1.0460.07 1.1360.12 1.1760.13 1.1760.18 1.0760.09

Mean closed duration 0.1660.04**** 1.1060.18 0.8860.15 0.7960.17 1.8760.39 0.9660.16

Number of patches 7 9 5 5 7 8

Single-channel recordings of Kir6.2/SUR2A channels in cell-attached patches obtained from transfected HEK293 cells were performed at 260 mV in symmetrical
140-mM K+ solutions. Zaprinast (50 mM), or zaprinast plus KT5823 (1 mM), MPG (500 mM), catalase (500 U/ml), SKF-7171 (10 mM), or mAIP (1 mM), was applied by bath
perfusion using a pressure-driven system. The single-channel properties were obtained as described in Methods. All values were normalized to the corresponding
controls obtained in individual patches prior to index drug application (control taken as 1), averaged and are presented as mean 6 SEM. Significance levels are:
*, P,0.05;
****, P,0.0001 (two-tailed one-sample t tests).
doi:10.1371/journal.pone.0018191.t001
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positive zaprinast effect by MPG (Fig. 7E, 1st vs. 3rd bars;

P,0.01, Dunnett’s multiple comparison test following one-way

ANOVA). Furthermore, to determine whether CaMKII activa-

tion is required for PKG stimulation of sarcKATP channels in

intact ventricular cardiomyocytes, PKG activators zaprinast was

applied by bath perfusion together with mAIP, the potent and

highly selective inhibitory peptide for CaMKII. Activation of

PKG by zaprinast (50 mM) failed to increase the single-channel

activity of sarcKATP channels preactivated by pinacidil (200 mM)

when mAIP (1 mM) was coadministered (NPo = 1.6661.28;

Fig. 7D,E, 4th bar from the left; 4 patches; no significant

change), and PKG’s stimulatory effect was significantly ablated

Figure 6. Dual effects of H2O2 on the function of cardiac-type KATP channels. Currents were obtained in the cell-attached (A,B) or inside-out
(C) patch configuration from transiently transfected HEK293 cells expressing Kir6.2/SUR2A channels. (A–B) Single-channel current traces of Kir6.2/
SUR2A channels in representative cell-attached patches prior to (upper panel) and during (lower panel) bath perfusion of H2O2 (1 mM) alone (A), or
H2O2 plus the myristoylated CaMKII inhibitory peptide mAIP (1 mM) (B). (C) Single-channel current traces of Kir6.2/SUR2A channels from a
representative inside-out patch before and during application of H2O2 (1 mM). Numbers (from 0–4) provided along the right margin of current traces
indicate the increasing level of simultaneous channel opening: 0 for closed-channel, 1 for one-channel, 2 for two-channel level opening, etc. MgATP
(30 mM) was included in the bath and drug solutions during inside-out recordings to prevent current rundown. The scale bars are the same as
described in Fig. 1. (D) Normalized NPo of Kir6.2/SUR2A channels obtained during application of drugs in individual groups. The labels (cell-attached
and inside-out) placed underneath the X axis depict the patch configuration in which data were obtained. NPo values of all groups were normalized to
the corresponding control obtained prior to index drug application in individual patches as described in Fig. 1D (control taken as 1; dashed line). Data
obtained from cell-attached patches treated with increasing concentrations of H2O2 (0.0001, 0.01 and 1 mM) were also displayed (first three bars from
the left) to illustrate the concentration dependence of H2O2 effects. Data are presented as mean 6 SEM of 3–11 patches (number of patches in
individual groups provided in parentheses). Significance levels are: *, P,0.05; **, P,0.01 (two-tailed one-sample t tests within individual groups, or
unpaired t tests between groups).
doi:10.1371/journal.pone.0018191.g006
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by inhibition of CaMKII (Fig. 7E, 1st vs. 4th bars; P,0.05,

Dunnett’s multiple comparison test). The results obtained from

these two experimental groups performed in intact ventricular

cardiomyocytes were consistent with, and thereby confirmed, the

findings made in intact HEK293 cells expressing recombinant

Kir6.2/SUR2A channels (see Figs. 3A,C and 4B,C), indicating

that the stimulatory action of PKG activation on sarcKATP

channels in intact ventricular cardiomyocytes were ROS- and

CaMKII-dependent.

Discussion

Vital in the adaptive response to (patho)physiological stress,

KATP channels serve a homeostatic role ranging from glucose

regulation to cardioprotection [41]. The KATP channel is

important for cardiac function; indeed, genetic disruption of

the pore-forming subunit that comprises cardiac KATP channels

renders the knockout mice less tolerant to different types of

stress, resulting in abnormal cytosolic calcium handling,

susceptibility to developing acute cardiac failure, and sudden

cardiac death [42,43]. In the present study, we demonstrated

that PKG exerted bidirectional modulation of cardiac-type

KATP (i.e., Kir6.2/SUR2A) channel function, the major effect of

which was an indirect, stimulatory action resulting from

intracellular signaling mediated by ROS (in particular H2O2),

calmodulin, and CaMKII; on the other hand, direct PKG

phosphorylation of the channel was unlikely involved in channel

stimulation but instead may cause moderate channel inhibition.

We also defined the kinetic basis on which PKG signaling

enhanced the function of Kir6.2/SUR2A channels in intact

cells, and provided novel evidence that enhancement of cardiac-

type KATP channels by ROS/H2O2 relied on activation of

CaMKII. And lastly, we examined the effect of PKG activation

and the roles played by key signaling components ROS and

CaMKII in mediating the modulatory effect of PKG activation

on sarcKATP channels in ventricular cardiomyocytes to confirm

the physiological relevance of our findings obtained from

transfected HEK293 cells.

Bidirectional regulation of the cardiac-type KATP channel
by PKG-mediated phosphorylation: direct and indirect
effects

The cGMP/PKG signaling mechanism is involved in the

regulation of smooth muscle relaxation, learning and memory, cell

division, and cardioprotection [44,45]. In the present study,

accumulation of intracellular cGMP by application of the

membrane-permeable cGMP analog 8-Br-cGMP (Fig. 1A,D) or

the membrane-permeable, cGMP-specific PDE inhibitor zaprinast

(Figs. 1B,D and S1; Table 1) resulted in cardiac-type KATP (i.e.,

Kir6.2/SUR2A) channel activation in intact HEK293 cells.

Importantly, the stimulatory effect of zaprinast was concentra-

tion-dependent (0.05–50 mM; Fig. 1D), suggesting that the

stimulatory action of zparinast on the KATP channel in intact

cells is specific. Further, the stimulatory effects of zaprinast on the

single-channel activity of Kir6.2/SUR2A channels were signifi-

cantly abolished by KT5823, a selective, membrane-permeable

PKG inhibitor (Fig. 1C,D; Table 1, Zaprinast and Zapri-

nast+KT5823). KT5823 at the concentration of 1 mM should

effectively and selectively inhibit PKG, because its IC50 is 0.23 mM

for PKG but is much higher (10 mM) for PKA. In line with this

prediction, we have demonstrated that the action of the PKG

activator zaprinast on the neuronal-type KATP channel is

abolished by KT5823 at 1 mM whereas unaffected by the selective

PKA inhibitor KT5720 [25]. The stimulatory effect of PKG

activation on cardiac KATP channels was confirmed in intact

ventricular cardiomyocytes (Fig. 7A,B,E; Table S1, Zaprinast).

Our new data (Figs. 1 and 7A,B,E; Tables 1 and S1) thus suggest

that activation of PKG by accumulation of intracellular cGMP

positively modulates the function of cardiac KATP channels in

intact cells.

In addition to the stimulatory action of PKG on the activity of

Kir6.2/SUR2A channels in intact cells, we also demonstrated that

direct application of either the catalytic subunit of PKG (Fig. 2A)

or the PKG holoenzyme (Fig. 2C) to the cytoplasmic surface of

inside-out patches excised from HEK293 cells did not stimulate

but reduced Kir6.2/SUR2A channel function (Fig. 2A,C,E). The

inhibitory action of PKG was abolished by heat inactivation of the

enzyme (Fig. 2B,D), implying a specific enzyme effect. Our results

thus suggest that PKG phosphorylation of the cardiac KATP

channel or some closed associated regulatory protein in the plasma

membrane renders channel inhibition, an effect likely masked by

the predominating, stimulatory effect of PKG in intact cells (Fig. 1).

However, our findings on the inhibitory effect (i.e., channel

suppression) of PKG on Kir6.2/SUR2A channels in inside-out

patches (Fig. 2) seem to be in contradiction to those reported by

Han et al. [26], in which a positive effect (i.e., channel activation)

was induced by brief application of PKG to sarcKATP channels in

inside-out patches excised from native cardiomyocytes. Thus far

we were unable to reproduce the stimulatory PKG effect in inside-

out patches obtained from rabbit ventricular myocytes (Lin and

Chai, unpublished data), the same cell model used by Han et al.

[26], and we suspect that the discrepancy in experimental findings

may result from, among others, some difference in the drug

application protocol employed. For instance, instead of simulta-

neously administering enzymes together with their coactivators

(MgATP/cGMP or cGMP) [26,27], in our inside-out patch

recording experiments we applied individual solutions containing

the coactivators or coactivator plus PKG in an incremental

manner. In other words, we did not switch to a perfusion solution

containing additional chemicals or reagents until the channel

activity in the present solution has become stable, and typically we

recorded in each drug solution for 6–12 min. We consider this

routine more suitable for detecting and comparing the steady-state

Table 2. Effects of exogenous H2O2 on the normalized single-
channel open and closed properties of Kir6.2/SUR2A channels
in intact HEK293 cells in the absence and presence of CaMKII
inhibition.

Properties H2O2 +mATP

Open probability 8.8562.68* 1.0260.15

Opening frequency 5.7061.18** 0.8360.11

Mean open duration 1.5060.17* 1.2760.16

Mean closed duration 0.2560.06**** 1.2860.18

Number of patches 9 5

Single-channel recordings of Kir6.2/SUR2A channels in cell-attached patches
obtained from transfected HEK293 cells were performed at 260 mV in
symmetrical 140-mM K+ solutions. H2O2 (1 mM) or H2O2 (1 mM) plus the
myristoylated inhibitory peptide for CaMKII mAIP (1 mM) was applied by bath
perfusion using a pressure-driven perfusion system. The single-channel
properties were obtained as described in Methods. All values were normalized
to the corresponding controls obtained in individual patches prior to index
drug application (control taken as 1), averaged and are presented as mean 6

SEM. Significance levels are:
*, P,0.05;
**, P,0.01;
****, P,0.0001 (two-tailed one-sample t tests).
doi:10.1371/journal.pone.0018191.t002
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Figure 7. Stimulation of sarcKATP channels in ventricular cardiomyocyte by intracellular signaling triggered by activation of PKG.
Recordings were performed in symmetrical high potassium (140-mM) solutions at room temperature in the cell-attached configuration and the
membrane potential was clamped at 260 mV. (A–D) Single-channel current traces of the sarcKATP channel preactivated by the KATP channel opener
pinacidil (200 mM) in a representative cell-attached patch prior to (upper panel) and during (lower panel) addition of the cGMP-specific PDE inhibitor
zaprinast (50 mM) (A), or zaprinast (50 mM) together with one of the following: a selective PKG inhibitor KT5823 (1 mM) (B), a membrane-permeable
ROS scavenger MPG (500 mM) (C), or the myristoylated autocamtide-2 related inhibitory peptide for CaMKII (mAIP; 1 mM) (D). Cells were pretreated
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response of channels to pharmacological treatments. Our findings

that the steady-state response of Kir6.2/SUR2A channels in

inside-out patches to direct application of PKG (either the

holoenzyme or the catalytic subunit) was a reduction in channel

function (see Fig. 2) instead of channel stimulation as seen in the

cell-attached patches (see Fig. 1) suggest the following. First, PKG

does not directly phosphorylate the cardiac KATP channel protein

to induce channel activation observed in intact cells (Figs. 1 and 7).

Second, PKG may directly phosphorylate the cardiac KATP

channel or some closely associated regulatory protein to render

modest to moderate suppression of the channel function (Fig. 2).

On the other hand, because proper cGMP controls and time

controls were not secured prior to the administration of

exogeneous PKG, it is not clear whether the stimulatory effect

on sarcKATP channel activity in inside-out patches excised from

ventricular cardiomyocytes during brief cGMP/PKG application

reported by Han et al. [26] is a PKG-specific action. Nonetheless,

our cloned channel data of the present study (Figs. 1 and 2)

provide unambiguous support to suggest that the stimulatory

action of PKG on cardiac KATP channels observed in intact cells

does not result from direct PKG phosphorylation of the channel;

in other words, some indirect mechanism is responsible for cardiac

KATP channel stimulation by PKG (see next).

Together, our findings obtained from cell-attached (Fig. 1;

Table 1) and inside-out (Fig. 2) patches from HEK293 cells

expressing cardiac-type KATP channels and from ventricular

cardiomyocytes (Fig. 7A,B,E; Table S1) suggest that PKG exerts

bidirectional regulation of cardiac KATP channel function; the

stimulatory action of PKG is likely dependent on some cytosolic,

intermediate messenger(s) whereas the inhibitory action of PKG

may be attributed to direct PKG phosphorylation of the channel

or some closely associated regulatory protein(s). We further suggest

that the stimulatory action of PKG predominates over its

inhibitory action, as the latter was completely masked in intact

cells (Figs. 1 and 7; Tables 1 and S1). Hence, the stimulatory

action of PKG may represent the primary effect exerted by PKG

phosphorylation on cardiac KATP channel modulation. These

results were reminiscent of the bidirectional modulation of the

Kir6.2/SUR1 (i.e., neuronal-type KATP) channel function by PKG

we have previously demonstrated in two different cell models [24],

and therefore implicate that PKG may modulate the function of

KATP channels in the heart and the brain through some common

mechanism.

ROS and particularly H2O2 mediate PKG-induced
stimulation of cardiac KATP channels in intact cells

ROS are generated by all aerobic cells, and most endogenously

produced ROS are derived from mitochondrial respiration

[46,47]. ROS have been shown to contribute to the cardioprotec-

tion afforded by ischemic preconditioning [48,49]. Among all

ROS, H2O2 is an attractive candidate for cell signaling, because

compared with other ROS it is relatively stable and long-lived, and

its neutral ionic state allows it to exit the mitochondria easily [50].

In this study the stimulation of Kir6.2/SUR2A channels by PKG

activation in intact HEK293 cells was abolished by ROS

scavenging (Fig. 3A,C; Table 1). Moreover, the stimulatory effects

of PKG activation were abrogated by catalase, an enzyme that

decomposes H2O2 (Fig. 3B,C; Table 1). Similarly, PKG

stimulation of sarcKATP channels in intact ventricular cardiomy-

ocytes was also prevented in the presence of ROS scavengers

(Fig. 7C,E; Table S1, MPG). Our findings (Figs. 3 and 7C,E;

Tables 1 and S1) thus suggest that the PKG-induced stimulation of

cardiac KATP channels is mediated by ROS/H2O2 signaling. We

have previously shown that ROS are indispensible for PKG

stimulation of the neuronal-type KATP channel [25]. It is

conceivable that ROS may function as a critical signal in PKG

signaling to modulate KATP channels in different tissues.

Calmodulin and CaMKII are required for cardiac KATP

channel stimulation by PKG in intact cells
Ca2+/calmodulin-dependent kinases (CaMKs) influence pro-

cesses as diverse as gene transcription, cell survival, apoptosis,

cytoskeletal re-organization and learning and memory. CaMKII is

the CaMK isoform predominantly found in the heart [51]. We

have previously demonstrated that intracellular calcium and

calmodulin mediate the stimulatory effect of PKG signaling on

neuronal-type KATP channels [25]. Results obtained from the

present study further suggest that PKG enhances cardiac KATP

channel function via activation of the Ca2+-binding protein

calmodulin and CaMKII, because not only PKG stimulation of

the Kir6.2/SUR2A channel in intact HEK293 cells was

completely nullified by SKF-7171A (a selective calmodulin

antagonist) (Fig. 4A,C; Table 1) and mAIP (a myristoylated

autocamtide-2 related inhibitory peptide for CaMKII) (Fig. 4B,C;

Table 1), PKG stimulation of sarcKATP channels in ventricular

cardiomyocytes was also ablated by inhibition of CaMKII with

mAIP (Fig. 7D,E). It has been suggested that increased short-term

CaMKII activity may serve as beneficial negative feedback for

calcium on repolarization of cardiomyocyte membranes [39].

Putative substrates for CaMKII include proteins involved in

regulating Ca2+ storage and release, transcription factors, and ion

channels [37]. Further study is required to elucidate how CaMKII

modulates the function of cardiac KATP channels.

PKG signaling modifies the single-channel open and
closed properties of cardiac-type KATP channels to
achieve channel activation

Based on the single-channel analysis of open- and closed-

duration distributions of Kir6.2/SUR2A channels in intact

HEK293 cells, we suggest that the cardiac-type KATP channel

exhibits at least two open states and three closed states (Fig. 5). The

effects of the PKG activator zaprinast on the open- and closed-

duration distributions of Kir6.2/SUR2A channels (Fig. 5A) imply

that zaprinast stimulates cardiac KATP channels by destabilizing

the longest closed conformation whereas stabilizing the long open

conformation. Moreover, zaprinast also facilitated the closed-to-

open transitions (i.e., opening frequency) of the channel and

elevated the NPo (Table 1). All these changes induced by zaprinast

in the single-channel properties of Kir6.2/SUR2A channels were

sensitive to the PKG inhibitor and therefore may constitute the

kinetic mechanism responsible for PKG stimulation of cardiac

KATP channels (Fig. 5B; Table 1). These kinetic changes induced

by zaprinast were also abolished by scavenging of ROS, enzymatic

decomposition of H2O2, inhibition of calmodulin, and blockade of

with respective inhibitors for at least 15 min at room temperature before recordings were started. Scale bars are the same as described in Fig. 1.
Downward deflections represent openings from closed states. (E) The averaged normalized NPo values of sarcKATP channels obtained during
application of drugs in individual groups of cell-attached patches. NPo values were normalized to the corresponding control in pinacidil with or
without inhibitors (control taken as 1; dashed line). Data are presented as mean 6 SEM of 4–9 patches. Significance levels are: *, P,0.05; **, P,0.01
(two-tailed one-sample t tests within individual groups, or Dunnett’s multiple comparison tests between groups).
doi:10.1371/journal.pone.0018191.g007
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CaMKII activation (Fig. 5C; Table 1), suggesting the involvement

of ROS, especially H2O2 and related species, calmodulin, and

CaMKII in mediating sGC/PKG stimulation of cardiac KATP

channels through altering the open and closed properties of the

channel. These results provide kinetic insights into the functional

modulation of cardiac-type KATP channels by an intracellular

signaling mechanism triggered by PKG.

H2O2 indirectly stimulates cardiac-type KATP channels in
intact cells

Our findings (see Figs. 3 and 7C,E) of the present study imply a

permissive role of ROS, especially H2O2, in mediating cardiac

KATP channel stimulation downstream of PKG activation in intact

cells. Importantly, in the present study we provide direct evidence

that H2O2 concentration-dependently stimulated the single-

channel activity of Kir6.2/SUR2A channels in intact HEK293

cells (Fig. 6A,D; Table 2), suggesting that the cardiac KATP

channel is positively modulated by H2O2 in intact cells. H2O2 has

been suggested to regulate KATP channel activity or KATP

channel-related cellular function in several cell types. For example,

H2O2 causes sulfonylurea-sensitive hyperpolarization and sup-

pression of insulin release in pancreatic b-cells [52], and mediates

glutamate-dependent inhibition of dopamine release from striatum

by activating KATP channels [53,54]. H2O2 has also been shown

to regulate KATP channel activity in ventricular cardiomyocytes

[55–57]. However, the activity of Kir6.2/SUR2A channels in

inside-out patches was suppressed rather than stimulated by H2O2

(Fig. 6C,D). It thus appeared that the direct action of ROS/H2O2,

possibly by oxidizing the channel protein or some closely

associated regulatory protein, is inhibitory, which rules out direct

oxidation of redox-sensitive sites on the Kir6.2/SUR2A channel as

a potential cause responsible for ROS/H2O2-induced channel

stimulation in intact cells (Fig. 6A). Indeed, strong oxidants or

sulfhydryl oxidizing agents cause KATP channel closure in skeletal

muscle cells [58], pancreatic b-cells [59] and cardiac cells [60].

Together, our findings on recombinant cardiac-type KATP

channels support that H2O2 stimulates cardiac KATP channels

via an indirect mechanism rather than by direct chemical

modification of the channel. The H2O2-induced stimulation of

Kir6.2/SUR2A channels in intact cells (Fig. 6A,D; Table 2, H2O2)

likely represents a summated outcome of the dual action of H2O2,

in which the channel stimulation predominates over and masks the

inhibition. The bidirectional regulation of cardiac-type KATP

channel function by H2O2 (Fig. 6) was reminiscent of the H2O2

effects on neuronal-type KATP channels we have recently

demonstrated [25], suggestive of a common mechanism underly-

ing ROS/H2O2 modulation of KATP channels in different tissues.

Activation of CaMKII mediates H2O2 stimulation of
cardiac KATP channels in intact cells

In the present study, suppression of CaMKII activity with a

potent and highly selective peptide inhibitor mAIP significantly

abolished the stimulatory effect of H2O2 on Kir6.2/SUR2A

channels in intact HEK293 cells (Figs. 6B,D; Table 2), suggesting

that CaMKII serves as a downstream signaling component to

mediate stimulatory actions of H2O2 (Fig. 6A,D) and PKG (Figs. 1)

on cardiac KATP channels. These findings were also compatible

with the observation that H2O2 did not stimulate Kir6.2/SUR2A

channels directly in intact cells (see Fig. 6A,C,D). The crucial role

of CaMKII in mediating H2O2-induced changes in the kinetic

properties of cardiac-type KATP channels, which in turn resulted in

enhanced channel activity, was also supported by our data on

single-channel open and closed properties (Table 2). H2O2 may

activate CaMKII by increasing the calcium permeability from

intracellular stores [61] and by activating calmodulin [25], and

consequently stimulates KATP channels in the plasma membrane.

Although recent evidence indicates that direct oxidation of

CaMKII by ROS (generated downstream of angiotensin II) may

sustain CaMKII activity in the absence of Ca2+/calmodulin [62],

our findings that the stimulatory action of H2O2 on Kir6.2/

SUR2A channels was completely abolished by suppression of

calmodulin (Fig. S2) implicate an involvement of the Ca2+/

calmodulin mechanism in rendering ROS activation of CaMKII.

Moreover, our recent study has provided evidence for a role of

intracellular Ca2+ in mediating PKG stimulation of neuronal

KATP channels in intact cells (Chai and Lin, 2010), which is in line

with the current working model for a Ca2+/calmodulin-dependent

activation of CaMKII downstream of PKG and ROS signaling.

In conclusion, here we report for the first time that PKG

bidirectionally modulates cardiac KATP channels; PKG stimulates

cardiac KATP channels via an intracellular signaling mechanism

consisting of ROS (particularly H2O2), calmodulin, and CaMKII,

whereas inhibits the channel likely by direct PKG phosphorylation

of the channel or some closely associated regulatory protein.

Mechanistic understanding of KATP channel regulation may

provide insights into the development of strategies for the

management of cardiovascular injury. It is noteworthy that KATP

channels, ROS, and cGMP-selective phosphodiesterase V (PDE

V) inhibitors have been implicated in cardiac protection/tolerance

against ischemic injury. Hence, this novel cGMP/PKG/ROS/

calmodulin/CaMKII/KATP signaling pathway may regulate

cardiomyocyte excitability and contribute to endogenous cardio-

protective mechanisms. Further, this novel pathway may represent

a common mechanism for KATP channel modulation in tissues

including the heart and the brain and thus will be of broad

physiological importance.

Supporting Information

Figure S1 Effects of PKG activation on the absolute
open probability of cardiac-type KATP channels in
individual cell-attached patches. Recombinant Kir6.2/

SUR2A channels were expressed in HEK293 cells by transient

transfection. The cGMP-dependent PDE inhibitor zaprinast was

administered by bath perfusion to activate PKG. Colored lines

depict pairs of the absolute NPo data obtained from the same cell-

attached patches before and during application of zaprinast

(50 mM). The average NPo was 0.0460.01 in the control

condition, which ranged from 0.01 to 0.1%, and was 0.4860.16

during application of zaprinast, which ranged from 0.04 to 1.94%.

The absolute NPo values of Kir6.2/SUR2A channels in individual

patches were significantly enhanced by the PKG activator

zaprinast (open diamonds) from their corresponding controls

(open triangles) (P,0.05, two-tailed paired t test). The median NPo

values (depicted as the horizontal grey bars) were 0.025 and 0.27

under control and zaprinast-treated conditions, respectively, which

also exhibit an increase of around 10-fold. The distribution and

changes of the absolute NPo before and during zaprinast treatment

indicate that PKG activation significantly increased the (absolute)

single-channel activity of Kir6.2/SUR2A channels in intact

HEK293 cells.

(TIF)

Figure S2 Role of calmodulin in mediating the stimula-
tory effect of H2O2 on Kir6.2/SUR2A channels in intact
HEK293 cells. Recombinant Kir6.2/SUR2A channels were

expressed in HEK293 cells by transient transfection. Cell-attached
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patch recordings were performed as described in Fig. 1 of the main

text. (A) Single-channel current traces of the Kir6.2/SUR2A

channel obtained from a representative cell-attached patch prior

to (upper panel) and during (lower panel) application of H2O2

(1 mM) in the continuous presence of the irreversible calmodulin

antagonist SKF-7171A (10 mM), following a 15-min pretreatment

with SKF-7171A (10 mM). Scale bars are the same as described in

Fig. 1. (B) The averaged normalized NPo of Kir6.2/SUR2A

channels in cell-attached patches obtained during application of

H2O2 in the absence (filled bar) or presence (open bar) of SKF-

7171A. NPo values were normalized to the corresponding controls

(taken as 1; dashed line) obtained prior to index drug application

in individual patches. The H2O2 data (1 mM; filled bar) are the

same as presented in Fig. 6D, and are included here for

comparison purpose. Data are presented as mean 6 SEM of 3–

11 patches. Significance levels are: *, P,0.05; **, P,0.01 (two-

tailed one-sample t tests within individual groups, or unpaired t

tests between groups). In the presence of SKF-7171A, H2O2 did

not enhance the normalized NPo of Kir6.2/SUR2A channels in

cell-attached patches; the stimulatory effect of H2O2 was

completely abrogated by SKF-7171A (P,0.05). These results

indicate that the activity of calmodulin was necessary for H2O2

stimulation of cardiac-type KATP channels in intact cells, implying

the involvement of the Ca2+/calmodulin pathway in mediating

activation of CaMKII by ROS/H2O2. Furthermore, the depen-

dence of H2O2 effects on the activities of calmodulin (this figure)

and CaMKII (Fig. 6B,D; Table 2) was in line with the data

obtained from the PKG activator group (Figs. 1, 4 and 7; Table 1)

and supports our hypothesis that PKG activation enhances cardiac

KATP channel function via ROS generation and subsequent

activation of calmodulin/CaMKII signaling in intact cells.

(TIF)

Table S1 Effects of zaprinast on the normalized single-
channel open and closed properties of sarcKATP chan-
nels in intact rabbit ventricular cardiomyocyres. Single-

channel recordings of sarcKATP channels in cell-attached patches

obtained from rabbit ventricular cardiomyocytes were performed

at 260 mV in symmetrical 140-mM K+ solutions. The baseline

KATP activity was first induced by pinacidil (200 mM) before

addition of zaprinast (50 mM) or zaprinast plus the ROS scavenger

MPG (500 mM). All drugs were applied by bath perfusion using a

pressure-driven system. The single-channel properties were

obtained as described in Methods. All values were normalized to

the corresponding controls (pinacidil alone) obtained in individual

patches prior to index drug application (control taken as 1),

averaged and are presented as mean 6 SEM. Significance levels

are: *, P,0.05; ***, P,0.001; ****, P,0.0001 (two-tailed one-

sample t tests).

(DOC)
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metabolic homeostasis. Pflügers Arch Eur J Physiol 460: 295–306.

42. Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, et al. (2002)

Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99:
13278–13283.

43. Kane GC, Behfar A, Dyer RB, O’Cochlain DF, Liu XK, et al. (2006) KCNJ11
gene knockout of the Kir6.2 KATP channel causes maladaptive remodeling and

heart failure in hypertension. Hum Mol Genet 15: 2285–2297.

44. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular
signaling in the nervous system. J Neurochem 68: 443–456.

45. Oldenburg O, Qin Q, Krieg T, Yang X-M, Philipp S, et al. (2004) Bradykinin
induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP

channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol
286: H468–H476.

46. Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, et al. (1995)

Mitochondrial production of reactive oxygen species in cortical neurons

following exposure to N-methyl-D-aspartate. J Neurosci 15: 6377–6388.

47. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by

the mitochondrial electron transport chain. J Neurochem 80: 780–787.

48. Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during

ischemic preconditioning contribute to cardioprotection in the rabbit myocar-

dium. J Mol and Cell Cardiol 29: 207–216.

49. Vanden Hoek TL, Becker LB, Shao ZH, Li CQ, Schumacker PT (1998)

Reactive oxygen species released from mitochondria during brief hypoxia induce

preconditioning in cardiomyocytes. J Biol Chem 273: 18092–18098.

50. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of

autophagy. Trends Cell Biol 17: 422–427.

51. Maier LS (2009) Role of CaMKII for signaling and regulation in the heart.

Front Biosci 14: 486–496.

52. Krippeit-Drews P, Kramer C, Welker S, Lang F, Ammon HP, et al. (1999)

Interference of H2O2 with stimulus-secretion coupling in mouse pancreatic b-

cells. J Physiol 514: 471–481.

53. Avshalumov MV, Rice ME (2003) Activation of ATP-sensitive K+ (KATP)

channels by H2O2 underlies glutamate-dependent inhibition of striatal

dopamine release. Proc Natl Acad Sci USA 100: 11729–11734.

54. Avshalumov MV, Chen BT, Marshall SP, Peña DM, Rice ME (2003)

Glutamate-dependent inhibition of dopamine release in striatum is mediated

by a new diffusible messenger, H2O2. J Neurosci 23: 2744–2750.

55. Goldhaber JI, Ji S, Lamp ST, Weiss JN (1989) Effects of exogenous free radicals

on electromechanical function and metabolism in isolated rabbit and guinea pig

ventricles. Implications for ischemia reperfusion injury. J Clin Invest 83:

1800–1809.

56. Ichinari K, Kakei M, Matsuoka T, Nakashima H, Tanaka H (1996) Direct

activation of the ATP-sensitive potassium channel by oxygen free radicals in

guinea-pig ventricular cells: its potentiation by MgADP. J Mol Cell Cardiol 28:

1867–1877.

57. Tokube K, Kiyosue T, Arita M (1996) Openings of cardiac KATP channel by

oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol Heart

Circ Physiol 271: H478–H489.

58. Weik R, Neumcke B (1989) ATP-sensitive potassium channels in adult mouse

skeletal muscle: characterization of the ATP-binding site. J Membr Biol 110:

217–226.

59. Islam MS, Berggren PO, Larsson O (1993) Sulfhydryl oxidation induces rapid

and reversible closure of the ATP-regulated K+ channel in the pancreatic b-cell.

FEBS Lett 319: 128–132.

60. Coetzee WA, Nakamura TY, Faivre JF (1995) Effects of thiol-modifying agents

on KATP channels in guinea pig ventricular cells. Am J Physiol 269:

H1625–H1633.

61. Nakazaki M, Kakei M, Koriyama N, Tanaka H (1995) Involvement of ATP-

sensitive K+ channels in free radical-mediated inhibition of insulin secretion in

rat pancreatic b-cells. Diabetes 44: 878–883.

62. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, et al. (2008) A dynamic

pathway for calcium-independent activation of CaMKII by methionine

oxidation. Cell 133(3): 462–474.

PKG Modulation of Cardiac K(ATP) Channels

PLoS ONE | www.plosone.org 18 March 2011 | Volume 6 | Issue 3 | e18191


