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ABSTRACT Microbes serve as sensitive indicators of ecosystem change due to their
vast diversity and tendency to change in abundance in response to environmental condi-
tions. Although we most frequently observe these changes to study the microbial commu-
nity itself, it is increasingly common to use them to understand the surrounding environ-
ment. In this way microbial communities can be thought of as powerful sensors capable of
reporting shifts in chemical or physical conditions with high fidelity. In this commentary, I
further explore this idea by drawing a comparison to the olfactory system, where popula-
tions of sensory neurons respond to the presence of specific odorants. The possible combi-
nations of sensory neurons that can transduce a signal are virtually limitless. Yet, the brain
can deconvolute the signal into recognizable and actionable data. The further development
of machine learning techniques and its application hold great promise for our ability to
interpret microbes to detect environmental change.
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There is urgent need to understand environmental change in our complex and dynamic
world. The ability to predict important but difficult-to-measure environmental parameters

can help us detect change and evaluate potential causation. Here, I describe how microbial
communities may be used as highly sensitive indicators of ecosystem change, analogous to
the way that olfactory sensory neurons respond to environmental stimuli to produce smell.
The olfactory system contains millions of individual sensory neurons. We can think of these
neurons as being divided into populations, with each population capable of sensing a range
of chemically related odorants based on which odorant receptors they contain (1). The con-
cept of smell is an emergent property of this system; the signal pattern from a given collection
of sensory neurons is recognized by the brain as corresponding to a specific smell. Like sen-
sory neurons, a microbial community is composed of populations of distinct members that
respond to environmental stimuli. However, unlike neurons these microbes do not respond
via an electrical impulse. Rather, they increase or decrease as a proportion of the total popula-
tion based on the impact of the stimulus on their fitness relative to the other members of the
community. It is possible to reconstruct the ecosystem state or even the intensity of the spe-
cific stimuli that induced these changes if we can interpret them with sufficient accuracy.

In the abstract, the brain’s interpretation of a combination of incoming signals as a
specific smell is an example of classification (Fig. 1). The signals from many different
neurons—varying in intensity based on the affinity of the receptor to the odorant—are
combined into a singular solution (e.g., apple pie, the sea, wood smoke) that we might
term a categorical variable. Classification is already widely used to relate microbial
community structure to categorical variables that describe ecosystem state, particularly
where the ecosystem is the human body, and a supervised machine learning approach is
appropriate. Examples include work by Duvallet et al. (2), who used random forest classifi-
cation to relate community structure to disease state, and Pasolli et al. (3), who tested a
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number of classification algorithms including random forest, support vector machines,
and lasso and elastic net classification to predict disease state. But what if we wish to pre-
dict a continuous variable rather than a categorical one? Returning to the olfactory meta-
phor, what if we could interpret the output of olfactory sensory neurons with sufficient fi-
delity to determine the concentration of specific odorants in the environment?

Early evidence suggests that the structure of a microbial community contains sufficient in-
formation to reproduce key attributes of the environment that are continuous variables.
Bowman et al. (4) applied an unsupervised self-organizing map (SOM) approach to “segment”
a marine microbial community into different classes, showing that these classes could be used
to predict (continuous) ecophysiology traits in a generalized linear modeling framework. Belk
et al. (5) used random forest regression to predict cadaver postmortem interval frommicrobial
community structure, and Thompson et al. (6) used a similar approach to predict the concen-
tration of dissolved organic carbon (DOC) in soil microcosms. In recent work, Dutta et al. (A.
Dutta, T. Goldman, J. Keating, E. Burke, N. Williamson, D. Reinhard, and J. S. Bowman, submit-
ted for publication) used random forest regression to predict hydrogen sulfide concentration
in a microcosm model of a souring oil production field. Constructing a model from over 400
samples, those authors were able to determine hydrogen sulfide concentration in 174 samples
(withheld from the training data) with surprising accuracy (R2 = 0.83). The outstanding ques-
tion is, how many ecological parameters are sufficiently captured by microbial community
structure to be predicted in this way?

The prediction of ecosystem attributes from microbial community structure works
because microbes exist in a close causal relationship with the physical and chemical
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FIG 1 Environmental sensing with the olfactory system and microbial community structure. The human
olfactory system contains roughly 350 types of olfactory sensory neurons. A single odorant (such as
cinnamaldehyde) will activate a single type of sensory neuron. Many smells are the synthesis of multiple
odorants; the combination of olfactory sensory neurons transducing a signal must be decoded by the brain to
achieve a specific sensory response. Populations of microbes respond to environmental stimuli (such as
temperature, sunlight, or O2) by increasing or decreasing relative to other members of the community.
Machine learning techniques such as random forest regression can be used to decode these signals, providing
a prediction of specific parameters for which an adequate model exists.
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environment. This is easily imagined for environmental chemistry where, for example,
specific microbes will grow preferentially in the presence of a substrate or signaling
molecule and produce metabolic by-products and signaling molecules in turn. Given
enough parallel observations of both community structure (e.g., with 16S, 18S, and/or
internal transcribed spacer [ITS] rRNA gene sequencing) and a chemical compound of
interest that interacts with that community, it will be possible to predict the concentra-
tion of the compound from the structure of the community. The microbial community
has a similarly close relationship with physics. Changes in temperature, salinity, water
activity, and solar irradiance can induce a rapid shift in community structure, while the
microbial community influences such physical environmental parameters as soil poros-
ity and light transmittance.

A key requirement for predicting environmental parameters from microbial com-
munity structure is that enough well-constrained observational data exist to train a
model. These data need to include both microbial community structure (the predictor
variables) and either a continuous or categorical response variable. As with all models,
to achieve good performance the observational data must fit the range of environmen-
tal conditions over which predictions are desired. Microbial community structure data
typically consist of hundreds to thousands of predictor variables as unique sequence
reads when adequately quality controlled (QC’d) and denoised. The breadth of these
data presents a prime opportunity for model overfitting. To reduce this risk, the num-
ber of samples used to train the model should be large, or the number of features
used in the final model should be down-selected to the minimum number required to
produce a model of sufficient performance. This is not without risk, however; feature
down-selection may increase the specificity of the model while minimizing overtrain-
ing for the limited range of conditions over which the model is expected to perform
well. Consider a hypothetical model that predicts soil nitrogen fixation from microbial
community structure. A model based only on those features deemed most informative
for, e.g., a soybean field is not likely to produce good predictions for a wheat field.
Because functional potential is thought to be more conserved than taxonomic struc-
ture across microbial communities occupying similar environments (7, 8), models
based on functional genes may be the most broadly applicable though less sensitive
than models based on taxonomic marker genes such as the 16S rRNA gene.

It is important to recognize that while the microbial community may accurately rep-
resent some environmental parameters, the inverse is not true. Microbial community
structure may yield a unique solution for many environmental parameters, but there is
no reason to expect that a given set of environmental parameters could be used to
predict a specific microbial community, just as we could not predict the exact pattern
of activated sensory neurons yielding a specific smell in our olfactory metaphor. Even
the combination of compounds that yields a specific smell is not unique; the assemb-
lages of odorants in, e.g., apple pie and apple-pie-scented potpourri are not the same
but yield similar scents. The microbial scenario is consistent with our current under-
standing of the impact of disturbance on microbial community structure. Although
ecosystem function may be recovered on the return to baseline conditions following
disturbance, the taxonomic structure of the community is likely to be different (9, 10).
Thus, similar niches can host very different microbial communities.

The tight coupling between microbes and their environment provides an opportu-
nity to use microbiomes as sensitive indicators of ecosystem change. The power of this
opportunity lies in the vast diversity of microbial communities, which contain many
thousands of genotypes within even a liter of seawater or a few grams of soil. Each of
these taxa responds uniquely to many different chemical or physical stimuli, expressing
their change in fitness within the community as a shift in relative abundance. Even a
highly simplified microbial community of 100 taxa—and considering only upshift,
downshift, or no shift in relative abundance—can yield 3100 distinct signals. The chal-
lenge is specificity and our ability to interpret the signal output from this environmen-
tal sensor. Advances in analytical techniques, particularly machine learning algorithms
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such as random forest, provide an opportunity to develop predictive models of key
environmental parameters from microbial community structure data. To take advant-
age of this opportunity, we must emphasize bold, high-resolution observational data
sets that span key ecological gradients and measure broad suites of relevant parame-
ters over space and time.

Approximately 350 distinct classes of sensory neurons are present within the
human olfactory system, far less diversity than is present in most microbial commun-
ities. Simplified to a binary response (i.e., ignoring signal intensity), this system would
still be capable of 2350 distinct signals. As reviewed by Cleland (1), the brain has
evolved a complex, multilayered computing structure to address the complexity inher-
ent in this system. It is no accident that neural networks—a cornerstone of machine
learning—are modeled on the architecture of the human brain. Our ability to decon-
struct complex sensory inputs into interpretable and actionable data about our envi-
ronment holds great promise for our ability to use microbial community structure to
understand environmental change.
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