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Abstract: Crescentic glomerulonephritis is a devastating autoimmune disease that without early and
properly treatment may rapidly progress to end-stage renal disease and death. Current immunosup-
pressive treatment provides limited efficacy and an important burden of adverse events. Epigenetic
drugs are a source of novel therapeutic tools. Among them, bromodomain and extraterminal domain
(BET) inhibitors (iBETs) block the interaction between bromodomains and acetylated proteins, includ-
ing histones and transcription factors. iBETs have demonstrated protective effects on malignancy,
inflammatory disorders and experimental kidney disease. Recently, Gremlin-1 was proposed as a
urinary biomarker of disease progression in human anti-neutrophil cytoplasmic antibody (ANCA)-
associated crescentic glomerulonephritis. We have now evaluated whether iBETs could regulate
Gremlin-1 in experimental anti-glomerular basement membrane nephritis induced by nephrotoxic
serum (NTS) in mice, a model resembling human crescentic glomerulonephritis. In NTS-injected
mice, the iBET JQ1 inhibited renal Gremlin-1 overexpression and diminished glomerular damage,
restoring podocyte numbers. Chromatin immunoprecipitation assay demonstrated BRD4 enrichment
of the Grem-1 gene promoter in injured kidneys, consistent with Gremlin-1 epigenetic regulation.
Moreover, JQ1 blocked BRD4 binding and inhibited Grem-1 gene transcription. The beneficial effect
of iBETs was also mediated by modulation of NOTCH pathway. JQ1 inhibited the gene expression of
the NOTCH effectors Hes-1 and Hey-1 in NTS-injured kidneys. Our results further support the role for
epigenetic drugs, such as iBETs, in the treatment of rapidly progressive crescentic glomerulonephritis.

Keywords: crescentic glomerulonephritis; chronic kidney disease; bromodomain; BET proteins;
Gremlin; NOTCH
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1. Introduction

Chronic kidney disease (CKD) is defined as abnormalities in kidney structure or func-
tion, present for >3 months and with implications for health [1]. CKD is projected to become
the fifth global cause of death by 2040 [2], revealing the importance of research in this
area [3]. Glomerular kidney disease cause 18% of CKD cases requiring kidney replacement
therapy, illustrating the failure of current therapeutic approaches to prevent CKD progres-
sion to end-stage renal disease (ESRD) [4]. Rapidly progressive glomerulonephritis (RPGN)
is one of the most aggressive forms of CKD, characterized by the proliferation of intrinsic
glomerular cells in the Bowman’s space, leading to the formation of crescents that evolve to
fibrotic structures and loss of functioning glomeruli [5,6]. Thus, the underlying structural
kidney damage for the clinical presentation, termed RPGN, is crescentic glomerulonephritis
(cGN). Most GNs are immune-mediated, related to the presence of anti-neutrophil cyto-
plasmic antibodies (ANCA), anti-glomerular basement membrane (anti-GBM) antibodies
or local immune-complex deposition. Most patients are treated with immunosuppressive
therapy, but the residual risk of ESRD remains high despite treatment [2].

Epigenetic mechanisms, especially DNA methylation and post-translational histone
modifications, are dynamic processes that differentially regulate gene expression in nor-
mal and diseased states [7]. Novel approaches targeting protein–protein interactions of
epigenetic ‘readers’ have emerged as a novel source of therapeutic drugs [8]. The protein
members of the bromodomain (BRD) and extraterminal (BET) family (including BRD2,
BRD3, BRD4 and BRDT) recognize acetylated lysine residues on core histones and regulate
gene transcription through the recruitment of coactivator proteins involved in transcrip-
tional initiation and elongation, acting as epigenetic ‘readers’ [9]. BET proteins can also
bind to acetylated lysine residues on transcription factors, therefore regulating gene tran-
scription [10]. Selective inhibitors of BET proteins (iBETs), such as the small molecule JQ-1,
displace bromodomain binding to acetyl-lysine residues on histones and non-histones
proteins [11,12]. Different iBETs have protected mice from malignancy and experimental
inflammation, including from kidney diseases [13].

ANCA-associated vasculitis is the major cause of RPGN [5,14,15]. We have recently
described that Gremlin-1 is a potential urinary biomarker of human ANCA-associated
cGN [16]. High urinary levels of Gremlin-1 were associated with a more severe disease
activity as represented by the number of glomerular crescents, tubulointerstitial fibrosis and
interstitial inflammation. Gremlin-1 belongs to the cysteine knot superfamily of proteins,
and it has been proposed as a biomarker and a therapeutic target in experimental renal
diseases [17–19]. Preclinical studies have demonstrated that Gremlin-1 activated several
downstream pathways, including nuclear factor-κB (NF-κB) and NOTCH, linked to inflam-
mation in the kidney [20–23]. Many studies have described that the NOTCH signaling
pathway is activated in human CKD, including glomerular diseases such as diabetic kidney
disease (DKD), IgA nephropathy and focal segmental glomerulosclerosis (FSGS) [24–28].
The activation of NOTCH is mediated by successive proteolytic cleavages of the NOTCH
receptor which release its intracellular domain (NICD) from the cellular membrane. Then,
NICD is translocated into the nucleus, where it forms a nuclear complex with the tran-
scriptional activator RBP-Jκ (Recombination Signal-binding Protein 1 for J-kappa) and then
activates the transcription of downstream NOTCH target genes, including the effectors
of this pathway Hes (hairy and enhancer of split) and Hey (Hes-related proteins) [28,29].
In vivo, the administration of recombinant Gremlin-1 into murine kidneys increased NICD
nuclear levels and upregulated Hes-1 gene expression. Moreover, NOTCH inhibition
blocks several deleterious actions of Gremlin-1 in the kidney in vivo and in vitro [20,22,23],
illustrating the complex relation between Gremlin-1 and the NOTCH pathway.

The model of anti-glomerular basement membrane (GBM) induced by nephrotoxic
serum (NTS) administration in mice is an experimental model commonly used to study
human cGN [30,31]. We have recently observed that in NTS-injected mice, treatment with
JQ1 restored the changes in renal function, ameliorated glomerular lesions and diminished
renal inflammatory cell infiltration by mechanisms that involved the direct inhibition of
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several proinflammatory genes, as well as the blockade of the NF-κB pathway’s activation
and, therefore, the subsequent transcription inhibition of related-genes [32].

The aim of this paper was to evaluate whether iBETs could regulate Gremlin-1 in
NTS mice, trying to define the final targets of bromodomain/acetyl-lysine binding, sub-
sequent molecular interactions and gene transcription regulation, with special attention
to the NOTCH pathway. This study could help to develop better therapeutic tools for the
treatment of cGN.

2. Results
2.1. BET Inhibition Ameliorates Renal Damage in Experimental Nephrotoxic Nephritis

The model of NTS administration in mice is commonly used to study mechanisms of
human cGN. This model is characterized by the proliferation of intrinsic glomerular cells in
the Bowman’s space, mesangial fibrosis and podocyte damage, resulting in the rapid loss
of renal function, resembling the human disease [30]. We previously described that JQ1
ameliorates impaired renal function and glomerular lesions in this model [32] (Figure 1A),
mainly inhibiting extracapillary proliferation and fibrinoid necrosis in glomerular cells,
as previously described [32], although crescent formation was not found at this earlier
time point.
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Figure 1. JQ1 diminishes renal damage in nephrotoxic nephritis. Glomerulonephritis was induced in
C57Bl/6 mice by the administration of NTS, and mice were studied 10 days later. Mice were treated
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daily with JQ1 (100 mg/kg body weight per day) or vehicle, starting before the first NTS-injection. In
paraffin-embedded kidney sections, renal morphology was evaluated by (A) Masson trichrome stain-
ing and (B) immunohistochemistry with specific antibodies. JQ1 ameliorated glomerular damage (A),
diminished glomerular monocyte inflammatory cell infiltration (F4/80+ monocytes/macrophages/
dendritic cells) and restored healthy podocyte number (WT1+ cells) (B) to values similar to control
untreated mice. (C) Quantification of immunohistochemistry staining (F4/80+ and glomerular WT1+

cells). Data are expressed as the mean ± SEM of 5–7 animals per group. * p < 0.05 vs. control;
# p < 0.05 vs. NTS-injected mice. Panel (B) shows a representative animal from each group (200×
magnification), including a detail of glomeruli..

Importantly, NTS-injured kidneys also presented macrophage infiltration that was
significantly diminished by JQ1 treatment (Figure 1B). To further evaluate glomerular
damage, healthy podocytes that express Wilms’ tumor protein 1 (WT-1) were evaluated.
NTS administration in mice resulted in a dramatic loss of glomerular WT1+ cells, which
were restored by JQ1 (Figure 1B).

2.2. Gremlin-1 Is Overexpressed in Experimental Nephrotoxic Nephritis in Mice: Effect of
BET Inhibition

Kidney injury in mice with NTS nephritis is characterized by the upregulation of
Gremlin-1 at the gene and protein levels compared to healthy control mice (Figure 2A–C).
The treatment with JQ1 significantly diminished Grem-1 mRNA levels (Figure 2).
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Figure 2. JQ1 diminishes renal Gremlin-1 overexpression at the gene and protein levels in nephrotoxic
nephritis. NTS mice were treated daily with JQ1 (100 mg/kg body weight per day) or vehicle.
(A) RNA was isolated from frozen whole kidney samples, and Grem-1 gene expression levels were
evaluated by real-time qPCR. (B) Protein levels of Gremlin-1 were quantified by Western blot in total
kidney extracts. Figure B show a representative blot of 2 to 4 mice per group. GAPDH was used as
loading control. (C) Quantification of Gremlin protein levels. Data are expressed as the mean ± SEM
of 5–7 animals per group. * p < 0.05 vs. control; # p < 0.05 vs. NTS-injected mice.



Pharmaceuticals 2022, 15, 121 5 of 17

2.3. Gremlin-1 Is One of the Specific Targets of BET Inhibition

Chromatin immunoprecipitation (ChIP) assays demonstrated that BRD4 binding to
the promoter region of Grem-1 was increased in NTS-injured kidneys compared to the
controls. However, BRD4 enrichment was nearly abolished in JQ1-treated mice (Figure 3).
Moreover, JQ1 inhibited the recruitment and binding of BRD4 to this promoter region and
therefore reduced the transcription of Grem-1. These results demonstrate that BRD4 directly
binds to the regulatory region of Grem-1 promoting its gene expression and clearly shows
that Grem-1 is a direct target of JQ1.
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Figure 3. Grem-1 is a direct target of iBETs. ChIP assays were performed in renal samples using an
antibody specific for BRD4 or normal rabbit IgG, the latter being a negative control. Enrichment
of BRD4-binding regions in the promoter of mouse Grem-1 was quantified by qPCR using specific
primers. In each group, samples were pulled (4–7 mice per group). Data are from two independent
experiments and each qPCR was run in triplicate. Results are expressed as the n-fold enrichment
of anti-BRD4 antibody relative to the negative control antibody (considered to be 1). * p < 0.05 vs.
control; # p < 0.05 vs. NTS-injected mice.

2.4. JQ1 Inhibits the NOTCH Pathway in Experimental Nephrotoxic Nephritis

NOTCH-1 signaling pathway activation is associated to changes in the receptors,
ligands and final effector expression levels of several NOTCH components in preclini-
cal studies and in human samples [24–28]. Real-time PCR showed the upregulation of
the downstream NOTCH-target genes Hes-1 and Hey-1 in injured kidneys of NTS mice
compared to healthy controls (Figure 4A,B). In contrast, there were no differences in the
expression of the NOTCH-1 canonical ligand and activator, Jagged-1 involved in experimen-
tal kidney fibrosis [33,34], and in the mRNA levels of the noncanonical ligand Dlk-1, an
endogenous inhibitor re-expressed in kidney diseases [35] (Figure 4C-D). There were also
no differences in the expression levels of NOTCH receptors Notch-1, Notch-2, Notch-3 and
Notch-4 between the NTS-injured and control kidneys (Figure 4E-H). Importantly, in NTS
mice, treatment with JQ1 inhibited the gene overexpression of the NOTCH effectors Hes-1
and Hey-1 (Figure 4A,B).
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Figure 4. JQ1 inhibited NOTCH signaling pathway activation in experimental nephrotoxic nephritis.
NTS mice were treated daily with JQ1 (100 mg/kg body weight per day) or vehicle. (A) RNA was
isolated from frozen samples of whole kidney, and Hes-1 (A) Hey-1, (B) Jagged-1 (C), Dlk-1 (D), Notch 1
(E), Notch 2 (F), Notch 3 (G) and Notch 4 (H) gene expression levels were evaluated by real-time qPCR.
Data are expressed as the mean±SEM of 5–7 animals per group. * p < 0.05 vs. control; # p < 0.05 vs.
NTS-injected mice.

2.5. Differential Gene Expression in Experimental Nephrotoxic Nephritis: Impact of BET Inhibition

In a previous study, we demonstrated that JQ1 inhibited the renal expression of the
proinflammatory factors Ccl-2, Ccl-5 and Il-6 in NTS-mice by the inhibition of BRD4 binding
to their promoter regions [32]. To extend these findings, we have now evaluated whether
BET inhibition can modulate other proinflammatory and profibrotic factors in NTS mice.
The gene expression of Il10 and Cxcl2 were markedly upregulated in injured kidneys and
significantly diminished by JQ1 treatment (Figure 5A,B). The M1 macrophage marker, Arg2,
and the profibrotic factor Pai-1 gene expression levels were significantly inhibited by JQ1,
whereas they were only slightly increased in injured kidneys (Figure 5C,D). In contrast, the
profibrotic factor Tgf-β1 and the M2 macrophage marker Cd163 were not changed in any of
the groups studied (Figure 5E,F).
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Figure 5. Effect of BET inhibition on gene expression in nephrotoxic nephritis. RNA was isolated
from frozen samples of whole kidney, IL10 (A) Cxcl2, (B) Cd163 (C), Arg2 (D), Tgf-β (E) and Pai1 (F),
and gene expression levels were evaluated by real-time qPCR. Data are expressed as the mean ± SEM
of 5–7 animals per group. * p < 0.05 vs. control; # p < 0.05 vs. NTS-injected mice.

2.6. BET Inhibition Diminished the Renal Expression of the Chemokine Ccl-8 in Experimental
Anti-glomerular Basement Membrane Nephritis

The chemokine (C-C motif) ligand 18 (CCL18) has been recently proposed as a po-
tential biomarker of human cGN [36]; therefore, we have evaluated whether JQ1 could
also modulate the renal expression of Ccl8, the murine functional human CCL18 homo-
logue [37,38], in the NTS model. Renal Ccl8 gene expression was upregulated in NTS mice.
Importantly, Ccl8 mRNA levels were significantly diminished by JQ1 treatment (Figure 6A).
Accordingly, CCL8 protein levels, assayed by ELISA, were significantly elevated in the
kidneys of NTS mice and significantly inhibited by JQ1 (Figure 6B).
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Figure 6. JQ1 diminishes kidney CCL8 levels in the nephrotoxic nephritis. NTS mice were treated
daily with JQ1 (100 mg/kg body weight per day) or vehicle. RNA and proteins were isolated from
frozen samples of whole kidney. (A) Ccl8 gene expression levels were evaluated by real-time qPCR,
and (B) CCL8 protein levels were determined by ELISA. Data are expressed as the mean ± SEM of
5–7 animals per group. * p < 0.05 vs. control; # p < 0.05 vs. NTS.
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2.7. BET Inhibition Downregulates Gremlin-1 Expression in Other Models of Renal Fibrosis

In human cGN, Gremlin-1 overexpression has been described in glomerular and tubu-
lointerstitial areas [39]. We have further evaluated whether BET inhibition can modulate
Gremlin-1 in other experimental models of progressive kidney disease. To this aim, we
studied the model of unilateral ureteral obstruction (UUO). This model is characterized
by tubulo-interstitial fibrosis, observed as early as 5 days following renal injury, as well as
Gremlin-1 overexpression in the obstructed kidneys [22,35]. We have previously described
that JQ1 ameliorates renal inflammation in this model [32]. Treatment with JQ1 significantly
diminished Grem-1 gene overexpression in obstructed kidneys compared to untreated,
obstructed ones (Figure 7).
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Figure 7. JQ1 diminishes Gremlin-1 in an experimental model of progressive tubulointerstitial fibrosis.
Unilateral ureteral obstruction (UUO) was performed in C57Bl/6 mice as described in Methods, and
kidneys were studied after 5 days. Some mice were treated with JQ1 (100 mg/kg body weight per
day, i.p. starting 24 h before UUO). RNA was obtained from total renal extracts and Grem-1 mRNA
levels were determined by real-time qPCR. Data are expressed as the mean ± SEM of 5–7 animals per
group. * p < 0.05 vs. control; # p < 0.05 vs. UUO.

3. Discussion

The main finding of this paper is the description of Gremlin-1 as a specific target of BET
inhibition in the experimental NTS model, a mice model that resembles human progressive
cGN. We have recently described that Gremlin-1 is a potential urinary biomarker of human
ANCA-positive GN [16]. The current therapy for cGN is limited to harsh immunosuppres-
sion, and the majority of patients still progress towards ESRD and death, remarking an
unmet medical need for novel therapeutic approaches. Our data support future research to
evaluate whether iBETs could be a therapeutic option for cGN.

Selective iBETs, such as JQ1, block the interaction between BET proteins and acetylated
proteins, including histones and transcription factors [12]. Early studies using iBETs have
demonstrated protective effects in malignancy, dependent on the inhibition of proto-oncogene
transcription and the modulation of cell proliferation [40,41]. More recently, iBETs have
shown beneficial responses in a wide range of inflammatory diseases [11], mainly through
the modulation of the NF-κB pathway and blocking downstream proinflammatory-related
gene expression [12], as well as the inhibition of the Th17/IL17 immune response [42,43],
as we have previously described in different models of experimental kidney diseases,
including the NTS nephritis model [32]. Now, we have found that JQ1 inhibited the Gremlin-
1/NOTCH signaling pathway, thus identifying novel mechanisms involved in the beneficial
effects of iBETs in experimental kidney diseases. Moreover, chromatin immunoprecipitation
assays demonstrated that JQ1 modulates BRD4 binding to the promoter region of the Grem-
1 gene, thus reducing Grem-1 transcription, showing that this gene is a specific target of
BET inhibition and clearly demonstrating the epigenetic regulation of Gremlin-1 during
experimental NTS.

Gremlin-1 has been proposed as a mediator and potential therapeutic target in
CKD [16–19]. The de novo GREM1 expression has been described in several human kidney
diseases, including RPGN, DKD and transplant rejection [39,44,45]. Experimental gain- and
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loss-of-function studies targeting Grem-1 in renal cells as well as in murine models of kidney
disease have demonstrated the key role of Gremlin-1 in the regulation of inflammation
and fibrosis-related processes [22,46–56]. Moreover, the administration of recombinant
Gremlin-1 to mice caused an early kidney inflammatory response [20]. In addition, RNA
sequencing analysis of Gremlin-effects in the kidney revealed changes in biomarkers of
kidney damage and wound healing pathways [57]. In human ANCA-associated cGN,
Gremlin-1 is overexpressed in glomerular crescents, tubular cells and infiltrating inter-
stitial cells [39], and it has been proposed as a potential urinary biomarker [16]. CCL18
is another potential biomarker of disease activity in ANCA-associated cGN [36]. This
chemokine is one of the most highly expressed in human chronic inflammatory diseases,
including allergies, fibrotic disorders and certain cancers [58], and it is highly secreted by
M2 macrophages [59]. The functional analogue of human CCL18 is the mouse Ccl8, and
they share CCR8 as a functional receptor [37,38]. Interestingly, CD163+/CCL18 expressing
macrophages colocalized with Gremlin-1 protein expression in ANCA-associated cGN
patients [16]. CD163 is another marker of M2-macrophages [37,60] and soluble urinary
CD163 can be a potential biomarker of macrophage activation in different diseases, includ-
ing cGN [37]. In ANCA-associated cGN, urinary CD11b+ and CD163+ correlated with
leukocyte recruitment in the kidney [61], and urinary CD163 was a biomarker of active
renal vasculitis and relapse [62]. We now show that in experimental NTS nephritis, JQ1 de-
creased kidney Grem-1 and Ccl8 expression, and this was associated to milder macrophage
cell infiltration and the amelioration of kidney damage, therefore supporting their potential
use as biomarkers of disease progression.

The role of the NOTCH pathway in kidney inflammation and CKD progression has
been extensively described [28,33,34]. NOTCH activation has been described in several
human glomerulopathies, including cGN [23–28]. In rat anti-GBM rapidly progressive GN,
Notch3 and Hey-1 mRNAs were upregulated [63]. In murine NTS-nephritis investigated
here, Hes-1 and Hey-1 mRNAs were overexpressed at 10 days. Several data suggest that BET
proteins can interact with the NOTCH pathway. In cancer cells, BRD4 can bind to Jagged-1
and NOTCH1 promoters, increasing the gene expression of both NOTCH components and
thus leading to NOTCH pathway activation. By this mechanism, the proliferation and
migration in tumors is promoted [64,65]. In addition, I-BET151 impeded BRD4 binding to
the NOTCH1 promoter, diminishing the expression of Hes1 and cancer-cell renewal activ-
ity [64,65]. Accordingly, we observed that JQ-1 downregulated Hes-1 and Hey-1 expression
in NTS mice. In tumor cells, c-MYC directly activates RBPJκ and subsequent target genes
in a NOTCH activation-independent manner, mediated by CDK9, a component of positive
transcription elongation factor b (P-TEFb). Treatment with JQ-1 in these cells deregulated
the gene expression of Hes-1 and Hey-1, maybe via a CDK9–MYC–RBPJ pathway [66]. In
addition, the interaction between the NOTCH and NF-κB pathways contributes to tissue
damage progression [67,68]. Importantly, the activation of both signaling pathways can be
targeted by iBETs. In experimental kidney disease, treatment with the NOTCH inhibitor
DAPT blocked NF-κB-mediated inflammation [20]. Mice lacking Notch3 expression ex-
hibited lower NF-κB activation in glomeruli associated to milder proteinuria, uremia and
inflammatory infiltration [63]. iBETs inhibit NF-κB activation by binding to the acetylated
lysine-310 of RelA/p65 NF-κB in the nuclei, leading to the ubiquitination and degradation
of the constitutively active nuclear form of RelA/NF-κB [10,69–71]. Since Gremlin-1 acti-
vates NF-κB and NOTCH pathways in the kidney [20], we postulate that the JQ1-mediated
decrease in Grem-1 transcription could also potentially inhibit the Gremlin-mediated ac-
tivation of both NF-κB and NOTCH pathways, and therefore, their contribution to CKD
progression. Although future studies evaluating the potential effects of iBETS on NOTCH
signaling activation in kidney damage are needed, our findings support the notion that
iBETs can modulate NOTCH pathway activation by different molecular mechanisms.

Podocyte loss is a feature of progressive GN [72], as we have observed in experimental
NTS nephritis. Interestingly, JQ1 treatment restored podocyte numbers in injured kidneys.
In response to damage, podocytes lose their properties, including phenotype changes,
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leading to increased production of cytokines, growth factors and extracellular matrix com-
ponents and, finally, to podocyte cell death [72,73]. NOTCH activation in mature podocytes
can induce apoptosis [74–76]. The conditional deletion of RBPJ specifically in podocytes in
mice with diabetic nephropathy was associated with reduced podocyte apoptosis [74]. In
cultured podocytes, the overexpression of active Notch3 led to cytoskeleton reorganization
and changes to a proliferative/migratory and inflammatory phenotype [63]. In a model of
conditional WT1 deletion in mature podocytes, the upregulation of several NOTCH path-
way components, including Hes, was associated with the upregulation of genes implicated
in phenotype changes [77]. These evidences suggest that inhibition of NOTCH/Hes by JQ1
could be involved in the observed beneficial effects on podocyte number preservation in
experimental NTS nephritis.

Preclinical data suggest that iBETs can also diminish experimental fibrosis, as described
in bleomycin- and radiation-induced lung fibrosis [78–80] and in diabetic cardiomyopa-
thy [81]. Interestingly, integrated transcriptomics analyses across animal models of cardiac
damage and human cells have found that iBETs preferentially inhibited genes of the innate
inflammatory and profibrotic myocardial pathways, mainly of the NF-κB and TGF-β sig-
naling networks [82]. Regarding experimental CKD, JQ1 decreased fibrosis in the UUO
model [83,84]. Now, the data presented here show that JQ1 diminished Grem-1 overex-
pression in obstructed kidneys of UUO mice. Gremlin-1 has been involved in several
fibrotic disorders. In vitro, Gremlin-1 promotes fibroblasts proliferation and extracellular
matrix production. Moreover, Gremlin-1 can induce the partial epithelial-to-mesenchymal
transition of cultured tubular epithelial cells by activating Smad [85] and NOTCH signal-
ing pathways [22], suggesting a potential role of Gremlin-1 in kidney fibrosis. In human
ANCA-associated cGN, the overexpression of Gremlin-1 correlated with tubulointerstitial
fibrosis [39], suggesting that this factor can also be involved in tubulointerstitial fibrosis in
this pathology. Although a limitation of the present study is that the murine NTS model
studied here does not present tubulointerstitial fibrosis at the time-point studied, our find-
ings showing that JQ1 inhibited Grem-1 expression in the UUO model support that the
beneficial effects of iBETs can also be mediated by the inhibition of Gremlin-1-induced
profibrotic events in the kidney.

Our studies using a small-molecule inhibitor targeting bromodomain proteins high-
light the functional importance of bromodomain/acetyl-lysine binding as a key mechanism
in orchestrating molecular interactions and regulation in chromatin biology and gene
transcription. Clinical studies inhibiting BET proteins or the NOTCH system have so far
focused on cancer or cardiovascular disease [86]. Actually, there are several clinical trials
about the role of iBETs in tumoral diseases such as solid tumors (ODM-207: NCT03035591
and ABBV-075: [87]); Metastatic Castration-resistant Prostate Cancer (ZEN-3694; [88]);
refractory non-Hodgkin’s lymphoma (CC-90010: NCT03220347); diffuse large B-cell lym-
phoma (RO6870810: NCT01987362); acute leukemia and multiple myeloma (OTX015:
NCT01713582; RO6870810: NCT02308761 and CPI-0610:NCT02157636). In patients with
cardiovascular diseases such as atherosclerosis (ASSURE Trial/RVX-208: NCT01067820)
or acute coronary syndrome (BETonMACE trial/Apabetalone: NCT02586155), iBETs have
shown beneficial effects. In kidney diseases there is a recent open phase II study in Fabry
disease to evaluate the role of RVX000222 in cardiovascular damage markers, including
alkaline phosphatase levels and calcification markers, such as RANKL (NCT03228940). Our
findings showing that JQ1 inhibited Grem-1 and the gene transcription of NOTCH-effectors
(Hes-1 and Hey-1) in experimental NTS nephritis, together with previous studies showing
inhibition NF-κB/proinflammatory genes (as now also shown for Ccl8) [32], support further
research on epigenetic drugs, such as iBETs, for rapidly progressive cGN.

4. Materials and Methods
4.1. Ethics Statement

All animal procedures were performed in 3-month-old C57BL/6 mice. Surgeries were
performed under isoflurane-induced anesthesia, according to the guidelines of animal
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research in the European Community and with prior approval by the Animal Ethics
Committee of the Health Research Institute IIS-Fundación Jiménez Díaz.

4.2. Experimental Models

The BET bromodomain inhibitor JQ1, a thieno-triazolo-1,4-diazepine, was synthe-
sized and provided collaboratively by Dr. James Bradner (Dana-Farber Cancer Institute,
Boston, MA, USA) [89]. For in vivo studies, JQ1 was dissolved in 10% hydroxypropyl
β-cyclodextrin and used at a therapeutic dose (100 mg/kg body weight per day, i.p.), as
previously described [32].

Anti-murine glomerular basement membrane (GBM) nephritis was induced in male
C57BL/6 mice by administering rabbit nephrotoxic serum (NTS) as described [30]. Mice
were injected with 50 µL of NTS diluted 1/10 in sterile saline on day 1. Then, 4 µL/g of
body weight were injected on day 2 and day 3, and mice were studied 10 days later. Mice
used were 7 NTS and 7 NTS treated with JQ1 and 5 controls (n = 5−7 mice per group).
Some animals were also treated daily with JQ1 or vehicle starting one day before the first
NTS administration.

For unilateral ureteral obstruction (UUO), the left ureter was ligated with silk (5/0)
at two locations and cut between ligatures to prevent urinary tract infection (obstructed
kidney) in male C57BL/6 mice, under isoflurane-induced anesthesia, as described [22].
Some animals were treated daily with JQ1 from 1 day before UUO and studied after 5
days (n = 6−7 mice per group). At the time of sacrifice, animals were anesthetized with
5 mg/kg xylazine (Rompun, Bayer AG, Leverkusen, Germany) and 35 mg/kg ketamine
(Ketolar, Pfizer, Brooklyn, NY, USA), and the kidneys were perfused in situ with cold saline
before removal. Kidneys were further processed for immunohistochemistry (fixed and
paraffin-embedded) and ChIP assays (fixed in 1% formaldehyde followed quenching with
0.125 M glycine) or snap-frozen in liquid nitrogen for RNA and protein studies.

4.3. Histology and Immunohistochemistry

Paraffin-embedded kidney sections were stained using standard histology procedures
as described elsewhere [32]. Kidney injury was evaluated by Masson staining.

Immunostaining was carried out in 3 µm thick tissue sections. Antigen retrieval was
performed using the PTlink system (Dako, Glostrup, Denmark) with sodium citrate buffer
(10 mM) adjusted to pH 6–9, depending on the immunohistochemical marker. Endogenous
peroxidase was blocked. Tissue sections were incubated for 1 h at room temperature with
4% BSA and 10% of a specific serum (depending on the secondary antibody used) in
PBS to eliminate non-specific protein binding sites. Primary antibodies were incubated
overnight at 4 ◦C. Specific biotinylated secondary antibodies (Amersham Biosciences,
Amersham, UK) were used, followed by streptavidin–horseradish peroxidase conjugate
and 3,3-diaminobenzidine as a chromogen. The primary antibodies used were: F4/80 [1:50
MCA497, Bio-Rad, Hercules, CA, USA] and WT-1 [1:100 M3561, Dako]. Specificity was
checked by omission of primary antibodies. Quantification was made by determining in 5
to 10 randomly chosen fields (200×magnification) the total number of positive cells using
Image-Pro Plus software (data expressed as the positive-stained area relative to the total
area) or quantifying manually the number of positive nuclei.

4.4. Gene Expression Studies

RNA from cells or renal tissue was isolated with TRItidy GTM (PanReac, Barcelona,
Spain). cDNA was synthesized by a High Capacity cDNA Archive kit (Applied Biosystems,
Waltham, MA, USA) using 2 µg total RNA primed with random hexamer primers. Next,
quantitative gene expression analysis was performed by real-time PCR on an AB7500
fast real-time PCR system (Applied Biosystems) using fluorogenic TaqMan MGB probes
and primers designed by Assay-on-DemandTM gene expression products. Mouse assays
IDs were: Arg2: Mm00477592_m1, Cd163: Mm00474091_m1, Ccl8: Mm01297183_m1,
Cxcl2: Mm00436450_m1, Dlk1: Mm00494477_m1, Gremlin-1: Mm00483888_s1, Hes-1:
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Mm01342805_m1, Hey-1: Mm00468865_m1, Il10: Mm00439616_m1, Jagged-1: Mm00496902,
Notch1: Mm00435249_m1, Notch2: Mm00803077_m1, Notch3: Mm01345646_m1, Notch4:
Mm00440525_m1, Pai-1: Mm00435858_m1 and Tgf-β: Mm01178820_m1. Data were nor-
malized to Gapdh: Mm99999915_g1 (Vic). The mRNA copy numbers were calculated
for each sample by the instrument software using Ct value (“arithmetic fit point analy-
sis for the lightcycler”). Results were expressed in copy numbers, calculated relative to
unstimulated cells.

4.5. Protein Studies

Total protein samples for frozen renal tissue were isolated in lysis buffer (50 mmol/L
Tris-HCl, 150 mol/L NaCl, 2 mmol/L EDTA, 2 mmol/L EGTA, 0.2% Triton X-100, 0.3%
IGEPAL, 10 µL/ml proteinase inhibitor cocktail (CIP), 0.2 mmol/L PMSF, and 0.2 mmol/L
orthovanadate) as described [32]. Proteins (20-100 µg per lane, quantified using a BCA
protein assay kit) were separated on 8–12% polyacrylamide-SDS gels under reducing con-
ditions [32]. For Western blotting, cell (50 µg/lane) protein extracts were separated on
8%–12% polyacrylamide-SDS gels under reducing conditions. Samples were then trans-
ferred onto polyvinylidene difluoride membranes (Thermo Scientific, Waltham, MA, USA),
blocked with TBS/5% non-fat milk/0.05% Tween-20 and incubated overnight at 4◦C with
the following antibody (dilution): Gremlin-1 (1:1000; Sc-515877; Santa Cruz). Membranes
were subsequently incubated with peroxidase-conjugated IgG secondary antibody and
developed using an ECL chemiluminescence kit (Amersham, Amersham, UK). Loading
controls were performed using an anti-GAPDH antibody (1:5000; CB1001, Millipore). Re-
sults were analyzed by LAS 4000 and Amersham Imager 600 (GEHealthcare, Chicago, IL,
USA) and densitometered by Quantity One software (Biorad, Hercules, CA, USA). The
evaluation of CCL8 in kidney tissue was performed by ELISA (R&D system, Cat. No.
DY790) following the instructions provided by the manufacturer.

4.6. Chromatin Immunoprecipitation

Kidneys were fixed in 1% formaldehyde (Sigma-Aldrich, St. Louis, MO, USA) followed
by quenching with 0.125M glycine. DNA fragments 500–1000 bp long were generated on
a BioRuptor (Diagenode), and ChIP assays were performed using the High Cell ChIP kit
(Diagenode, Denville, NJ, USA) following the manufacturer’s instructions. The antibodies
used were BRD4 (Bethyl Laboratories, Burlington, MA, USA) and normal IgG as negative
control (Millipore). Immunoprecipitated DNA was analyzed by quantitative RT-PCR using
the following primers of Grem-1 promoter:

• Forward 5′-GACCAATGGAGAGACGCAGT-3′

• Reverse 5′-GTTCTTCGCTGTGGACGAGT-3′

Chromatin obtained before immunoprecipitation was used as the input control. Rela-
tive enrichment was calculated as the percentage of input DNA for each sample using the
formula % input = 2 exp [(Ct unbound)− log2 (unbound dilution factor) – Ct bound)]× 100
and normalized to normal rabbit IgG antibody (considered as 1).

4.7. Statistical Analysis

Results are expressed as mean ± SEM of the n-fold increase with respect to the control
(represented as 1). In the NTS nephritis model, data were obtained normalizing NTS
and NTS +JQ1 kidneys versus control average. In the UUO model, data were obtained
comparing obstructed kidneys versus untreated contralateral kidneys (represented as 1).
The Shapiro–Wilk test was used to evaluate sample normality distribution. If the samples
followed the Gaussian distribution, a one-way ANOVA followed by the corresponding post-
hoc analyses of Fisher’s LSD test were used. To compare non-parametric samples, a Kruskal–
Wallis and a subsequent post-hoc analysis of Uncorrected Dunn’s test was performed.
Statistical analysis was conducted using GraphPad Prism 8.0 (GrahPad Software, San
Diego California United States). Values of p < 0.05 were considered statistically significant.
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5. Conclusions

Nowadays, the current clinical option for ANCA+ GN is immunosuppressive treat-
ment, but this therapy only slows the progression of kidney damage, and most ANCA
patients progress to ESRD, being a serious threat to survival. Hence, the search for novel
new therapeutic strategies aims to slow its progression or even revert this lesion is an
unmet and an urgent necessity. Clinical trials using iBETs have shown some beneficial
effects in different diseases including kidney diseases. Our preclinical data showing that
Gremlin-1, a proposed biomarker of disease activity in ANCA patients, is as a specific
target of BET inhibition further support the investigation of iBETs as a therapeutic option
for human cGN.
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