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Abstract

Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a
discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the
pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus
one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the
latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe
neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On
response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting
representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a
turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg,
depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other
features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is
more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower
doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching
with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off
response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone
plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.
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Introduction

The efficiency of male moths searching for females is

astonishing. In spite of serious difficulties, as, for example, large

distances, sharp time constraints, and sparse discontinuous clues,

their olfactory pheromone system usually guarantees a successful

encounter [1,2]. Far from the pheromone emitting female, odor

plumes consist of sparsely distributed pheromone patches [3],

leading to rare, intermittent detections [4–6].

This mating race is not only fascinating in itself but also

particularly convenient to study the chain linking perception to

action, and for the investigation of search tasks in general. The

advantages are the rich adaptive behavioral repertoire of insects

generated by a relatively simple neuronal system [7,8], a clear

instinct-based task, and its suitability for testing and comparing

different types of search strategies. Moths, as well as other insects,

have developed a specifically adapted behavior, in addition to a

specialized neuronal subsystem for the processing of pheromone

information [9,10]. Experimental evidence indicates a two-step

behavioral strategy [1,5,11–13]: sensing a pheromone patch

induces an upwind surge [5], towards the pheromone emitting

source (the female). Upon loosing the scent, they switch to

crosswind (zigzag) casting [11,12,14–16], or looping or spiraling

[14,15,17,18]. Spiraling is typically done by walking insects.

An important factor is the olfactory stimulus [4,5,14], e.g., the

pheromone dose or the pulsation frequency. The latter relates to

another important factor, the presence of an air flow in odor-

modulated anemotaxis. Inspired by the observations detailed

above, various models of reactive search strategies have been

suggested and modified [2,19–21]. They are based on predefined

movement sequences which are typically triggered by odor

perceptions. Such biologically inspired strategies can be employed

to locate pheromone sources [22] or other odors [23–26], given

appropriate sensors. In general, bio-inspired methods are widely

discussed to overcome the challenges in chemical sensing [26,27].

A powerful alternative to reactive searching is the more

sophisticated and computationally rather expensive approach of

using cognitive strategies, e.g. [6,28,29] with respect to searching

without continuous (or smooth) chemical gradients. Such methods

produce an adaptive behavior as current perceptions are weighted

by past clues and actions, i.e., learning and memory are typically

involved. The infotaxis strategy [6] is based on Bayesian inference

to maximize the information gain about the location of the source

in a turbulent medium. Originally implemented as a simulation,
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infotaxis can be used in a real-world set-up in combination with a

robot in order to track a thermal source [29,30].

Such experimental tests of theoretical models are particularly

important for applied research as they point out real-world issues

and limitations that mere simulations cannot account for. This is

true for both studies involving reactive [8,26] and cognitive

strategies [31,32], as well as for gradient based underwater chemo-

orientation using a biomimetic robot lobster [33]. Another

example for such studies is biologically-inspired chemical plume

tracing using an autonomous underwater vehicle [23,24,34].

Moreover, the interplay between robotics and insects offers the

possibility to investigate the insect’s behavior [8,35–37] while

specifically modifying the experimental conditions.

Using such an approach, we compare the strategies detailed

above: reactive versus cognitive searching in dependence of the

stimulation strength for a turbulent air flow. Our cyborg, a male

moth Agrotis ipsilon mounted on a mobile robot [22], has to find

the pheromone source located two meters upwind from the

starting position, see Fig. 1. The turbulent air flow yields sparsely

distributed pheromone patches. Their detections, recorded from

the antenna, control the robotic movements via three biologically

motivated reactive search strategies and one cognitive infotaxis

strategy [6]. The reactive strategies are derived from an analysis of

electrophysiological recordings from the macroglomerular com-

plex (MGC), the first cerebral relay for the processing of

pheromone information perceived by olfactory receptor neurons

(ORNs) in the moths’ antennal lobe [9,38]. They show triphasic

neuronal responses (On, inhibition, Off) to pheromone stimulation

[22,39]. The origin of the inhibitory phase was the focus of [22]

who employed reactive searching implemented on a cyborg in

order to provide evidence that reactive searching could be

mediated by multiphasic responses. We here provide a detailed

comparison of cognitive versus reactive searching, in dependence

of the stimulus dose, focusing on the analysis of the resulting

trajectories. Based on the occurrence of multiphasic responses, we

consider the strategies detailed in Fig. 2: (sp) combines surge and

arithmetic spiral casting, (za) and (ze) combine surge and a two-

step casting sequence composed of crosswind casting, i.e.,

zigzagging followed by arithmetic or exponential spiraling,

respectively. The single movement sequences are motivated by

biological findings on behavioral insect data: straight upwind surge

[2,5], zigzagging with an increasing step size [2,40], and spiral

casting [15,18]. In addition, we contrast our search trajectories to

those resulting from behavioral experiments where a walking

silkmoth tracks a pheromone source in a wind tunnel [36].

We consider in this article the following questions: is complex

cognitive searching superior to using simple reactive strategies?

What is the influence of the stimulus strength? How can the

resulting search trajectories be characterized and compared? Do

they show common features and how do they relate to behavioral

data? We expected a clear and overall predominance of infotaxis

since the algorithm involves memory and learning, and it has been

proven to be very successful in computer simulations [6,41,42].

We found, however, that reactive searching can be more efficient

if it includes a response reminiscent of casting.

We first present the biological motivation of the implemented

reactive search strategies. We then detail the results of using these

strategies, as well as the infotaxis algorithm, in cyborg experi-

ments. On the one hand, we focus on basic features as success rate

and efficiency, expressed by the corresponding trajectory lengths.

On the other hand, we also aim at a more detailed characteriza-

tion of these search paths, including a qualitative comparison to

behavioral data [36]. Finally, we discuss our findings, in particular

in terms of which approach is more efficient, under which

circumstances, and why.

Results

We first detail the analysis of the neuronal MGC recordings.

Subsequently, we relate the different regimes therein to the

reactive search strategies used in the cyborg experiments. After a

brief introduction of the infotaxis strategy, we present the results of

Figure 1. Experimental set-up of the cyborg’s search task. (A)
Schematic general set-up: the cyborg starts 2 m from the pheromone
source in a 2.5|4 m region. A fan provides a wind blowing from the
top (towards the cyborg). (B) Photo of our cyborg: a Khepera III robot
with a moth fixed in a styrofoam roll. Zoom-in 1: top of the styrofoam
roll with the insect’s head and the two antennae on the outside. Zoom-
in 2: one antenna enters the tip of a glass electrode. Photographs by H.
Raguet — INRIA.
doi:10.1371/journal.pcbi.1003861.g001

Author Summary

The moth mating race is a suitable model case for studying
the efficiency of various search strategies and to compare
them to real-world behavior. All there is to guide olfactory
navigation are simple sporadic clues, i.e., single phero-
mone detections. Thus, a pheromone seeking male relies
on a specifically adapted behavior where action selection
is triggered by simple perceptional events. They switch
between stereotypical movement sequences, as, for
example, upwind surge and crosswind casting. This
behavior can be either a consequence of cognitive
processing or a reactive reflex of fixed action patterns.
Suggesting a direct relationship between neuronal central
activity and such action patterns, we combine and
implement them as reactive strategies. We also employ
infotaxis, an artificial intelligence algorithm specifically
developed for searching in turbulent odor plumes. Using
these strategies in cyborg experiments, we obtain and
compare the resulting search trajectories. Our results
indicate that complex, computationally expensive search
strategies like infotaxis are not necessarily better than
simple reactive ones. With respect to our set-up, reactive
searching yields the shortest trajectories if and only if it
includes a crosswind zigzagging phase that represents a
short-term memory. Thus, already a minimal bit of
simplistic memory can produce very efficient goal-directed
behavior.

Reactive Searching and Infotaxis in Odor Source Localization
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comparing various search strategies in cyborg experiments.

Finally, we relate and compare patterns occurring in our cyborg

trajectories to those of walking moths published in [36].

Electrophysiological results
We consider the electrophysiological MGC recordings of 8

multiphasic neurons and 6 monophasic neurons (Fig. 2, in total 58

and 53 single trials, respectively). The Off phase in multiphasic

neuronal responses to pheromone stimulation in the MGC is

apparent in the firing rate [9,22,39]. We find that it is also

apparent in the firing regularity and firing reliability which are

characterized by the coefficient of variation and the Fano Factor,

respectively. Fig. 2A shows the spike times of seven trials of a

multiphasic MGC neuron. Upon pheromone stimulation, firing

abruptly increases from the baseline (Bl) and produces an On

response, followed by an inhibitory phase. After inhibition,

neuronal firing restarts at a higher rate than Bl activity which

then slowly decays back to baseline. We call this transient

intermediate phase the Off response. The Off is apparent in the

Peri-Stimulus-Time-Histogram (PSTH, the average firing rate

over time), in terms of spiking regularity and reliability, as shown

in Fig. 2B. Both the coefficient of variation and the Fano Factor

are close to one during irregular and unreliable Bl firing, drop to

approximately zero during the On, and show intermediate values

during the Off while gradually reapproaching one. In contrast, the

correlation coefficient, representing spike time precision (Methods,

part 1), exhibits no Off phase. Both the increase in synchrony, i.e.

spike time precision, from baseline (CC&0) to On (CCv*1) and

the decrease back to zero are abrupt.

For comparison, we also analyze monophasic MGC responses

to pheromone stimulation, shown in Fig. 2C. Such neurons also

respond with an On, i.e., an abrupt increase in firing (data not

shown, see [22, Fig.2]), similar to the On response of multiphasic

neurons: there CCv*1, CVlocw*0, FFw*0). Yet, for monophasic

Figure 2. Reactive search strategies and their biological motivation. (A) MGC recordings for pheromone stimulation: spike times for seven
trials of one neuron and the corresponding average firing rate over time (Peri-Stimulus-Time-Histogram): inhibition separates the On from the Off
response which smoothly decreases to baseline firing (Bl). (B) Analysis of MGC recordings of multiphasic neurons: Calculating the regularity (CVloc)
and reliability (FF ) over time exhibits an Off phase, whereas Off and baseline firing show uniformly low synchrony values (CC). Dotted black lines
represent single neuron trials, the red line gives the averages. (C) Analysis of MGC recordings of monophasic neurons: neither synchrony nor
regularity nor reliability over time exhibit any Off phase. Dotted black lines represent single neuron trials, the blue line gives the averages. (Right side:
za, ze, sp) Schematic representation of the corresponding movement sequences: Bl . spiraling, On . upwind surge, and Off . zigzagging (if
considered) which are combined into three search strategies, sp, za, and ze.
doi:10.1371/journal.pcbi.1003861.g002
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neurons the increased spiking during the On switches immediately

back to baseline spiking, there is neither an inhibitory, nor an Off

phase. Both firing regularity and reliability switch directly back to

their baseline values: CVloc&0.7 and FF&1, respectively.

Reactive search strategies
On the right side of Fig. 2 we present the reactive search

strategies associated with the different in the neuronal MGC

responses to pheromone stimulation. Note that the wind is

assumed to blow from the top and that mean wind direction

and speed are fixed. Basically, we distinguish between two

assumptions: the sp strategy neglects the Off while the other two

strategies (za and ze) comprise a zigzag casting sequence

representing the Off in our multiphasic neurons (see Methods,

part 2). The sp strategy could thus model the behavior based on

the activity of monophasic neurons.

As initial movement, we choose arithmetic or exponential

spiraling which represents baseline firing. We assume that each

detection event initiates a straight upwind surge representing the

On. If there is no subsequent detection, the movement changes

either into Off zigzagging followed by baseline spiraling, or it

directly switches back to baseline spiraling (sp, using arithmetic

spirals). Note that the cyborg stops zigzagging after a fixed period

of 19 s (if there is no further detection): as we record from the

antenna and not from the MGC, we do not have access to the

length of the Off. Our za and ze strategies combine zigzagging

with either arithmetic or exponential spirals [43] in order to test

whether exponential spiraling yields an increases in efficiency [22,

Suppl. Information].

We do not consider reactive searching without spiral move-

ments as we expect relatively high failure rates due to the missing

downwind component [25]. Consequently, the agent cannot

reorient appropriately after passing (and missing) the source. This

happens, for example, whenever detections occur close to, but

downwind and laterally shifted with respect to the source position.

Cognitive searching with infotaxis
We now briefly introduce the infotaxis algorithm [6]. It uses

Bayesian inference to localize the source of an odor plume in a

turbulent medium. It combines two mechanisms: exploitation (i.e.,

approaching the source based on perceived information) and

exploration (i.e., maximizing the information gain). The explora-

tion mode predominates if there is nearly no information available.

Long periods of time with no odor encounter broaden the

posterior distribution and compel the agent to explore the

environment in large patterns. On the contrary, if many detections

indicate that the source is close, the exploitation mode triggers

more localized movements. Starting from a prior probability

distribution for the location of the source, the agent accumulates

information while exploring its environment. Both odor detections

and non-detections contribute to the ongoing update of the

estimated spatial probability distribution. Infotaxis has been shown

to function very well in computer simulations (see Introduction):

typical failure rates are close to zero, even for ‘no wind’ or ‘no

stimulus’ conditions (the agent continues to search until the source

is found). Its movements are discretized steps and it allows only for

four movement directions. For each step, the direction is

determined as that which maximizes the entropy reduction in

the probability distribution of the source location. More details are

given in Methods, part 3.

Comparison of different strategies
We now compare the results of our cyborg experiments, i.e.,

search trajectories obtained for three reactive search strategies and

infotaxis stimulated with different pheromone concentrations (no

pheromone, minimum, medium, and maximum concentration,

see Methods, part 2). The number of successful and failure trials

are given in Table 1.

Success rates. The success rates, i.e., the percentage of trials

in which the cyborg locates the source, are very similar for the

three reactive strategies, see Fig. 3A: 89% (sp), 85% (za), and 84%

(ze), averaged across different doses. Cognitive searching yields a

sightly higher success rate of 93% (Fig. 3B), averaged over all

stimulated trials (or 88% if the ‘no stimulus’ condition is included).

We find that there is no dependency on the stimulus dose: 85%

(minimum dose), 91% (medium dose) and 88% (maximum dose)

successful trials, averaged across all strategies. Only the differences

between reactive trials with and without stimulation are pro-

nounced. There are up to 17% successful reactive trials without

stimulation due to occasional false detections, i.e. false positive

trials. The success rate for infotaxis (it) trials without stimulation is

73%. These are not called false positives, since infotaxis is

supposed to be successful even without stimulation (see above and

Methods, part 3). Compared to 93% successful trials with

stimulation, 73% is rather low. The reason is that such trajectories

often run close to the boundaries of the search space (the

experimental field) so that even minor odometry errors (Methods,

part 2) potentially cause the cyborg to leave the search space.

Thus, reactive searching fails if there is not enough information

(e.g., no pheromone source) whereas infotaxis is still able to reach

the source (even for the ‘no pheromone’ condition) by exploring

the environment in an efficient way.

Efficiency. We compare the efficiency of different search

strategies in dependence of the pheromone dose by means of the

resulting trajectory lengths, shown in Fig. 3C and 3D. Note that

there is a minimum length for all search trajectories, namely, the

shortest possible straight-line distance between start and source.

Table 1. Experimental robotic trials.

Successful/total trials sp za ze it

no pheromone 5/27 3/18 4/29 21/29

minimum 0.1 32/43 34/38 38/48 21/22

medium 0.3 65/71 65/73 36/42 24/25

maximum 1 43/49 66/74 49/56 21/24

List of robotic experiments considered for the statistical analysis of the success rate. The trajectory analysis includes only the successful trials. Each entry S/T indicates
the number of successful trials S out of the total number of trials T. Spiraling only (sp), arithmetic spiral & zigzagging (za), exponential spiral & zigzagging (ze) are the
trials based on reactive search strategies, it trials are obtained using cognitive infotaxis searching. For a definition of successful or failure trial see Methods, part 3. The
large variations in the number of trials are due to the need to exclude trials, as well as differences in the technical requirements.
doi:10.1371/journal.pcbi.1003861.t001
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Some of our trajectories are indeed up against this boundary. First,

reactive searching with zigzag movements representing the Off is

clearly more efficient than spiraling, only. For all doses, ze yields

the shortest search paths, closely followed by za, while sp
trajectories are clearly the longest ones. Second, cognitive

searching using infotaxis produces shorter trajectories than using

the sp strategy but cognitive paths are longer than those including

Off zigzagging. Third, the higher the pheromone dose, the shorter

the reactive trajectories. In contrast, the lengths of cognitive it

trajectories obtained with pheromone stimulation differ only

slightly and the minimum dose produces the shortest paths.

A global ANOVA yields a statistically significant difference for

both strategy and dose (p%0.001), and a weak interdependency

(p = 0.06) between these two factors. Single pairwise comparisons,

however, exhibit a more diverse pattern: the length differences

between za and ze versus sp are statistically significant, (pv0.001

up to pv0.05), whereas this is not the case for za versus ze
trajectories. The length differences between trajectories resulting

Figure 3. Success rates, trajectory lengths, and deviation from the optimal path. (A) Success rates of reactive search strategies, different
colors indicate different strategies (legend in C), grouping indicates different stimulation doses (three doses plus no stimulation). (B) Success rates of
cognitive searching with infotaxis (three doses plus no stimulation). (C) Trajectory lengths of reactive search strategies, different colors indicate
different strategies, grouping indicates different stimulation doses. (D) Trajectory lengths of cognitive searching with infotaxis (three doses plus no
stimulation). (E) Schematic drawing to explain the Xd measure: the average of horizontal deviations (Xi) from trajectory to shortest path between start
and source. (F) Deviation from the optimal path (Xd ) for reactive searching, different colors indicate different reactive strategies for the three groups
of pheromone doses. (G) Deviation from the optimal path (Xd ) for cognitive searching (three doses plus no stimulation). Box plots are explained in
the Methods, part 2, the numbers indicate mean + standard deviation.
doi:10.1371/journal.pcbi.1003861.g003
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from reactive and cognitive searching are mostly significant: sp
versus it for the minimum dose (pv0.01), za versus it in case of

medium (pv0.01) and maximum (pv0.001) dose, and all ze versus

it pairs (pv0.001). Pairwise comparisons between different doses

(for each single strategy) yield a more variable pattern: pv0.001 for

minimum vs. maximum dose in case of za and sp trajectories,

pv0.001 for medium vs. maximum (minimum) dose in case of za
(sp, pv0.01) and for all it pairs including the ‘no pheromone’

condition (in contrast to pw0.05 for all it pairs with stimulation).

More details are given in Table 2. The difference between ze path

lengths obtained for varying doses, as well as between sp, za and ze
path lengths obtained for the maximum dose are particularly small

because these trajectories are close to the minimum length.

Fig. 3F reveals that distinct lengths of reactive search trajectory

are mainly due to a horizontal X-deviation from the optimal path

(introduced in Fig. 4E, see Methods, part 3). This horizontal

extent (Xd ) is larger for sp compared to za and ze trajectories and

for lower versus higher pheromone doses. Pairwise comparisons

show that the Xd differences between the sp strategies and those

including zigzagging are mostly significant (pv0.01), contrary to

the differences between za and ze. With respect to different doses,

Xd of sp and za trajectories differ significantly between minimum

and maximum dose (pv0.01) while this is not the case for ze
trajectories. Hence, for reactive strategies, the horizontal deviation

from the optimal path (Fig. 3F) coincides with dose- and strategy-

induced differences in the path lengths (Fig. 3C). For cognitive

Table 2. Statistics of pairwise comparisons.

strategy dose path length Xd # turns # detections

sp,za min *** *** **

sp,za med * ** *** *

sp,za max *** ** *

sp,ze min *** *** ***

sp,ze med *** ** ***

sp,ze max *** ** ***

za,ze min *

za,ze med

az,ze max *

it,sp min ** ***

it,sp med *** ***

it,sp max *** ***

it,za min * ***

it,za med ** *** ***

it,za max *** * *** ***

it,ze min *** *** ***

it,ze med *** *** ***

it,ze max *** * *** ***

za min,med

za min,max *** ** *** **

za med,max *** ** ** *

sp min,med **

sp min,max *** ** **

sp med,max

ze min,med

ze min,max * *

ze med,max *

it min,med ** *** ***

it min,max ** *** ***

it med,max

it min,no *** *** * ***

it med,no ** *** *** ***

it max,no ** *** *** ***

Detailed list of the results of the pairwise comparisons required for the statistical analysis. Compared are the differences in the search path length, the deviation from
the optimal path Xd , the total number of turns and detections with respect to four search strategies (spiraling only sp, arithmetic spiral & zigzagging za, exponential
spiral & zigzagging ze, infotaxis it) and three pheromone doses (minimum, medium, maximum). For the it strategy we also include a ‘no pheromone’ condition. Each
row refers to one pair: It indicates the p-value of the comparison between either two strategies for a given dose (upper part) or two doses for a given strategy (bottom
part). *** indicates pv0:001, ** indicates pv0:01, * indicates pv0:05, and no entry refers to pw0:05.
doi:10.1371/journal.pcbi.1003861.t002
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trajectories, however, the relationship is more complex: again, the

spatial spread Xd decreases with increasing pheromone dose as

shown in Fig. 3G (pv0.01 for pairs including the minimum dose,

see Table 2). The shortest infotaxis trajectories, however, occur for

the minimum instead of the maximum dose (Fig. 3D). Only the

‘no pheromone’ condition yields a pronounced horizontal

deviation (pv0.001 for all it pairs) together with particularly long

trajectories.

Trajectories: Track-angles, turns and detections. Fig. 4

shows some arbitrarily chosen trajectories obtained using reactive

search strategies, the corresponding track-angle histograms, and a

box plot on the total number of turns larger than 55u, in

dependence of the pheromone dose. Similarly, Fig. 5 shows a

selection of trajectories obtained using the cognitive infotaxis

strategy, the corresponding track-angle histograms, and the

corresponding number of turns (paths and track-angle histograms

obtained with maximum stimulation are not shown, they resemble

those obtained with medium stimulation).

Already a qualitative comparison of the reactive trajectories

shows that two-phase casting including Off zigzagging leads to

more efficient trajectories than spiral casting, only (Fig. 4A and

4B). Spiral movements contribute equally to all track-angle bins,

whereas upwind surge theoretically only increments the zero

bin. In practice, surge also contributes to neighboring bins

(+10u, Fig. 4C) because of imprecise robotic movements (Meth-

ods, part 3). The same argument applies for the peaks in other

track-angle histograms (Fig. 4D and 5C). The sp histogram shows

one single peak representing the upwind surge associated with the

On response while the za histogram exhibits two additional peaks

at approximately +60u due to Off zigzagging. The peaks

principally reflect experimentally observed behavior: Upwind

movements after pheromone detections yield one central peak

while crosswind casting after odor loss yields a symmetric two peak

distribution [13,15,40]. The remaining bars (outside the peaks) in

za and ze histograms (Fig. 4D) are smaller than those of the sp
histogram (Fig. 4C) since spiraling occurs less, predominantly at

the beginning (Fig. 4A). Regarding stimulation strengths, we see

that higher pheromone doses leads to more surging, i.e., a higher

central peak in both histograms. The opposite is true for the 60u
peaks in the za histograms: the higher the dose, the less zigzagging.

The number of turns in Fig. 4E is lowest in sp trajectories while za
and ze trajectories naturally contain significantly more turns

(mostly pv0.001 for sp versus za and ze, see Table 2).

A qualitative inspection of the samples in Fig. 5A indicates that

cognitive trajectories noticeable depend on the pheromone dose.

Yet, the track-angle distributions of it trajectories (Fig. 5C) are not

distinguishable. They simply reflect the fact that infotaxis permits

only four movement directions: a (fixed length) step forward (0u),

Figure 4. Reactive search trajectories. (A) Examples of sp search trajectories (spirals only, i.e., no Off), medium dose. For a better visualization
single paths are plotted in distinct colors (cyan and light blue on top of mostly blue trajectories). The dots on the trajectories indicate pheromone
detections. The black dashed line indicates the plume contour (see Methods). (B) Examples of search trajectories including Off zigzagging, medium
dose. Red, yellow and pink trajectories use arithmetic spirals (za), bluish trajectories originate from assuming exponential spirals (ze). Identical
conventions as in (A). (C and D) Track-angle histogram of sp and za trajectories, respectively, different colors indicate different pheromone doses. (E)
Total number of turns for different stimulations, different colors indicate different reactive strategies for the three groups of pheromone doses,
identical conventions as in Fig. 3.
doi:10.1371/journal.pcbi.1003861.g004
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Figure 5. Cognitive search trajectories obtained using infotaxis. (A) Example it trajectories for no stimulation (green, left), minimum (dark
green, middle) and medium (cyan, right) stimulation doses. The dots on the trajectories indicate pheromone detections. The black dashed line
indicates the plume contour (see Methods). (B) Total number of turns in it trajectories for different stimulations. Identical conventions as in Fig. 3. (C)
Track-angle histograms of it trajectories, different colors indicate different doses. (D) Total number of detections measured during reactive (sp, za, ze)
and cognitive (it) searching using three stimulation doses and no stimulation. Identical conventions as in Fig. 3.
doi:10.1371/journal.pcbi.1003861.g005

Figure 6. Contrasting juxtaposition of our trajectories to behavioral data. (A) Two representative reactive (za) search trajectories: the pink
path is characteristic for a maximum stimulation dose, the red path is a typical result of medium or low stimulation. The dots on the trajectories
indicate pheromone detections. (B) Two representative infotaxis trajectories: the cyan path is characteristic for using the maximum or medium dose,
the green path is a typical result of minimal stimulation. (C) Three exemplary behavioral search trajectories, provided by the Kanzaki-Takahashi
Laboratory (University of Tokyo) [36]. A silkmoth walking in a wind channel started at (0,0.6). The source was at (0,0) but was considered to be
reached when within *5 cm of the latter. (D) Track-angle histograms (bin size = 10u) of the trajectories shown in (C). (E) Tabular comparison of the
resulting trajectory lengths of strategic versus behavioral searching.
doi:10.1371/journal.pcbi.1003861.g006
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backward (+180u), left or right (+90u). These steps are

concatenated in distinct ways, depending on the pheromone dose

(Fig. 5A). Fig. 5B provides an explanation: the number of turns in

infotaxis trajectories is positively correlated with the stimulation

dose, i.e., medium and maximum stimulation yield particularly

curvaceous paths (pv0.001 for it minimum or medium vs.

maximum dose). In terms of reactive trajectories, however, the

number of turns slightly decreases with increasing dose (partially

significant, see Fig. 4E and Table 2). Instead of simply moving

straight forward to the source, the cyborg (under infotaxis control)

turns a step to the left (or right) and back while principally moving

upwind (Fig. 5A, right).

Fig. 5D indicates that number of pheromone detections is

exceptionally high for it trajectories stimulated with medium or

maximum dose (p%0.001 for all corresponding comparisons, see

Table 2). As expected, there are generally more detections for

higher pheromone doses, as well as more detections for zigzagging

than for spiral trajectories. Both effects are partially significant

(pv0.01 for minimum vs. maximum dose in za paths, and for za
vs. sp at minimum dose, see Table 2). Thus, the length of reactive

trajectories is predominantly determined by their horizontal

spread: a higher pheromone dose leads to more detections which

yields more surging and less turning which results in shorter paths.

Concerning infotaxis one needs to distinguish between the

following two cases: In the ‘no pheromone’ condition it paths

are particularly long due to a large horizontal spread (combined

with few turns). Otherwise, in case of stimulated trials, the path

length increases with the pheromone doses due to the high number

of turns which are related to the exceptionally high number of

detections (see subsection Infotaxis) — while the horizontal spread

decreases.

One might wonder about the low success rate for reactive trials

with no stimulation (Fig. 3A) as the corresponding number of

detections is nearly as high as for the minimum dose (cf. Fig. 5D).

Such false detections occur randomly, i.e., they are typically not

related to the relative positioning of cyborg and source and thus

mostly misleading, causing the cyborg to miss the source.

Nevertheless, some false detections accidentally guide the cyborg

towards the source, leading to 17% false positive trials. Hence,

Fig. 5D confirms that reactive strategies fail if there are not

enough or misleading detections whereas this is not the case for

infotaxis (cf. Fig. 3A and 3B).

Qualitative comparisons with moth trajectories
With Fig. 6 we aim at a qualitative comparison between our

strategy driven trajectories and behavioral data provided by the

Kanzaki-Takahashi Laboratory [36]. There, a silkmoth (Bombyx
mori) walking in a wind tunnel tries to locate a pheromone source

(relatively high pheromone concentration) located 60 cm away

from the starting position [8,36,37]. Large parts of the trajectories

are estimated to lay inside the odor plume. We show three

arbitrarily selected behavioral search paths and the corresponding

track-angle distribution. These are much broader than our

histograms (Fig. 4C, 4D and 5C) but there is a central (surge)

peak, as well as a second peak due to zigzagging, though here

occurring at 100u and non-symmetric (probably due to the low

number of samples). In order to permit a qualitative mapping, we

selected two typical examples of reactive paths, as well as two

representative examples of cognitive search paths, shown in

Fig. 6A and 6B, respectively. Since the behavioral data (Fig. 6C)

was obtained for a relatively strong stimulation, we here neglected

cyborg data obtained for minimum or no stimulation, as well as

particularly long or widespread paths. Behavioral trajectories

exhibit no spirals but there are some circular sections, e.g., far

from the source in trial 3, as well as some looping sequences (trial

2). The lack of spirals in behavioral compared to our reactive

trajectories (Fig. 6A) could be due to the small distance between

start and source (0.7 m) or due to cumulative navigational errors,

similar to our odometry errors. For example, it has been suggested

that the homing paths of desert ants are actually distorted spirals

[18]. The insect-controlled trajectories in Fig. 6C are clearly

dominated by zigzag patterns, but without increasing lateral

amplitudes — as we assumed (Methods, part 2) for our za and ze
strategies [2,40]. Our reactive search paths contain many straight

upwind movements representing surge sequences (Fig. 6A). Such

isolated straight upwind sections also emerge in infotaxis

trajectories, e.g., the dark green path in Fig. 6B, even though

not as a consequence of detections but rather related to

exploration movements. The behavioral trajectories, however,

become less curvaceous towards the source; straightness occurs

rather as a global instead of an isolated local feature (Fig. 6C). In

terms of turning left and right while globally moving upwind, they

resemble the cyan cognitive path in Fig. 6B) although horizontal

movements in behavioral paths decrease towards the source. The

latter feature, however, is also observable for the population of

reactive za and ze trajectories (Fig. 4B).

Discussion

After having substantiated the existence of an Off firing phase in

multiphasic MGC responses to pheromone stimulation we defined

two basic reactive strategies (Fig. 2): a simple one composed of

surge and spiral casting (sp), and two more complex strategies

including an additional Off zigzag phase following the surge

sequence (za, ze). We applied these reactive strategies, as well as

the cognitive infotaxis algorithm, in robotic experiments enabling

our cyborg to locate a pheromone source. Reactive searching with

Off zigzagging yielded the shortest trajectories, independent of the

pheromone dose (Fig. 3). Infotaxis is less efficient but ensures

slightly higher success rates, while reactive searching using only

spiral casting was least efficient. The effect of the pheromone dose

on success rates and path lengths was not as clear as expected.

With respect to reactive strategies a higher dose led to shorter

trajectories (Fig. 3C), to smaller deviations from the optimal path

(Fig. 3F), and to more upwind surge (Fig. 4C and 4D). In terms of

cognitive searching, however, the minimum dose yielded the

shortest path — in spite of rather large deviations from the optimal

path (Fig. 3D and 3G). Moreover, there was no effect of the dose

on the track-angle histograms but the absolute number of turns

increased with the dose (Fig. 5C and 5B).

Cognitive strategies are based on complex algorithms that

involve memory and learning. Given the naive assumption of a

linear relationship between costs in terms of complexity and profit,

we expected infotaxis to be superior to reactive strategies — which

is not what we found. We now take a closer look at some factors

characterizing our search task: the distance between starting

position and source, the strength of the wind and the pheromone

dose. A higher dose induces more pheromone patches and thus

augments the probability of pheromone detections (cf. Fig. 5D).

Shorter distances to the source, as well as a stronger wind should

have a similar effect. More frequent clues, in turn, should facilitate

the search task. In general, infotaxis trials enabled many detections

due to a slowly moving robot (Methods, part 2), i.e., a longer time

span to perceive pheromone patches. This is particularly true at

medium and maximum doses where the cyborg starts to detect

very early and then advances by zigzagging along the centerline

(Fig. 5A, right), generating further detections. Despite so many

clues, the resulting trajectories are astonishingly long. We therefore
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suspect that our experimental set-up with only 20 steps between

agent and source is not very appropriate for cognitive searching. It

provides a rather simple task compared to the actual capabilities of

infotaxis in computer simulations [6,30,41,42] with more than 100

steps between agent and source. The basic difference between our

real-word setup and infotaxis simulations is that we are confined to

searching relatively close to the source because of experimental

constraints whereas there are no such restrictions in computer

simulations. Indeed, in more dilute conditions (lowest dose and ‘no

pheromone’ condition), robot paths resemble typical infotactic

trajectories previously observed in simulation.

With respect to our experimental conditions, reactive searching

that includes Off zigzagging is obviously the optimal solution, in

particular when combined with exponential spiraling. It has been

already suggested that such a two-phasic casting yields shorter

trajectories than spiraling only [22], but only for the maximum

dose (cf. Introduction). Here, we demonstrate that this reduction is

larger for more demanding tasks, and we investigate the dose

dependency in terms of movement directions (Fig. 4). The

explanation is as follows. The uncertainty about the location of

the source is larger in the direction perpendicular to the wind than

in the axis of the wind since the default search direction is upwind.

Hence, zigzag movements perpendicular to the wind are more

efficient than isotropic spirals as the potential information gain is

larger. But what could be the origin of the Off in multiphasic

MGC neuron firing? We hypothesize that it is an effect of the long

tail of the pheromone response of ORNs [9,38,39]. A high

number of ORNs connect to fewer (projection) neurons in the

MGC [9,10]. ORNs respond to a brief pheromone pulse with a

rather steep increase in firing which then slowly decays back to

baseline spiking [39]. The duration of this decay exceeds the end

of the inhibitory phase of MGC neurons. Moreover, the slightly

increased reliability during the Off (FFv1) could also be

explained by this hypothesis: there is still enough parallel ORN

input to induce reliable spiking over different trials, but it is not

enough synchrony to obtain precise spike timing (CC~0).

Stimulus On and Off responses are typically reported for

distinct neurons. A famous example is the On and Off cells in the

visual system of vertebrates, e.g., in the cat’s visual cortex [44],

that enhance contrast information. The term ‘‘Off cell’’ typically

refers to a neuron that primarily responds to a reduction in

stimulation strength or to the end of a stimulation period. With

respect to insect olfaction, separated On and Off ORNs in the

cockroach antenna have been reported to encode opposite

changes in the concentration of fruit odors[45,46]. The Off

response of certain neurons in the silkmoth’s antennal lobe even

contains information about the odor’s identity [47]. Another

example, related to behavioral switches, are two distinct neuronal

populations in basal amygdala of mice that signal ‘fear on’ and

‘fear off’, respectively, initiating the appropriate behaviors [48]. In

this article, however, On and Off originate from the same neuron,

but emerge one after another. As usual, the On encodes the

stimulus onset, i.e., a pheromone detection, while the Off signals

that there has been no subsequent detection. If there are several

subsequent detections (pulsation), there are also several subsequent

(independent) On responses, each followed by an inhibitory phase

[22,39,49]. Thus, in agreement with the conventions described

above, our Off encodes the loss of a stimulus — while additionally

carrying some timing information. We propose to consider Off

zigzagging as a form of short-term memory. This concept is in

good agreement with our hypothesis on its origin, the long-lasting

ORN responses. Hence, the Off phase indicates that there has

been a recent pheromone detection which has just been lost. In

this case a behavioral switch to crosswind zigzagging is appropriate

because the agent is probably inside the plume and just needs to

locate the centerline [37,50]. If, however, the scent has been lost a

longer time ago (*>30s in our experiments), the corresponding

movements should include a downwind component in case the

agent already passed the source. We here assumed spiraling

[22,43] but looping [14,15] or zigzagging with an angle aw+D90Du
[2,13] would also be adequate. In this respect, reactive searching

composed of surge and two-phasic casting establishes a kind of

compromise strategy: predefined movements that include memory

about the timing of the last detection. According to our results,

such an approach seems to be the best choice for searching inside

or close to the pheromone plume, i.e., if the agent is located

downwind not too far from the source.

Obviously, our study cannot answer the question which search

strategy moths actually use. However, we would like to stress that a

moth using infotaxis would require to develop a cognitive map

capturing information about all previous detections and their

spatial positions with respect to the agent’s locations. Instead, we

provide some evidence on how efficient, adequate, and realistic

various strategies are compared to behavioral data. Behavioral

trajectories are shorter than all robotic paths — except for reactive

zigzagging with maximum stimulation (Fig. 6E). Thus, under the

given experimental conditions, insect behavior is generally more

efficient than infotaxis and also than reactive searching. The

problem with most biological data is that timing and positions of

odor detections are not known. In any case, close to the source

there are many detections. Then, infotaxis is particularly

inefficient since it yields too many sharp turns, the trajectories

being dissimilar to behavioral ones. The latter are not necessarily

completely straight as assumed for our surge movements but

exhibit a few turns of small curvature [36]. This is probably the

reason for the superiority of zigzagging with maximum stimulation

that yields very straight trajectories (pink in Fig. 6A). If there are

only a very few detections, the exploration term of infotaxis yields

rather straight upwind paths with some embedded loops (dark

green in Fig. 6B). In contrast, behavioral paths show mostly

zigzagging (with sharp turns and large lateral amplitudes), as well

as some spiraling which is by far not as regular and long-lasting as

assumed for our reactive strategies. Therefore, as alternative

approach for reactive searching, we propose to prolong zigzagging

and to introduce a dependency of both the lateral displacement

and the turning angle on the recent number of perceived

detections: the more recent detections the smaller the angle and

the step size. Moreover, zigzag sequences are not only potentially

related to multiphasic MGC responses, they have also been

suggested to be linked to the so-called flip-flop activity of

descending neurons in the silkworm [17,51]. The big advantages

of reactive searching are its proximity and adaptability to real-

world biological data, as well as its simplicity in terms of

computational requirements. Nevertheless, we speculate that

cognitive searching, whether used in nature or not, is more

appropriate if the agent’s starting position is far outside the odor

plume (dilute condition).

Methods

Electrophysiological recordings and their analysis
Neurons from the macroglomerular complex (MGC) were

recorded from male Agrotis ipsilon Hufnagel during pheromone

stimulation of the antennae. The pheromone stimulus is a blend of

three components (ratio 4:1:4): (Z)-7-dodecenyl acetate, (Z)-9-

tetradecenyl acetate and (Z)-11-hexadecenyl acetate. The stimu-

lation lasted 200 ms. There are 4 to 10 trials for each neuron.

Extracellular recordings were performed by inserting two glass
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electrodes filled with Tucson ringer into the MGC. After

amplification the signal was band-pass filtered (0.3 to 5 kHz)

and sampled at 16 kHz. Spike sorting (R-package SpikeOMatic)

yielded single neuron signals. For more details see [38,39].

We here analyzed the responses of 8 neurons that exhibited

clear multiphasic responses (Fig. 2A and 2B): an excitatory On

peak in the Peri-Stimulus-Time-Histogram (PSTH, the average

firing rate over time), followed by an inhibitory phase and finally a

more or less pronounced tonic excitatory Off phase [9,22,39]. For

analysis, the recordings were subdivided into the following time

intervals: baseline Bl, On, Off1, Off2. . . Off5 (Off6 for neuron 1).

The separation between Bl and On onset was based on a

segmentation algorithm described [22], Off1 starts directly after

the inhibitory phase. The Off interval length (2.3 or 2.5 s) was

chosen in a way that smooth changes during the Off are detectable

and otherwise as large as possible. For comparison, we also

investigated 6 monophasic neurons (separated in six time

intervals), i.e., neurons that showed simply an On (Fig. 2C).

The Off occurrence is usually based on an increased firing

compared to baseline activity [22,39]. For a better characteriza-

tion in terms of separating between Off and Bl, we calculated the

following measures, see Fig. 2B and 2C:

(CVloc) The coefficient of variation CV was computed by

dividing the standard deviation of the inter-spike-interval (ISI)

distribution by its mean. It is CV = 0 for regularly spiking neurons

and CV = 1 for irregular Poissonian spiking. To be relatively

independent of slow variations in the firing rate we used a local

version CVloc, i.e., considering only two adjacent ISIs at a time

[52].

(CC) Typically the correlation coefficient characterizes the

synchrony in neuronal firing (pairwise calculation): CC = 1 if two

neurons fire synchronously, CC = 0 if firing is completely

asynchronous. Since we consider several trials of one neuron

(instead of synchronous trials of different neurons), CC here

characterizes the spike time precision from trial to trial (cf. [22]).

The bin size was 0.05 ms for all pairs.

(FF ) The Fano Factor is calculated from the population activity,

i.e., the variance of the firing rate divided by its mean. FF§1

indicates unreliable neuronal firing, FF = 0 means reliable firing.

The bin size was 0.125 ms. This analysis was done in Matlab.

Robotic experiments
Tethered moths A. ipsilon were mounted on a Khepera III

robot (K-Team, Vallorbe, Switzerland), see Fig. 1B. The insect

body was immobilized inside a styrofoam block while the head was

free in order to record the electroantennogram (EAG) [22], see

Fig. 1, zoom 1. For electrical contact, the last 2–4 segments of one

antenna were cut off and inserted into a glass pipette (Fig. 1, zoom

2) clamped by a micromanipulator and filled with (in mM) 6.4

KCl, 340 glucose, 10 Hepes, 12 MgCl2, 1 CaCl2, 12 NaCl. A

silver wire inside the glass pipette served as recording electrode

while another wire, the reference electrode, was inserted into the

neck. The sensor was approximately 16 cm above the ground. An

EAG acquisition board was embedded on the robot. The EAG

signal was transmitted wireless via WIFI to a remote computer in

order to be used as input for a MGC neuron model. This neuron

simulation was performed in real-time (time steps = 0.01 ms) using

SIRENE, a C-based neural simulator (http://sirene.gforge.inria.

fr). Neuron simulation, pheromone detection and robot control

were performed in separate threads. A graphical user interface

(written in Qt/C++) visualized both EAG input and neuron

output. For more details see [22,53].

Our cyborg (i.e., the robot using the antenna of a tethered moth

as pheromone sensor) had to locate the pheromone source in an

arena of 4 m length and 2.5 m width, see Fig. 1A. The whole set-

up was placed in a Faraday cage (height 1 m) which was open to

the upwind side. We assumed that the source was found whenever

the cyborg entered a disk of 20 cm radius centered at the source.

The cyborg always started at (x,y) = (0,0) m, the pheromone

source was at (0,2) m. A fan was placed at (0,7) m providing a

relatively constant wind in -y direction with an average velocity of

0.88+0.3 m/s (measured at the source location, 23 cm above the

ground, i.e., the height of the center of rotation, with a hot wire

anemometer Testo 425). The mean wind velocity was the same in

all experiments and it was given to the robot as a fixed parameter.

The airflow was rather turbulent than laminar. Additional wind

velocity measurements one and two meters downwind from the

source (on the centerline and on its left and right side) typically

yielded a standard deviation between 20% and 30% of the

corresponding mean values. We also estimated the Reynolds

number to be Re&1, indicating turbulence. The source was a

filter paper strip (approximately 5 cm long and 1.5 cm wide) with

10 ml of pheromone solution dropped on its tip, located

approximately 16 cm above the ground. We used three different

doses: minimum = 0.1 mg/ml, medium = 0.3 mg/ml and maxi-

mum = 1 mg/ml of main pheromone component ((Z)-7-dodecenyl

acetate). The plume contour (indicated by black dashed lines in

Fig. 4A, 4B and 5A) is defined as the parabolic region where 90%

of all pheromone detections occurred. For trials that lasted longer

than 3 min, the filter paper was replaced every trial, otherwise, we

used one filter paper for two consecutive trials. The cyborg

trajectories were recorded using path integration provided by the

odometry tracking module of the Khepera III Toolbox (http://en.

wikibooks.org/wiki/Category:Khepera_III_Toolbox).

We employed three reactive search strategies and one cognitive

strategy, namely infotaxis [6]. Whenever the moth detected an

odor patch the corresponding peak in the EAG activated the

neuron simulator resulting in a multiphasic response as described

above. The condition for a detection event in the simulated signal

were three consecutive ISIsv70 ms followed by an inhibitory

phase (ISI§350 ms). This signal controlled the resulting robotic

movements. We only exploited the On response and the

inhibitory phase of the simulated neuronal signal. Onset and

duration of all movement sequences subsequent to the surge were

predefined or determined by a new detection event. The

movements of our cyborg are clearly less precise than, for

example, movements in computer simulations. This is due, for

instance, to packet loss in the WIFI connection, odometry errors

(i.e., imprecision in the path integration), and friction issues. All

movement related data reported are thus to be considered

approximate.

Reactive search strategies. After each detection, the cyborg

received a surge command leading to a straight upwind movement

(approximately 5 cm). This was either followed by spiral casting

(sp strategy) or by crosswind zigzagging (za and ze strategy) as

illustrated in Fig. 2, right. The angle of the zigzag movement was

a&+60u with respect to upwind direction, the step length was

approximately 9 cm, doubling with each crossing of the centerline.

If there were no more detections, zigzagging stopped after

approximately 19 s, followed by spiral casting. The arithmetic

spiral (za) was generated by Dvza~40000=
ffiffiffiffi
ct
p

, while the

exponential spiral (ze) results from Dvze~91000=(ct � 0:1137),
with vza,vze representing the speed differences between left and

right wheel of the cyborg, and ct a time step counter. We did not

explicitly compare arithmetic and exponential spiraling since the

exponential spiral aimed at a further shortening of the trajectories

including zigzag [22, Suppl. Information]. The cyborgs speed was

approximately 5 cm/s.
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Cognitive search strategy. The cyborg was controlled by

the infotaxis strategy [6]. In contrast to the continuous movements

sequences detailed above infotaxis yields discrete steps as time is

discretized (arbitrary units a.u.). At each time step the infotaxis

program determined the next action which is either move one step

of approximately 10 cm forward, backward, left, right or stay,

depending on the information gathered by the agent, i.e., time and

location of previous (non-)detections. The infotaxis algorithm

chose the action that locally maximizes the expected information

gain calculated as entropy reduction. Let Pt(r0) be the posterior

probability distribution for the unknown source location r0:

Pt(r0)~
exp½{

Ð t

0
R(r(t’)Dr0)dt’�P

H

i~1 R(r(t{i)Dr0)

Ð
exp½{

Ð t

0
R(r(t’)Dx)dt’�P

H

i~1 R(r(t{i)Dx)dx

, ð1Þ

where H is the number of detections along the trajectory, and

R(rDr0) denotes the mean rate of detections at r for a source at r0.

Given the odor plume model in [6] with an odor patch emission

rate R, a lifetime T of the patches, a diffusivity D, a wind Vy, and

an agent of size a the mean detection rate can be calculated as:

R(rDr0)~
aR

Dr{r0D
exp½{ Dr{r0D

l
� exp½{ (y{y0)Vy

2D
�,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DT

1z
V2
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The odor plume model entered our robotic experiments only in

terms of predicting the expected rate of information acquisition

but not for the actual detections. These were registered by the

insect’s antenna. The parameters were adjusted in a way that pure

infotaxis simulations reproduced similar detection rates as

measured for the reactive strategies: D~1, R~1, T~111 (a.u.,

chosen so that most patches survive until the end of each trial),

a~1, and Vy~0:8 (see above). To account for higher stimulation

doses, we increased R up to R~1:8. Since there was no

characteristic difference in the resulting search trajectories

compared to R~1 the data were pooled together. It has already

been shown that the infotaxis algorithm is rather insensitive with

respect to changes in these parameters [6,30,32]. The cyborg’s

speed was in between 2 cm/s and 6 cm/s (the speed changed

smoothly because abrupt de- and acceleration caused noise in the

EAG signal). The waiting time after each step was approximately

1 s and 3 s in case of a stay command.

Analysis of the search trajectories
In total, we performed 428 successful trials using reactive search

strategies and 85 successful trials using infotaxis (Table 1). Ideally,

for reactive searching, the cyborg should not be able to locate the

source when there is no pheromone. Owing to occasional false

odor detections (Fig. 5D), the cyborg might nevertheless reach the

source. Such reactive trials were considered as false-positives

(Fig. 3A). However, in case of cognitive searching, such trials were

considered to be successful as searching with infotaxis conceptually

continues until the source is reached. The trajectories resulting

from successful trials were analyzed and compared by computing

the following quantities. We first calculated the success rates and

the trajectory lengths. A trial was considered to be a failure when

the cyborg left the experimental field. Because of some technical

issues (see above), particularly occurring when using infotaxis, we

additionally rejected all it trials longer than 125 time steps.

Likewise, if the cyborg lost orientation for tvt125 or if the source

was reached in computer simulations but not in cyborg

experiments (e.g., due to imprecisions, odometry problems) the

corresponding trial did not enter the statistical analysis. The mean

success rates obtained using reactive and cognitive searching are

presented as simple bar plots in Fig. 3A and 3B, respectively. The

trajectory lengths, as well as the horizontal deviation Xd , the

number of turns, and the total number of detections are presented

as notched box plots in Fig. 3C, 3D, 3F, 3G, 4E, 5B, and 5D.

Thick horizontal bars indicate the median, box borders indicate

the 2nd and 3rd quartile, notches represent the 95% confidence

interval of the median, antennae indicate the range, and dots

represent outliers (w2.5 interquartile range). All statistical test

(ANOVA, Pairwise Wilcoxon Rank Sum Tests) were performed in

R (http://www.R-project.org/). Track-angle histograms (bin size

= 10u, percentage on the y-axis) show the distribution of track-

angles, i.e., movement directions: 0 means straight upwind,

+180u means moving downwind, +90u means a 90u crosswind

orientation and so on. In order to estimate the horizontal deviation

from the optimal path between start and source we calculated the

horizontal deviation from x = 0, see Fig. 3E, 3F and 3G:

Xd~mean(DxD)zstd(DxD) for each sample point (x,y) of a

trajectory, then averaging over all trajectories of one type. We

additionally computed the total number of turns, i.e. we counted

all track-angles larger than 55u independent of the turning

direction (Fig. 4E and 5B).
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