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in the last decade. The MAPK/ERK pathway plays a fundamental 
role in adaptive processes both in vertebrates and invertebrates. 
Its activation pattern determines cellular survival or apoptosis, 
effectiveness of pre-existing synapses or growth of new synap-
tic connections (Kaplan and Miller, 2000; Thomas and Huganir, 
2004). It is also an essential step during long-term memory for-
mation (Martin et al., 1997; Atkins et al., 1998; Crow et al., 2001; 
Sananbenesi et al., 2003; Sharma and Carew, 2004; Feld et al., 
2005; Ribeiro et al., 2005).

Mollusks have played a key role in these studies due to the rela-
tive simplicity of their central nervous system (CNS) and their 
stereotyped behavior, which exhibits nevertheless different levels 
of plasticity (Kandel, 2001). For many years we have been using the 
terrestrial mollusk Helix lucorum and its food aversion conditional 
reflex to investigate long-term memory formation (Grinkevich, 
1994; Grinkevich and Vasil’ev, 2000; Grinkevich et al., 2003, 2007, 
2008). Several forms of conditioned avoidance reflex have been 
reported for this snail (Stepanov et al., 1988; Grinkevich and 
Vasil’ev, 2000; Balaban, 2002). In one paradigm this mollusk can 
be trained to avoid a piece of food (the conditioned stimulus, CS; 
e.g., carrot) if it is appropriately paired with an electric shock (the 
unconditioned stimulus, US). Neuronal networks underlying feed-
ing behavior and withdrawal in Helix have been determined and 
neural correlates of withdrawal behavior have been described in 
detail (Balaban, 2002).

IntroductIon
Long-term memory formation requires gene expression regulation, 
which occurs through the chromatin remodeling and regulation of 
DNA-binding transcription factors (TFs; Reul and Chandramohan, 
2007). Histone modifications such as acetylation, phosphorylation, 
and DNA methylation lead to chromatin remodeling upon learning 
(Wood et al., 2006; Sweatt, 2009).

Histone acetylation is associated with activation of transcrip-
tion (Peterson and Laniel, 2004). The amount of histone acetyla-
tion is controlled by histone acetyltransferases (HATs) and histone 
deacetylases (HDACs). Importantly, defects in long-term memory 
dependent on acetylation are compensated by injection of HDAC 
inhibitors (Alarson et al., 2004; Korzus et al., 2004; Wood et al., 
2006; Fischer et al., 2007; Abel and Zukin, 2008).

Prior investigations have demonstrated that histone phospho-
rylation, followed by acetylation, may be induced via the MAPK/
ERK (mitogen-activated protein kinase/extracellular signal-
regulated kinase)-dependent pathway (Levenson et al., 2004; 
Chwang et al., 2006; Sweatt, 2009) during long-term memory 
formation. This regulatory cascade has been intensively studied 
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command neurons during learning lead to consistent turning in 
one direction when avoiding a food stimulus that has been paired 
with an aversive stimulus.

MaterIals and Methods
condItIoned reflex forMatIon
Experiments were carried out on adult (20–25 g) snails H. lucorum. 
Animals were trained to associate a piece of carrot as the CS with an 
electric shock as the US. Conditioned food aversion is established 
in this protocol, following the procedure established by Balaban 
(2002). Specifically, a piece of carrot was placed at a distance of 1 cm 
from the head of a snail freely moving on a metal plate (serving 
as one of stimulating electrodes). When the snail began to eat the 
carrot, another stimulating electrode was manually placed on the 
snail’s head, and an electric shock (DC, 5 mA, 0.5 s) was applied. 
Food and the shock US were presented to the midline. If the snail 
did not contact the carrot during 2 min, a piece of carrot was placed 
close to its mouth, and the electric shock was applied. Thus, all 
trained snails received equal amount of CS and US stimulation. 
The training procedure consisted of eight CS–US pairings applied 
at 15 min interval (four treatments per day). Animals were deprived 
of food during 3 days before the experiments. Naive animals were 
used as control group.

central nervous systeM
Prior to the isolation of the CNS, animals were anesthetized with 
ice-cold saline supplemented by the injection of isotonic solution 
of MgCl

2
. In the case of animals that were previously trained, the 

subesophageal complex of ganglia was quickly removed from the 
head 10 min after training and placed into a camera containing 
saline solution (80 mM NaCl; 4 mM KCl; 7 mM CaCl

2
; 5 mM 

MgCl
2
; 5 mM TRIS–HCl; pH = 7,8). In order to quantify H3 histone 

in specific subsets of neurons, the ganglia were delicately opened 
under microscope using cutters and tweezers. Identified neurons 
or groups of neurons were then quickly dissected and suctioned 
into a pipette, and transferred to the extraction buffer. Command 
neurons RPa2 and RPa3 or LPa2 and LPa3 from three individual 
animals were combined for analysis. All procedures were performed 
at 4°C.

drugs and InjectIon procedure
The MEK1 inhibitor PD98059 (Cell Signaling) was freshly dissolved 
in dimethyl sulfoxide (DMSO) at the concentration of 20 mM. 
Then 6 μl of PD98059 or vehicle were injected into the cephalopedal 
sinus 30 min prior to conditioning. The total volume of adult Helix 
hemolymph was estimated at 3 ml resulting in an approximate 500-
fold dilution of the drug in hemolymph and a final concentration 
of PD98059 in hemolymph of around 40 μM.

hIstone extractIon and IMMunoblottIng
To identify histone acetylation status, CNS were homogenized in 
extraction buffer: 10 mM Tris–HCl pH 7.5, 1 mM EDTA, 2.5 mM 
sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM, 
0.2 mM PMSF, 1% protease inhibitor cocktail (Sigma), 0.1 mM 
Na

3
VO

4
, and 1% Igepal CA-630. Histones were extracted accord-

ing to Levenson et al. (2004). All procedures were performed on 
ice. Tissue homogenates were centrifuged at 7,700×g for 5 min 

We have previously demonstrated that MAPK/ERK, as well as 
its downstream targets, such as TFs controlling gene expression 
via CRE, SRE, and AP-1 elements, are involved in the regulation 
of food aversion learning in adult Helix. Moreover MAPK/ERK 
activation is serotonin-dependent (Grinkevich and Vasil’ev, 2000; 
Grinkevich et al., 2003, 2007, 2008). In contrast to adults, juvenile 
Helix snails, which possess immature mechanisms of sensitization 
and undeveloped conditioned avoidance responses, do not exhibit 
MAPK/ERK activation in the CNS after training (Grinkevich et al., 
2008).These snails differ from the adults in the spectrum of TFs 
that bind to regulatory elements SRE and AP-1 (Grinkevich and 
Vasil’ev, 2000; Grinkevich et al., 2003). In addition, we demon-
strated that a significant MAPK/ERK-dependent increase in his-
tone H3 acetylation occurs in adult animals after learning, whereas 
no increase in histone H3 acetylation was observed in juveniles. 
The injection of sodium butyrate, an inhibitor of HDAC, prior 
to training led to induction in histone H3 acetylation and sig-
nificantly ameliorated long-term memory formation in juvenile 
snails.

Recently, we have studied molecular processes underlying learn-
ing in command neurons RPa(2/3) and LPa(2/3) controlling with-
drawal behavior of adult snails. Such neurons constitute the plastic 
link of food aversion reflex and might be responsible for unilat-
eral right [RPa(2/3)] or left [LPa(2/3)] turning when withdrawal 
or escape responses are initiated. Balaban (1979) reported that 
RPa(2/3) and LPa(2/3) neurons are responsible for producing con-
tractions of ipsilateral body walls so that they may not be involved 
in the production of bilateral movements of the foot, which are 
mediated by ipsilateral populations of motor neurons. We focused 
on left and right command neurons and showed that serotonin-
dependent MAPK/ERK activation is involved in the formation of 
the withdrawal reflex; moreover we found that following learning, 
there is an asymmetry of MAPK/ERK activation in the left and 
right command neurons, which could result in the lateralization of 
molecular memory processes (Kharchenko et al., 2010). Specifically, 
we found that after food aversion learning phospho-ERK levels 
increased significantly in RPa(2/3) command neurons but no 
increase was found in LPa(2/3) command neurons. We concluded 
that learning involves synchronous and asymmetric serotonin-
dependent MAPK/ERK activation and that such an asymmetry 
may reflect lateralization of memory processes in the mollusk brain. 
Here we expanded our molecular analyses of command neurons in 
the framework of food aversion learning in Helix, and focused on 
histone H3 acetylation, a process so far unexplored in this experi-
mental context. We aimed at understanding whether histone H3 
acetylation is induced in RPa(2/3) and LPa(2/3) command neu-
rons after learning and whether it is MAPK/ERK-dependent. We 
analyzed if, consistently with MAPK/ERK activation observed in 
our previous work (Kharchenko et al., 2010), learning-dependent 
induction of histone H3 acetylation is also asymmetrical between 
the left and right command neurons. Our results show that food 
aversion learning in Helix induces a significant learning-dependent 
increase in histone H3 acetylation in command neurons of the right 
parietal ganglion RPa(2/3) but not in the symmetrical command 
neurons of the left parietal ganglion LPa(2/3). Moreover histone 
H3 acetylation in command neurons RPa(2/3) was MAPK/ERK-
dependent. We suggest that these unilateral molecular changes in 
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For this purpose, we designed a micro variant of western blot 
analysis, which allowed us to detect proteins purified from single 
neurons. We analyzed and compared histone H3 acetylation in the 
left (L) and right (R) command neurons of the parietal ganglia 
(Pa). Specifically, we analyzed LPa2 and LPa3 [LPa(2/3)], RPa2 
and RPa3 [RPa(2/3)] command neurons. These are giant neurons 
(about 250 microns) symmetrically located in the left and right 
parietal ganglia, respectively, which can be easily visualized and 
isolated (Figure 1). As a control, we analyzed neurons belonging 
to the D-group, which do not participate in the food aversion 
network and are located on the right parietal ganglia (Maksimova 
and Balaban, 1983).

Groups of three snails were conditioned and were then sacri-
ficed 15 min after training. Command neurons of the right and 
the left parietal ganglia were separately combined (RPa2 and RPa3 
together, and LPa2 and LPa3 together) and a comparative analy-
sis of H3 acetylation involving D-group neurons was performed. 
Three groups of animals were analyzed: control naïve animals pre-
treated with the vehicle, trained animals pretreated with the vehicle 
and trained animals pretreated with the MEK inhibitor PD98059 
(40 μM) dissolved in vehicle.

Fifteen minutes after training, acetylation of histone H3 
increased in command neurons RPa(2/3) of the right parietal 
ganglion (Figure 2). Specifically, the increase in histone H3 
acetylation was detected in RPa(2/3) command neurons (ANOVA: 
F1,11 = 6.034, p < 0.032, learning vs control). In contrast, no dif-
ference in histone H3 acetylation was found in command neu-
rons of the left parietal ganglion LPa(2/3) (F1,9 = 0.07, p = 0.8, 
learning vs control). Thus, after food aversion learning, induction 
of histone H3 acetylation takes place only in the right parietal 
ganglion. D-group neurons, which do not belong to the network 

(4°C). The pellet was resuspended in 1 ml of 0.4 N H
2
SO

4
 (30 min 

histone extraction) and was centrifuged at 14,000×g for 10 min 
(4°C). The supernatant was transferred to a fresh tube, and 
proteins were precipitated with the addition of 250 μl of 100% 
trichloroacetic acid containing 4 mg/ml deoxycholic acid (Na+ 
salt, Helicon) for 30 min and then centrifuged at 14,000×g for 
30 min (4°C). The supernatant was discarded, and the protein 
pellet was washed with 1 ml of acidified acetone (0.1% HCl) 
followed by 1 ml of acetone for 5 min each. Protein precipitates 
were collected by centrifugation (14,000×g, 5 min, 4°C) and were 
then resuspended in 10 mM Tris (pH 8) and stored at −80°C. 
Protein concentration was measured by Bradford assay. Samples 
were boiled with loading buffer and equal amount of protein 
was loaded into the 14% SDS-PAGE. Protein markers were from 
Fermentas (Lithuania). Separated proteins were transferred to 
a nitrocellulose membrane (Schleicher and Schuell). Ponceau 
S staining was used to check transfer quality. Membranes were 
incubated in Tris-buffered saline with 0.1% Tween 20 (TBS-T) 
containing 5% non-fat dry milk for 1 h at 4°C to block non-
specific binding. Following this blots were incubated with pri-
mary Acetylated-H3-Histone antibodies (4°C overnight) and 
with secondary antibodies conjugated with HRP (horseradish 
peroxidase) for 1 h. Immunolabeling was detected by enhanced 
chemoluminescence using ECL system (standard protocol and 
components from Amersham Pharmacia Biotech). Subsequently, 
blots were stripped (glycine-HCl, pH 2.8, two times for 20 min 
each at 55°C), saturated 1 h in 5% non-fat dry milk and incubated 
with antibodies against total form of histone H3. After exposure 
of membranes, films were scanned and amount of protein was 
quantified using Gel Pro Anal computer program.

The amount of acetylated histone H3 was normalized to total 
histone H3 whose level remains stable with respect of learning. 
To visualize H3-histone acetylation polyclonal antibodies against 
Acetylated Lysine 14-H3-histone (Upstate Biotechnology, Millipore 
Corporation) were used. Polyclonal antibodies against total histone 
H3 (Upstate Biotechnology, Millipore Corporation) were used for 
analysis of H3 content. Antibodies against Acetylated-H3-histone 
and total histone H3 were diluted 1:1,000 and secondary antibodies 
(Amersham) were diluted 1:1,500–1:2,500.

data analysIs
For statistical analyses we used ANOVA followed by Fisher’s and 
Tukey’s tests for post hoc comparisons. Binomial tests were used 
for comparing laterality of behavior. Significance of results was 
accepted at p ≤ 0.05. Results are presented as mean ± SEM. All 
analyses were carried out with SPSS statistical package.

results
hIstone h3 acetylatIon In coMMand neurons controllIng 
wIthdrawal behavIor upon food aversIon learnIng
To study the involvement of histone H3 acetylation in conditioned 
food aversion in Helix, we quantified histone H3 acetylation in 
identified command neurons (premotor withdrawal interneurons) 
of the food aversion network following learning. These neurons 
constitute the main plastic element in the network controlling 
withdrawal behavior of Helix upon electric shock stimulation 
and are involved, therefore, in US processing (Balaban, 2002). 

FiguRE 1 | Location of large identified neurons and neuronal clusters in 
the CNS of Helix lucorum. The figure shows the left and right parietal ganglia 
(LPaG, RPaG). Numbers designate individual identified neurons: giant neurons 
(2 and 3) symmetrically located in the left and right parietal ganglia, correspond 
to the giant interneurons (command neurons) of withdrawal behavior LPa2, 
LPa3 [LPa(2/3)] and RPa2, RPa3 [RPa(2/3)]. Outline areas indicate the region 
containing neurons belonging to the D-group and the N-group. Command 
neurons LPa(2/3), RPa(2/3), and neurons of the D-group were used for 
experiments.



Frontiers in Behavioral Neuroscience www.frontiersin.org November 2010 | Volume 4 | Article 180 | 4

Danilova et al. Histone H3 acetylation in Helix learning

lateralIzatIon of avoIdance MoveMent durIng food aversIon 
reflex forMatIon In Helix lucorum
Studies performed by Salimova et al. (1984) showed that the capac-
ity of mollusks to turn to the right or to the left sides differ in their 
latent periods. Asymmetric movements of mollusks could be related 
to different activities of the serotoninergic and dopaminergic sys-
tems underlying left-hand and right-hand movement (Salimova 
et al., 1984). In particular, they could be related to RPa(2/3) and 
LPa(2/3) neurons which are thought to be involved in the control 
of ipsi (unilateral) but not bilateral movements (Balaban, 1979). 
Given the asymmetry in terms of learning-dependent molecular 
processes between left and right unilateral command neurons, we 
reasoned that such asymmetry may result in snails learning to move 
away in an asymmetric way (i.e., to the right or to the left) from the 
piece of carrot they avoid. We thus analyzed whether Helix snails 
have a preferred direction of turning upon and after food avoidance 
learning. During training we did not observe any lateralization of 
avoidance movement (p > 0.2 Binomial test, n = 18). No direction 
preference was observed while testing the animals 24 h after train-
ing, either (p > 0.2 Binominal test, n = 18). But, interestingly 48 h 
after learning all animals demonstrated lateralization of avoidance 
movement direction (p < 0.001 Binominal test). All of the eighteen 
snails moved to the right while avoiding carrot (Figure 3). These 
results indicate that behavioral lateralization is established only 
after consolidation of the conditional reflex. Taken together our 

 controlling withdrawal behavior of Helix and which were thus used 
as a within-subject control, did not exhibit significant changes in 
histone H3 acetylation (F1,6 = 0.13, p = 0.73; Figure 2). Their total 
level of histone H3 did not change after training. To test whether 
the increase in histone H3 acetylation in RPa(2/3) neurons was 
MAPK/ERK-dependent, we injected animals with the MEK kinase 
inhibitor PD98059 30 min prior to training. We compared control 
vehicle-injected, trained vehicle-injected, and trained PD98059-
injected animals. Figure 2 shows that PD98059 injection inhib-
ited the increase in histone H3 acetylation induced by learning in 
RPa(2/3) command neurons (F2,13 = 4.01, p < 0.04). As expected 
(see above), trained animals pretreated with vehicle exhibited a 
significantly higher level of histone H3 acetylation than control, 
untrained animals; p < 0.03 (post hoc Fisher test), thus confirm-
ing the asymmetric effect of training on histone H3 acetylation 
as a consequence of conditioning (see above). Similarly, a com-
parison between trained, vehicle-injected animals and trained, 
PD98059-injected animals was also significant (post hoc Fisher 
test: p < 0.04) as the latter did not exhibit a significant increase of 
H3 acetylation in RPa(2/3) neurons. Consequently, there was no 
difference between vehicle-injected untrained animals and trained, 
PD98059-injected animals (post hoc Fisher test: p = 0.67) in histone 
H3 acetylation in RPa(2/3) neurons. These results show that the 
increase in histone H3 acetylation detected in RPa(2/3) neurons 
is learning- and MAPK/ERK-dependent.

FiguRE 2 | Food aversion learning induces histone H3 acetylation in identified 
neurons of the CNS of Helix lucorum. Increased amount of H3 histone acetylation 
was detected 15 min after learning in command neurons of withdrawal behavior 
RPa(2/3) in comparison to naïve controls. The selective MEK inhibitor PD98059 
abolished ERK activation. C, control naïve animals pretreated with the vehicle; 

L, trained animals pretreated with the vehicle; L + PD, trained animals pretreated 
with the MEK inhibitor PD98059 (40 μM). Data shown are mean ± SEM normalized 
ratios of ac-H3. Number of independent experiments: command neurons RPa 2/3 
(C, n = 6; L, n = 7; L + PD, n = 3), LPa 2/3 (C, n = 6; L, n = 5); *p < 0.04; D-group (C, 
n = 4; L, n = 4). Upper panel – representative western blot.
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endogenous HATs activity (Alarson et al., 2004; Korzus et al., 2004; 
Wood et al., 2005). MAPK/ERK-dependent acetylation is mediated 
by RSK and MSK protein-kinases (Chwang et al., 2007). HDCAs play 
an important role in the regulation of histone acetylation. Injection 
of HDACs inhibitors was shown to improve long-term memory for-
mation both in wild-type animals and mutants with dysfunctional 
CBP (Alarson et al., 2004; Korzus et al., 2004; Wood et al., 2005). 
Moreover, in the last years, the possibility of memory amelioration 
through HDACs inhibition even in animals with neurodegeneration 
has been suggested (Fischer et al., 2007; Abel and Zukin, 2008).

In addition, the central role of MAPK/ERK-dependent histone 
H3 acetylation during food aversion learning is supported by our 
research on juvenile snails. Juvenile animals, which possess imma-
ture mechanisms of long-term plasticity of avoidance behavior, in 
contrast to adults do not exhibit changes in histone H3 acetylation 
upon conditioning. This result is related with our previous find-
ings, which demonstrated both a lack of MAPK/ERK activation 
and a difference in the spectrum of TFs binding DNA regulatory 
elements SRE and AP-1 the juvenile animals (Grinkevich et al., 
2003, 2008). Thereby dysfunction of MAPK/ERK activation dur-
ing training may result in a deficit in histone H3 acetylation in 
juvenile snails. Taken together, our data confirm the essential role 
of MAPK/ERK-dependent histone H3 acetylation in food aversion 
learning in Helix.

We suggest that sensory stimulation does not have a significant 
effect on H3 acetylation as after learning we observed an increase 
in H3 acetylation in RPa(2/3) neurons only, although left and right 
command neurons from parietal ganglia have common sensory 
fields (Balaban, 2002). Also, histone H3 acetylation induced by 
learning is due to sensitization underlying the formation of condi-
tioned food aversion in Helix. It should be noted that similar bio-
chemical alterations occur at the cellular level during the formation 
of both sensitization and conditioned defensive responses. These 
effects only differ in their magnitude and duration (Abrams et al., 
1991; Grinkevich, 1994; Antonov et al., 2001). Moreover, our recent 
findings (Kharchenko et al., 2010) support the idea of a significant 
role of sensitization in the molecular processes underlying with-
drawal reflex formation. We have shown asymmetrical activation 
of MAPK/ERK in RPa(2/3) neurons not only after learning but also 
after incubation in serotonin, the neurotransmitter which mediates 
the effect of the US and stimulates sensitization.

It has been previously shown that all command neurons, RPa(2/3) 
and LPa(2/3), trigger the withdrawal responses and are involved 
in habituation, sensitization, and aversive conditioning (Balaban, 
2002). Command neurons of the right and left parietal ganglia 
constitute the plastic link of food aversion reflex and might be 
responsible for unilateral right [RPa(2/3)] or left [LPa(2/3)] turning 
when withdrawal or escape responses are initiated. Morphological 
and functional differences have been described for RPa(2/3) and 
LPa(2/3) neurons. Firstly, every command neuron has its own 
specific non-habituating area of the receptive field. RPa(2/3) and 
LPa(2/3) neurons have specific receptive fields, which are predomi-
nantly located ipsilaterally on the poda. Furthermore, there is a 
difference in the organization of the motor fields of these neurons 
(Bravarenko et al., 1982). Balaban (1979) reported that RPa(2/3) 
and LPa(2/3) neurons are responsible for producing contractions 
of ipsilateral body walls. These contractions may be related to the 

data demonstrate a correlation between a lateralized increase in 
histone H3 acetylation in RPa(2/3) neurons and a lateralized avoid-
ance to the right 48 h after learning.

dIscussIon
Our work shows that histone H3 acetylation is selectively increased 
in identified neurons of the CNS of H. lucorum upon food aversion 
learning. Such an increase was found in the command neurons of the 
right parietal ganglion RPa(2/3) but not in the symmetrical neurons 
of the left parietal ganglion LPa(2/3). The D-group neurons, which do 
not belong to the food aversion network, did not show an increase in 
histone H3 acetylation. Injection of the MAPK/ERK pathway inhibi-
tor PD98059 prior to training prevented learning-dependent histone 
H3 acetylation in RPa(2/3) neurons, thus showing that acetylation is 
related to MAPK/ERK activity. We have previously shown that block-
ing MAPK/ERK activity via pretreatment with PD98059 impairs food 
avoidance learning in Helix (Grinkevich et al., 2008).

Our experiments suggest that changes in histone H3 acetyla-
tion in command neurons of withdrawal behavior are required 
for learning and are regulated by MAPK/ERK. Our data support 
findings obtained in other animals, showing the important role of 
acetylation during long-term memory formation (Kandel, 2001; 
Guan et al., 2002; Levenson and Sweatt, 2006).

Recently MAPK/ERK was reported to be involved in the regula-
tion of histone acetylation in a number of studies carried out in verte-
brates (Levenson et al., 2004; Chwang et al., 2006, 2007; Sweatt, 2009). 
It is supposed that MAPK/ERK-dependent acetylation of histones 
could be mediated by the CREB-binding protein (CBP), a known 
MAPK/ERK target and transcription activator, which possesses 

FiguRE 3 | Lateralization of avoidance movement during food aversion 
reflex formation in Helix lucorum. Forty-eight hours after training, Helix 
demonstrates lateralization of avoidance movement. An index to quantify 
lateralization of avoidance movement was calculated using R/(L + R), where R 
represents the number of animals, which moved to the right while avoiding 
carrot, and L the number of animals, which moved to the left while avoiding 
carrot. n = 18 (three series, six animals in every series) for all groups. 
*p < 0.001. Errors bars = SEM.
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