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The immune escape mechanisms at the base of tumor progression in endometrial

cancer mimic immune tolerance mechanisms occurring at the maternal–fetal interface.

The biological and immunological processes behind the maternal–fetal interface are

finely tuned in time and space during embryo implantation and subsequent pregnancy

stages; conversely, those behind cancer progression are often aberrant. The environment

composition at the maternal–fetal interface parallels the pro-tumor microenvironment

identified in many cancers, pointing to the possibility for the use of the maternal–fetal

interface as a model to depict immune therapeutic targets in cancer. The framework

of cancer environment signatures involved in immune adaptations, precisely timed in

cancer progression, could reveal a specific “immune clock” in endometrial cancer, which

might guide clinicians in patient risk class assessment, diagnostic workup, management,

surgical and therapeutic approach, and surveillance strategies. Here, we review studies

approaching this hypothesis, focusing on what is known so far about oncofetal

similarities in immunity with the idea to individualize personalized immunotherapy targets,

through the downregulation of the immune escape stage or the reactivation of the

pro-inflammatory processes suppressed by the tumor.

Keywords: cancer immune escape, fetal–maternal immune tolerance, immunotherapy potential targets,

immunological parallelism in cancer and pregnancy, personalized medicine

INTRODUCTION

Innate and adaptive immune response affects development and progression of
cancer through a process named immunoediting (1). Similar immune-mediated
processes occur at the maternal–fetal interface (2–8). There is a parallelism between
biological processes behind cancer progression and those behind the maternal–fetal
interface such as proliferation, invasion, and angiogenesis (2). While these processes
are finely tuned during embryo implantation stages, they are conversely often
aberrant in carcinogenesis. Interestingly, a recent study based on single-cell analysis
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highlights that environment composition at the maternal–fetal
interface parallels the pro-tumor microenvironment (TME)
identified in many cancers (9), pointing to the possibility for the
use of the maternal–fetal interface as a model to depict immune
therapeutic targets in cancer.

Inflammation and immune tolerance are key mechanisms
which ensure the proper establishment of pregnancy. The
early stage of pregnancy is characterized by an inflammatory
process responsible for proper implantation. This inflammatory
stage should switch, in a second step, to a down-modulation
of the immune response, ensuring the “non-rejection” of the
semi-allogenic fetus. In pregnancy, the decidualized stromal
cells, involved in the implantation process, are the gatekeepers
of this key immune switching mechanism at the fetal–
maternal interface, involving different immune cells, such
as regulatory macrophages, natural killer (NK) cells, and
T cells. In the last stage of pregnancy, and especially
in activating labor, an inflammation process is required
again; therefore, a new switching process is needed (10–18)
(Figure 1A, left panel).

Several groups in the last years have shown that
immunological properties acquired by both maternal–fetal
interface and TME share the same molecular patterns related
to the modulation of the inflammatory response involving
innate and adaptive immune response (19). Tumor progression
exploiting immune tuning mimics the immune maternal–fetal
interface processes. In the early stage of carcinogenesis, the
immune system recognizes cancer cells as non-self, inducing
the proper pro-inflammatory environment to lead them to
apoptosis. In a second step, the cancer cells are able to induce
the switching of the immune system to an anti-inflammatory
response, through different immune-editing mechanisms (20),
thus leading to cancer immune escape. The fetal–maternal
immune properties required to evade the immune system
are limited in time and space; when labor starts, the immune
system goes back to the initial steps. Conversely, the immune
escape process in cancer goes on uncontrolled, and it does not
revert to a pro-inflammatory feature (20) (Figure 1A, right
panel). Therefore, the switching from immune suppression
to immune activation occurring during pregnancy is lacking
in carcinogenesis.

The existence of parallel situations between pregnancy and
cancer gave rise to the term “oncofetal” and is common to
many events. To take advantage of the knowledge of the
similarities among immune regulation in pregnancy and tumor
growth could lead to identification of new potential targets for
cancer immunotherapy (2). Aberrations in placentation process,
particularly in the modulation and tuning of the immune system,
can lead to pregnancy complications; research has helped to
develop the proper models to investigate immune tolerance in
aberrant processes in pregnancy and to translate them to cancer
investigations. Here, we summarize what is known so far about
oncofetal similarities in immunity and which are the most recent
and promising developments in this research area. A focus will be
devoted to endometrial cancer (EC).

Therefore, this review is intended to focus on what is already
known about the immune parallelisms between fetal–maternal

interface immune tolerance and immune escape mechanisms
during EC progression (Figure 1B).

FOCUS ON EC

EC is a relevant gynecological malignancy which occurs in fertile
and postmenopausal women. Themean age of women affected by
this tumor is decreasing; thus, the incidence in worldwide women
under 40 years of age is on the rise (21). EC is linked to obesity
(21), and the pandemic of obesity is a global threat. Patients
with EC have a good prognosis at early-stage incidence, while the
prognosis for recurrent or metastatic EC remains poor (22). It is
therefore mandatory to understand the mechanisms fueling EC
progression and ways to inhibiting them, to improve therapeutic
chances (23). A deep knowledge of the interplay between positive
and negative immunological molecular players and its timing
in EC development and progression is still missing; several
findings so far indicate that the immune escape mechanisms
are at the base of EC progression and could be due to similar
immune tolerance modulations occurring at the maternal–fetal
interface (24). The EC is an ideal tumor model to study these
mechanisms; EC tissue remains similar to the endometrial
tissue of origin, and its related tumor progression develops in
different steps, from endometrial hyperplasia to endometrioid
carcinoma type 1 (grading: G1, G2, and G3), depending
on its histological similarity to the physiological endometrial
tissue (23). The immune escape pathways underlying the
progression from physiological endometrium to carcinoma
could represent new targets for personalized immunotherapy
by the reactivation of the pro-inflammatory response processes
suppressed by the tumor. A contribution to the immune
escape in EC is also provided by the immunosuppressive
interplay between regulatory T and regulatory B lymphocytes,
regulatory NK, and tolerant dendritic cells, also traceable at the
decidualized endometrial tissue in the fetal–maternal interface
during implantation processes (24, 25).

The maternal–fetal interface and EC represent a “new”
complex network where many immune cells of innate (dendritic
cells, macrophages, and NK cells) and adaptive immune system
cells (regulatory T and regulatory B lymphocytes) play a
synergistic role in immune tolerance and immune escape
mechanisms. The following part summarizes the similarities
observed to date in the different cell lineages involved in the
immunological processes underlying pregnancy and EC.

EC Traditional Classification and
Biomolecular Classification
EC was historically classified into two different
clinicopathological and molecular types: type I is the much
more common endometrioid adenocarcinoma (80–90%),
and type II comprises non-endometrioid subtypes such as
serous, clear-cell, and undifferentiated carcinomas, as well as
carcinosarcoma/malignant-mixed Müllerian tumor (10–20%)
(26). Molecular data are now considered as an important
part of pathologic evaluation, since type I carcinomas are
associated with PTEN, KRAS, CTNNB1, and PIK3CA genetic
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FIGURE 1 | (A) Pregnancy and cancer parallelism in switching from activation to modulation of the immune responses. (B) Common shared immune tolerance

patterns in pregnancy and EC.

mutations and MLH1 promoter hypermethylation, whereas
serous carcinomas show mostly TP53 mutations (27). Because
of the limitations of this classification due to the wide molecular
heterogeneity and, in turn, due to the discrepancy between the
detected molecular pattern and tumor behavior, The Cancer
Genome Atlas (TCGA) Research Network has gone further in
the EC molecular landscape, providing more detailed molecular
subclassifications, characterized, respectively by POLE mutation,
mismatch repair deficiency, TP53 mutation, and a copy number
low group without a specific driver mutation, each with a
distinct prognosis (28): (i) POLE (ultra-mutated) tumors, (ii)
microsatellite unstable (MSI) tumors, (iii) copy number high
tumors with mostly TP53 mutations, and (iv) a remaining group
without these alterations (29).

Histopathologic Grades (G)
GX: Grade cannot be assessed.
G1: Well-differentiated.
G2: Moderately differentiated.
G3: Poorly or undifferentiated (28).

FIGO Staging Classification
According to FIGO staging, EC is classified as below:

I Tumor confined to the corpus uteri

IA No or less than half myometrial invasion
IB Invasion equal to or more than half of the myometrium

II Tumor invades cervical stroma but does not extend beyond
the uterus

III Local and/or regional spread of the tumor

IIIA Tumor invades the serosa of the corpus uteri
and/or adnexae

IIIB Vaginal involvement and/or parametrial involvement
IIIC Metastases to pelvic and/or para-aortic

lymph nodes

IIIC1 Positive pelvic nodes
IIIC2 Positive para-aortic nodes with or without

positive pelvic lymph nodes

IV Tumor invades bladder and/or bowel mucosa and/or
distant metastases

IVA Tumor invasion of bladder and/or bowel mucosa
IVB Distant metastasis, including intra-abdominal

metastases and/or inguinal nodes (28).

ESMO–ESGO–ESTRO Classification:
Classes of Risk
The classification of risk groups defined in ESMO–ESGO–
ESTRO consensus guidelines, comprehending a subdivision in
low, intermediate, high-intermediate, and high risk, has been
reached by a revision of the scientific literature within a
consensus conference attended by a multidisciplinary panel of
40 experts. To sum up, these risk groups have been created
by considering the clinicopathological prognostic factors which
have an impact in identifying those patients who are at a
higher risk of recurrence to properly address them to potential
adjuvant therapies:

X Low-risk EC [stage I endometrioid, grades 1–2, <50%
myometrial invasion, lymphovascular space involvement
(LVSI) negative].

X Intermediate-risk EC (stage I endometrioid, grades 1–2,
≥50% myometrial invasion, LVSI negative).

X High-intermediate-risk EC (stage I endometrioid, grade 3,
<50% myometrial invasion, regardless of LVSI status; or
stage I endometrioid, grades 1–2, LVSI unequivocally positive,
regardless of depth of invasion).

X High-risk EC (stage I endometrioid, grade 3, ≥50%
myometrial invasion, regardless of LVSI status) (30).

MOLECULAR PLAYERS OF THE IMMUNE
RESPONSE

Major Histocompatibility Complex: The
Role of Human Leukocyte Antigens
Endometrial epithelial cells are potent antigen-presenting cells
(APCs), while endometrial tumor cells show poor antigen-
presenting capacity, leading to immune escape mechanisms.
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This poor antigen-presenting (AP) capacity is due to the
downregulation of major histocompatibility complex (MHC)
classes I and II in tumor cells and by the tolerogenic non-
canonical MHC class Ib, human leukocyte antigen (HLA)-G
upregulation (2, 24). Similarly, fetal trophoblast cells express
tolerogenic rather than immunogenic MHC, the same HLA-G
molecule, for its immune modulatory properties involved in the
immune privilege condition in pregnancy. By a functional point
of view, HLA-G expression on decidual stromal cells inhibits both
innate and adaptive immune response. It mediates the inhibition
of NK cell cytotoxic activity against trophoblast cells (31).
Furthermore, it prevents cytotoxic T-cell capacities, enhances
immune cell apoptosis processes, tunes cytokine secretion from
blood mononuclear cells, and downregulates decidual stromal
cell maturation and function (2). The expression of the same
cell surface molecules could ensure immune privilege for both
trophoblast at the maternal–fetal interface and cancer cells
during tumor progression.

Indoleamine-2,3-Dioxygenase
Tumor cells (including endometrial carcinoma cells) and tumor-
infiltrating myeloid cells have a high amino acid consumption
and therefore express high levels of indoleamine-2,3-dioxygenase
(IDO) 1, an enzyme involved in tryptophan catabolism (2).
Clinically, IDO is associated with myometrial invasion, lymph
node metastases, lymphovascular space involvement, and poor
survival. In cancer, APCs and IDO-expressing tumor cells seem
to locally contribute to the immunosuppression state in tumor-
draining lymph nodes (2, 24). Tryptophan breakdown by the
enzyme IDO is one of the key mechanisms involved in fetal–
maternal immune tolerance establishment. Furthermore, amino
acid deprivation by IDO decreases the effector T cell/Treg ratio,
leading to immunological tolerance. Thereby, IDO is involved
in immune suppression processes which allow embryonic
implantation or tumor growth. In particular, it is involved in
tolerance promoting both the fetal–maternal interface and TME
by counteracting lymphocyte proliferation (2).

Galectins
Different studies on pregnancy pathologies show that galectins
are expressed widely at the fetal–maternal interface (32).
Galectins are a group of soluble β-galactoside binding proteins,
consisting of 15 different types, that regulate crucial mechanisms
of EC inflammation, tumorigenesis, and progression and are
critical players of maternal immune tolerance (32). Notably,
galectin-1 (33–35) has been proposed as a novel prognostic
marker for EC. In addition, several immune cells such as decidual
NK (dNK), macrophages, Tregs, and B cells, with essential
roles in the establishment and maintenance of pregnancy,
synthesize and respond to galectins (32). Galectins that have an
important role in pregnancy are galectin-1 that regulates the
expression HLA-G (36) and galectin-9 that interacts with T-cell
immunoglobulin mucin domain-3 (Tim-3) receptor leading to
Th1- and Th17-cell apoptosis and promoting immune tolerance.
Tim-3–galectin-9 interaction facilitates the immunosuppressive
activity of peripheral NK cells (37, 38) and promote decidual
macrophage polarization to the M2 subtype (38).

Lectin-Like Oxidized Low-Density
Lipoprotein Receptor-1 (LOX-1)
Originally identified as an oxidized low-density lipoprotein
(LDL) receptor, LOX-1 has gained attention for its role in
the innate and adaptive immune response and has been
correlated with immune suppression and tumor progression.
LOX-1 has been indicated as a distinct surface marker for
polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSC or granulocyte G-MDSC) (39, 40). LOX-1+ PMN-
MDSCs inhibit T-cell function and proliferation, establishing
immunosuppressive mechanisms in different cancers (41). In
the same manner, LOX-1+ PMN-MDSCs may regulate immune
tolerance at the maternal–fetal interface since reduced levels of
PMN-MDSCs have been associated with miscarriage (42).

NOD-Like Receptor Family, Pyrin
Domain-Containing Protein 3 (NALP3)
NALP3 is an intracellular complex that regulates the innate
immune activity through modulation of the production of pro-
inflammatory cytokines. Dysregulation of NLRP3 inflammasome
is implicated in tumor pathogenesis and cancer progression
of EC and has been proposed as a new therapeutic target
for EC (43, 44). NALP3 has also been involved both
in the disruption of maternal–fetal immune-tolerance and
in pregnancy complications (45–48). Thus, targeting the
NLRP3 inflammasome can be essential to counter pregnancy
dysfunctions and EC progression.

INNATE IMMUNE RESPONSE CELL
INFILTRATION

Macrophages
Macrophages, phagocytic, and antigen-presenting innate
immunity cells, are characterized by two polarization states,
M1-like and M2-like. Tumor-associated macrophages (TAMs),
which can be considered mostly as tolerogenic in tumor, are
polarized into the two states depending on their location
in the EC microenvironment (focal necrotic center of the
tumor, which is hypoxic and triggers macrophage angiogenic
function, or at the tumor margin), leading to anti-tumorigenic
(M1) or pro-tumorigenic (M2) responses. The polarization
and differentiation of macrophages into the cancer-inhibiting
M1 and cancer-promoting M2 types represent a continuum
of the two states of macrophages in the TME and influence
disease progression and lymph node metastasis involvement.
MHCIIhigh CD206− TAMs are more M1 oriented and less able to
penetrate hypoxic areas; conversely, MHCIIlow CD206+ TAMs
are more M2 oriented, able to invade hypoxic areas, promote
angiogenesis, and even produce IL-10, a pro-tumorigenic
immunosuppressive cytokine (24). IL-10-mediated immune
tolerance is also crucial in pregnancy (49). An M2 polarization
of decidual CD14+CD163+CD206+CD209+ macrophages is
required for the maintenance of a physiological pregnancy, by
exerting an immunosuppressive function (31, 49). Accordingly,
M1/M2 unbalance is involved in pregnancy complications, such
as preeclampsia and preterm delivery (31). In conclusion, a
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similar M1/M2 balance ensuring the proper immune privilege
at the fetal–maternal interface is also used by the tumor, with a
pathological purpose, to avoid the immune response.

Myeloid-Derived Suppressor Cells
Two major MDSC subsets have been characterized based
on their different phenotypes, the granulocyte G-MDSCs
(CD14−CD15+CD66b+) and the monocyte M-MDSCs
(CD14+/−CD15low/−). Most of the population identified in EC is
the granulocytic type, which has a stronger immune suppression
role (2, 24). Less is known about the role of the peripheral and
decidual G-MDSCs and M-MDSCs in the successful pregnancy
outcome (50). Peripheral MDSCs have an immunosuppressive
role, by inhibiting NK-cell cytotoxic activity, T-cell proliferation,
and Th2 polarization. By contrast, decidual MDSCs induce
Foxp3+ Treg-cell proliferation and differentiation (50). Both
mechanisms lead to the immunosuppressive state essential
for the immune privilege acquired during pregnancy. It has
been shown that in the first trimester, functionally suppressive
peripheral and endometrial MDSCs are reduced in miscarriage
patients, when compared with successful pregnancies (50).
The lack of immunosuppression conferred by disrupted
and MDSC function in pregnancy complications could
represent a challenging mechanism to further investigate
potential immunological targets for the EC cells to acquire a
pro-inflammatory phenotype.

Natural Killer Cells
The endometrial NK (eNK) cells in non-pregnant females appear
to have a dedicated tissue-specific phenotype, different from
NK cells in peripheral blood NK (pbNK) in the same donors
(50). Uterine or decidual natural killer (dNK) cells in pregnant
females have a CD56superbright CD16− CD49a+ CD9+ phenotype
and represent an NK-cell subset that has been characterized
within the developing decidua and constitutes ∼50–70% of the
lymphoid cells in the decidua in the first trimester (51). dNK
cells are also involved in decidua and uterine spiral arteries and
trophoblast invasion, by producing angiogenic cytokines and
vascular endothelial growth factor (VEGF) and remodeling the
maternal placental vascular bed, and are proangiogenic (51–54).
dNKs have more immunomodulatory than cytotoxic behavior,
by inducing the tolerogenic environment to host the fetus and
permit the correct embryo implantation (6, 55) There are three
types of subsets of dNK cells (dNK1, dNK2, and dNK3) in
single-cell sequencing (9). The dNK1 cells express CD39 (an
enzyme which is in the pathway to convert extracellular ATP
into adenosine, which is an immunosuppressant), CYP26A1,
B4GALNT1, HLA-G receptor, LILRB1, and higher expression
levels of GZMA and GZMB mRNAs. The dNK2 cells are
ANXA1 and ITGB2 positive, and dNK3 cells CD160, KLRB1,
and CD103 express these antigens. dNK1 and dNK2 express
activating NKG2C and NKG2E as well as inhibitory NKG2A,
all of which are receptors for HLA-E molecules (9). This study
finds no expression of VEGFA or IFNg by all three dNKs in
vivo, in contrast with previous reports (52, 56, 57). However,
they recruit extravillous trophoblast cells through CSF1, XCL1,
and CCL5 (9). In repeated pregnancies, the dNK cells had

more expression of NKG2C and LILRB1 compared to first
pregnancies (57). Dysregulation in cytotoxic and regulatory NK-
cell balance is involved in recurrentmiscarriage and preeclampsia
and pathogenesis mechanisms (51).

Peripheral blood and tumor-infiltrated NK cells in cancer
patients express the CD56bright CD16− CD49a+ CD9+

phenotype (54, 58–61), and they have compromised cytotoxicity
(54, 58, 59, 61–64). We have described a proangiogenic function
in NK cells isolated from the peripheral blood and tumor-
infiltrated cells of cancer patients (54, 58–60) and the expression
of angiogenin, CXCR4/CXCL12, MMP2, MMP9, and tissue
inhibitor for MMP (TIMP)-1 and TIMP-2 in NK cells from the
peripheral blood and tumor-infiltrated cells of patients with
colon cancer (59), which are molecules also secreted by dNK
cells (55, 65–67). NK cells have been detected at low levels in
the EC microenvironment (68); this study found significantly
high levels of IL-1β and CXCL10 in the tumor, but low levels
CXCL12, CCL27, and CCL21 as compared to the surrounding
healthy tissue, and the NK cells in EC were compromised in
cytotoxicity. The presence of NK cells predicts survival when
HLA-E expression is upregulated; but it is associated with a
worse prognosis when HLA-E expression is normal (69).

TGFβ is within the decidual microenvironment, and it has
been shown to convert pbNK cells to a decidual-like phenotype
(70–72), the treated cells express CD9 and CD49a on their
surface, and they make VEGF (60, 72), and they also induce
trophoblast invasion (72). TGFβ reduces the cytotoxicity of NK
cells (73). Glycodelin-A is expressed in secretory endometrium,
the decidua, and the amniotic fluid, which is involved in
the maintenance of normal human reproductive activities.
Glycodelin-A also converts CD56bright CD16− NK cells to dNK-
like cells, which in turn regulate endothelial cell angiogenesis via
VEGF and trophoblast invasion with insulin-like growth factor-
binding protein 1 (74). The dNK cells also express glycodelin-A
(75). TGFβ is a component of most TME (76–78), glycodelin is in
various malignancies as in endometrial, ovarian, breast, lung and
colon cancer (79).

Dendritic Cells
In pregnancy, antigen-presenting CD83+ dendritic cells (DCs)
are involved in Th-2 maintenance in decidual tissues through
immunosuppressive cytokines secretion. It has been shown,
in mice, that an impaired decidualization process, leading to
embryo resorption, occurs in case of absence of uterine DCs.
DC cells are also involved in angiogenesis impairment, through
VEGFR1 and TGF-β1 pathways, which are key regulators of
blood vessels maturation and endothelial cell survival (2). On
the other side, although dendritic cells (HLA-DR+ DC), are
increased in EC, these tumor infiltrating-DCs have lost their
functions, with a reduced expression of costimulatory molecules,
among which CD86, CD80, and CD40 (24). Their presence is
adversely related to EC clinical features, such as clinical stage
and lymph nodes metastasis (24). DCs play a key function
in cancer not only for their immunoregulatory role but also
since they produce angiogenic growth factors, thus leading to
cancer progression (2). Therefore, DC impairment is involved
in immune tolerance processes both in pregnancy and in EC:
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pregnancy complications, in which a disruption in the immune
modulation is lacking, offering a model to further investigate
future immunological perspectives in EC immunotherapy.

Neutrophils
During immune responses, neutrophils are among the first cells
to reach the site of inflammation. The increased number of
tumor associated neutrophils is linked to poor outcomes in
different type of cancers, and many patients with advanced
EC show high levels of blood neutrophils (80–82). Several
evidence suggest that cancer cells may manipulate neutrophils,
sometimes early in their differentiation process, to create diverse
phenotypic and functional polarization states able to alter tumor
behavior. A polarization similar to that of macrophages has been
suggested for neutrophils with a division into antitumorigenic
neutrophils (N1) and protumorigenic neutrophils (N2) (83–86).
It has been shown that various tumors are capable to predispose
circulating neutrophils to produce neutrophil extracellular traps
(NETs) causing systemic thrombosis which is often associated
with human cancers (4, 87–89). Formation of NETs results
in extrusion of nuclear and mitochondrial DNA mixed with
granular and some cytoplasmic constituents, as neutrophil
elastase (NE), myeloperoxidase (MPO), and the citrullination of
histone H3 (CitH3), in response to infection or cancer burden
(90). A switch in neutrophil phenotype toward a low-density
neutrophil type (LDN) with more immature appearance and
less lobulated nuclei has been found during tumor progression
(91–94). An important feature of LDN is the capacity to form
NETs. Furthermore, NETs have been reported to be composed
by neutrophil derived matrix metalloproteinases (MMPs) and
facilitate tumor invasion (95). Several studies have focused
on the role of NETs in tumor development including tumor
growth, metastasis, and angiogenesis (91, 95–99). NET structures
can often be detected in proximity to human tumors and a
large number of LDN have been found into the blood and
in postoperative lavages in advanced cancers (92, 98). Taken
these facts into consideration, NETs are supposed to facilitate
tumor invasion providing a favorable microenvironment for
the survival of trapped tumor cells. The mechanism of the
release of the chromatin by stimulated neutrophils, called
NETosis, may unveil unexpected functions of neutrophils in
cancer development and can provide another explanation for
the elevated circulating cell-free DNA (cfDNA) release in blood
stream in pathologic conditions. We have recently demonstrated
the potential of cfDNA as a simple and inexpensive tool to better
adapt surgical staging and help EC stratification, and furthermore
that the evaluation of cfDNA content maybe correlated with
NETosis activation in EC (80, 100).

As previously described, neutrophils play a role in tissue
remodeling and adaptation, according to the influence of sex
hormones, in post mating inflammatory response (101), as well
as in NETs-induced sperm trapping and clearance (102, 103).

In physiological pregnancy neutrophils cells switch to a
mainly pro-inflammatory phenotype (104). It has been assessed
in vitro that placental derived micro-debris could activate
neutrophils and induce the NETs processes, as well as IL-8, a
pro-inflammatory placentally derived cytokine (105).

These findings have been also confirmed in an in vivo setting:
neutrophil NETs have been also described in physiological
pregnancy at the placental intervillous space. The placenta
physiologically release micro-debris, which could activate
neutrophils and, in turn, the NETosis process. These findings
are in line with the pro-inflammatory environment required
in normal pregnancy. NET appears to be enhanced in
preeclamptic placentae, up to involve the entire intervillous
space. Furthermore, in preeclamptic rather than in normal
pregnancies, the neutrophils which cross the utero-placental
circulation show a more highly activated phenotype compared to
the peripheral counterpart (106). Some further data suggest that
NETs could be involved also in other pregnancy complications,
such as intra-uterine growth restriction, preterm labor (107) and
recurrent pregnancy loss, in which the auto-antibodies activation
of neutrophils (108) might play a role in NET processes.

In conclusion, neutrophils through the recently investigated
NET/NETosis processes, have a key role in both physiological
adaptation of the endometrium ranging from fertility and
pregnancy modifications and pathologic conditions such as EC,
revealing a potential field of further investigation to target specific
immune changes occurring in EC etiopathogenesis.

ADAPTIVE IMMUNE RESPONSE CELL
INFILTRATION

T Cells
T cells-mediated adaptive immunity could have a positive role
in terms of anti-tumorigenic effects. The key players in this
response are APCs, among which macrophages, DC and B
cells, which are able to present tumor antigen to CD4+ helper
T cells. They in turn are polarized to Th1 response having
a role in CD8+ T cells and B cell induction and in NK
and macrophage activation. These pathways eventually activate
tumor cell elimination by a CD8+ cytotoxic T cells (CTL)-
dependent apoptosis (20). However, T-cell mediated response
could also play a negative role in cancer progression: tumor
cells and their released soluble factors are able to inhibit
DC function, leading to a tolerogenic APC phenotype and to
a suppression of CTL activation. Furthermore, the Treg/Th1
unbalanced ratio lead to an immune suppressive environment
and to tumor escape. These steps make the possible pirating
of immune checkpoint molecule pathways by cancer cells (20).
CD8+ tumor infiltrating lymphocytes (TIL) in EC show defective
granzyme B and perforin expression, leading to a lack of tumor-
induced suppression activity. Clinically, increased CD8+ TIL at
the tumor-invasive margin improved prognosis and their intra-
tumor counterpart, associated with an improved disease-free
survival in type I and II EC, have been found more frequently
in low-grade than in high grade tumors. The presence of
CD45RO+ memory T cells associates with overall survival (OS)
and reduced events of recurrence. An elevated number of tumor
Treg correlates with increased vascularity, tumor grade and
stage, extent of lymph node metastases and myometrial invasion,
worse disease-free survival. The resulting high Treg/CD8 and
Treg/CD4 ratios it has been increased also in distal tumor-
draining lymph nodes (TDLN). Conversely, proximal TDLN

Frontiers in Oncology | www.frontiersin.org 6 March 2020 | Volume 10 | Article 156

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Bruno et al. Fetal/Maternal Interface and Cancer/Trophoblast Cross-Talk Parallelisms

show increased CD4/CD8 ratio (24). In general, Treg cells
in cancer are involved in blocking antitumor immunity, by
suppressing effector T lymphocyte proliferation and enhancing
tumor blood vessel density (2). Furthermore, the presence of the
infiltrate consisting of lymphocytes and plasma cell as potentially
tertiary lymphoid structures, is related to low-grade endometrial
tumors, associated with favorable prognosis (24).

Concerning T cell function at the maternal–fetal interface,
Th1/Th2 and Th17/Treg ratios are slightly tuned thorough
all pregnancy. In the early stage a pro-inflammatory
Th1 microenvironment is required to allow a successful
implantation process. This response is then followed by a
shift to Th2 immune phenotype (31). Placental tissue induces
CD25highCD127lowFoxp3+ Tregs expansion, which expressed
suppressive markers, such as CTLA-4 and minimizes excessive
Th cell activation, by decreasing Th1-, Th2-, and Th17-associated
cytokines (109). CTLA-4 expression on Tregs enhances
production of IDO in decidual DCs and monocytes. IDO, which
is involved in fetal-maternal interface immune tolerance, limits
T cells tryptophan availability in uterine microenvironment, thus
modulating maternal T-cell activations (31).

An unbalanced Th1/Th2 and/or Th17/Treg ratios have
been associated to several pregnancy complications, including
preeclampsia and recurrent miscarriage (2).

In conclusion, Th1/Th2 and Th17/Treg ratios could be
recognize as parallel features in immune-mediated processes,
shared by both fetal-maternal immune tolerance establishment
and cancer progression. Interestingly, Th17 and Treg cells show a
wide extent of plasticity in different “inflammatory frameworks,”
so that they can switch one another (110) thus opening the
possibility for these ratios to be therapeutically actionable targets.

B Cells
B cells behavior in EC environment has not been fully elucidated
yet: a few information is available regarding their role in EC
progression. However, it has been shown that co-presence of
T and B cells in TME correlates with better survival outcomes
(24). Higher production of protective antibodies occurs in
healthy pregnancy. Beyond this well-known paradigm, there is
an enhanced CD19+CD24hiCD27+ Breg expansion, which have
regulatory function on immune responses. Briefly, B10, a subtype
of Breg, cell subtypes are potent producers of IL-10 whose
pathway is a key modulator in autoimmunity responses. IL-10
plays a key role in maintaining DCs in an immature state during
pregnancy, inhibiting T cells activation and Th1 differentiation
pattern. Lower CD19+CD24hiCD27+ Breg percentage in the
first pregnancy trimester has been detected in women affected
by miscarriages (49). This immune tolerance disruption could
decipher molecular pathways deserving to be investigating in
immune escape in EC.

IMMUNE CHECKPOINT MOLECULE
PATHWAYS

Immune checkpoint molecules are cell surface receptors involved
in the negative regulation of immune response during infections,

autoimmunity response, transplantation, tumor immune escape
as well as at the maternal–fetal interface. CTLA-4 (cytotoxic T-
lymphocyte-associated protein), TIM 3 and PD-1 are the most
studied members. The physiological role of these molecules is to
prevent immune attack against self-antigens during an immune
response by inducing T cell exhaustion (111, 112).

As already describe above, pregnancy is a model of immune
tolerance establishment, thus it represents a great immune
challenge to further investigate immune checkpoint molecule
roles in similar immune avoiding-based pathologies progression,
such as cancer.

CTLA-4
CTLA-4 is involved in EC immune escape processes, since its
expression in Treg cells has a negative immune modulator role.
By a mechanistic point of view, it binds the B7.1 and B7.2
ligands expressed on the APC surface. This binding inhibits, in
a competitive way, the binding to CD28, thus preventing the
activation of cytotoxic T lymphocytes (113).

During pregnancy, a high level of CTLA-4 expressing-Treg,
DCs and monocytes expressing CTLA-4 B7.1 and B7.2 ligands
are also present in the decidua. These data suggest that the same
competitive bindings observed in EC are in place also during
pregnancy. The increased presence of CTLA4 and its ligand at
the decidua is positively correlated with Th2 cytokines secretion
and negatively with Th1 cytokines production (114), pointing
out the CTLA4 remarkable role on local immune-suppression
effect. CTLA-4 is also involved in pregnancy complications,
such as recurrent pregnancy loss and preeclampsia (115, 116),
highlighting the hypothesis to use them as immune disruption
challenging models, to be translated in EC cancer.

PD-1
PD-1/PDL-1 pathway is involved in EC progression, EC cancer
cells have on their cell surface the immune checkpoint molecules,
therefore they can exert an antitumor immunosuppressive
function. PD-L1 is expressed on cancer cells and on immune
APCs: by binding PD-1, which is upregulated on the T cell
surface, it can reduce proliferation and function of T cells, and
induce apoptosis through Bcl-2. Among B7-H family, PDL-1
(B7-H1) is expressed in tumor endometrial cells at the same
levels compared to normal endometrial cells; however, in PD-
L1+ tumors, a trend in decreased survival has been shown.
B7-H3 and B7-H4 expression pattern negatively correlates with
TIL number (both whole T cell population and CTL one). For
instance, B7-H4 has been shown to be upregulated in EC (2, 24).

On the maternal side, PD-1 is highly expressed by decidual T
lymphocytes (its expression is induced by decidual CD8+, CD4+,
and Treg cells), decidual stromal cells (its expression is enhanced
by Th1 cytokines) and decidual macrophages. Conversely, PD-
L1 and PD-L2 are expressed by trophoblast cells first, and then
by placental tissues. PD-1 / PD-L1 interaction downregulates
CD4+ T cells Th1 cytokine secretion, by contributing in
the maintenance toward a Th2 shift immune balance at the
maternal–fetal interface. PD-1/PD-L1 pathway dysregulation is
involved in preeclampsia (increase PD-L1 expression in Th17
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cells and higher PD-1 expression in Treg cells) and recurrent
miscarriage (decreased decidual PD-L1 expression) (114).

TIM-3
In EC, NK cells have a great variability in the expressed co-
inhibitory molecule TIM-3, suggesting a correlation between its
expression and the stage of the disease. It has demonstrated
that TIM-3 expressing- NK cells are present at higher levels in
patients with lymph node (LN) invasion, compared to patients
with no LN involvement (68). Thus, an increasingly important
immunosuppressive phenotype in NK cells is related to EC
stage, involving in particular a correlation with LN metastases
detection (68).

The decidual NK cells (dNK) 60–90% express TIM-3. TIM-3+

dNK cells show a phenotype switching to a Th2 cytokine profile,
which is also expressed by decidual stromal cells (DSCs): higher
levels of Th2 cytokines are produced by DSCs expressing TIM-3.
Furthermore, TIM-3 activation seems to exert an anti-apoptotic
function on DSCs under TLR stress signals (117). According
to these findings, TIM-3 seems to regulate an exaggerated
aberrant immune inflammatory response at the maternal–fetal
interface, ensuring tolerance establishment (118). Decreased
percentage of TIM-3 expressing- dNK cells and DSCs have been
shown in recurrent pregnancy loss patients (38). Conversely an
upregulation of TIM-3 has been identified in decidual tissues of
preeclamptic women (119). These two pathological pregnancy
immune conditions, suggest a disrupted Th1 immune response
regulation, due to TIM-3 pathway.

ENDOCRINE-IMMUNOLOGICAL
FLUCTUATION IN PREGNANCY AND EC

The endometrial composition of the immune cells varies
according to the hormonal changes within the menstrual cycle.
Ranging from the follicular to the secretory phase hormonal
changes, a proliferation in NK cell and macrophage populations
occurs, with an increasing size in lymphoid aggregates made of
a B cell core, surrounded by T cells (mostly memory T effector
CD8+CD45RO+ cell) and margin consisting of macrophages.
These aggregates, as well as the dendritic cells, are recruited to
the endometrium. This hormone-immune fluctuation is bridging
to address their function in the breakdown of the endometrium.
Furthermore, antigen presentation processes are enhanced
through CD40, CD1d, MHC I/II higher expression. During the
secretory phase, an increase in Treg sub-population and in IDO
expression occurs to allow a potential embryo implantation
process, by leading to an immune tolerance microenvironment
at the fetal-maternal interface (24). The T cell cytotoxic capacity
is hormonal related, varying according to the different phases of
the menstrual cycle, to ensure a correct balance between immune
-protection and -tolerance (120). Neutrophils play mainly a key
role in endometrial tissue remodeling both during the follicular
phase, when the endometrial tissue became receptive to embryo
implantation under the influence of the estrogen stimulation
(121, 122) and during the secretory phase when neutrophils are

located in tissue degradation areas, just before the menstruation
occurs (123).

These endocrine-immunological fluctuations reveal
important consequences also in the oncological condition: for
instance, NK levels, which normally increase during menstrual
cycle, are presents in low levels in the EC with a decreasing
activity in advanced stages. Conversely, their levels increase upon
progestin treatments in the conservative management of uterine
carcinoma, leading to an oncological outcome improvement
(124). These findings are in line with the higher NK levels
during the secretory phase in the physiological condition, when
progesterone levels are increased. Taken together, these findings
support the idea that the physiological endocrine-immunological
capacities of specific cell types which contribute to the fetal
maternal tolerance environment, play also a key role in the
tumor immune escape processes.

PREGNANCY AND EC SHARED
INTERPLAY BETWEEN THE IMMUNE AND
ANGIOGENESIS STIMULI

Angiogenesis is the formation of new blood vessels from existing
ones and occurs in most of the body’s physiological processes,
including fetal development, menstruation cycle, and wound
repair (125). Proper placental angiogenesis starting at day 21 after
conception and continuing throughout human gestation is of
central importance to ensuring a healthy pregnancy (126, 127).

Within the decidual environment, the immune cells establish
immune tolerance and a state of mild systemic inflammation
important for the activation of vascular endothelium and
angiogenesis. The rich immune infiltrate is also a major source
of angiogenic factors that induce vascular growth (128, 129).
Angiogenic factors such as VEGF (130), placental growth factor
(PlGF) (126), fibroblast growth factor (FGF2) (131), MMPs, and
TIMPs (132) are specifically and highly expressed in endothelium
and placenta during pregnancy and play a synergic role to ensure
the formation of the vascular network.

Angiogenesis is also recognized as one of the hallmarks of
cancer and plays important roles in the growth and metastasis
of EC (133, 134). Highly secreted proangiogenic factors in
the fetal and maternal compartments such as VEGF, PlGF,
and bFGF have been also associated with EC progression and
metastasis (135–137). In particular, overexpression of VEGF has
been correlated with advanced stage, high tumor grade, deep
myometrial invasion, lymphovascular infiltration, lymph node
metastases, and poor clinical outcome in patients with EC (138).

Pregnancy and cancer represent two dynamic conditions
unique for the complex and finely tuned interplay between
inflammation, tolerance, and angiogenesis. As previously
discussed, the immune cell infiltration within the maternal–fetal
interface or TME that would inherently be conceived as “foes”
can transform into “friends” providing immune tolerance
and supporting angiogenesis through the release of cytokines,
growth factors, and chemokines necessary for placentation
or tumor growth. For instance, M2 decidual polarization is
associated with secretion of proangiogenic cytokines, such as
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VEGF, CXCL8, and MMPs (139). A positive correlation between
the concentration of M2-oriented TAMs, angiogenesis, and
advancement of EC has also been reported (140). Similarly,
neutrophils maintain tolerance, protect against pregnancy
complications (141, 142), and exert angiogenic features through
a direct secretion of cytokines like VEGF and CXCL8 (143). In
EC, a dualistic angiogenic and mitogenic role of TAN cytokines
has been observed (144). It has been suggested that failure in
antiangiogenic treatment based on anti-VEGF therapy can be
correlated with TAN activities (145).

Another excellent example within the uterine environment is
NK cells “tuning” into dNK, which represent a major source of
angiogenic factors supporting placentation (52). On the other
hand, EC TME reshapes NK-cell phenotype and function to
promote tumor progression (68) and acquire a decidual-like and
proangiogenic phenotype/function (53, 59, 146) in patients with
various cancers.

Within the decidual environment, the dual role of the immune
cells ensures immune tolerance and angiogenesis, highlighting
the importance of the fetal–maternal immunologic dialogue in
a normal pregnancy. Similarly, cytokines, growth factors, and
chemokines released by immune cells can contribute to an
immunosuppressive TME and stimulate both angiogenesis and
tumor progression.

Several antiangiogenic drugs, used either alone or in
combination with chemotherapy, have presented mixed results
in treating EC patients. Failure in the treatment of vascularized
gynecological cancers, including EC, which are mainly focused
on targeting cell cycle and angiogenesis, could be better managed
and improve the antitumor activity by combining immune
checkpoint blockade and antiangiogenic therapies (147, 148).
Antiangiogenic therapy could block VEGF–VEGFR2 axes and
downstream signaling pathways, resulting in normalization
of tumor blood vessels and consequently enhancing T-cell
recruitment and increasing T-cell infiltration into the TME.
Combined therapy of lenvatinib (multikinase inhibitor of
VEGFR1, VEGFR2, and VEGFR3 and other receptor tyrosine
kinases) plus pembrolizumab (an antibody targeting PD-1)
showed antitumor activity in patients with advanced recurrent
EC (149).

Understanding the immunoregulatory network during
pregnancy will help identify new targets of immunotherapy
and provide new avenues for immunologic reconstitution and
angiogenic inhibition in patients with EC. Lymphangiogenesis,
expansion of new lymphatic vessels from pre-existing ones,
has also been observed at the maternal-fetal interface (150).
However, there is a paucity of data and conflicting reports both
on the lymphatic profile during pregnancy (151) and lymph
vessel space involvement in different subsets of EC (152, 153).

FROM IMMUNE SUPPRESSION TO
IMMUNE ACTIVATION IN LABOR: A
PROMISE IN CANCER?

Labor is characterized by a backtrack from the pregnancy-
induced fetal–maternal immune tolerance framework toward

a most likely inflammatory process. Both innate and adaptive
immune systems are involved in labor onset (154). The innate
immune response, through a switching in the polarization of
monocyte and neutrophil cell phenotypes, could ensure proper
tissue remodeling processes after birth. Both adaptive and
innate immune systems are therefore involved in labor onset
(154). The adaptive immune response is characterized by an
increase in naive Treg phenotypes associated with a decreased
function of Treg suppression of cell-mediated immune responses
toward maternal non-self-fetal antigens (155). These changes are
supported by the enhanced immune responsiveness both in the
peripheral blood and in the local environment where an increase
in monocyte subset proportions as well as a decline in Treg
repression and a higher CD4 T-cell expression of MHC class
II molecules occur, respectively. In summary, in labor onset,
the peripheral naive Tregs increase, linked to the Treg function
decrease (155, 156), which leads to a shift toward the Th1-like
and Th17 responses, normally suppressed during pregnancy.
Therefore, in this last stage of pregnancy, a Th2 repression
occurs. In conclusion, maternal–fetal immune tolerance is lost
in labor both peripherally and locally, in favor of a more pro-
inflammatory framework (157, 158) supported by enhanced pro-
inflammatory cytokine secretions such as IFN-γ, TNF-α, IL-6,
and granulocyte–macrophage colony-stimulating factor (GM-
CSF) (154).

The switching from immune suppression to immune
activation occurring during labor is lacking in carcinogenesis.
However, lessons from labor would help us identify possible
targets to avoid the immune escape of cancer cells or to
switch from immune tolerance to inflammation environment
that is missing in cancer which remains in the immunological
tolerogenic state.

CLINICAL IMPLICATIONS OF DIFFERENT
IMMUNOGENICITIES ACCORDING TO EC
BIOMOLECULAR CLASSIFICATION, FIGO
STAGE, AND ESMO–ESGO–ESTRO
CLASSIFICATION, INCLUDING RISK
FACTORS

To summarize, from a clinical point of view, high levels in
CD8+ T cells have been shown to be independent positive
prognostic factors in EC-related OS, especially in type I ECs,
since a high CD8+ T cell/Treg cell ratio has been associated
with low histological grading, early stages, superficial myometrial
invasion, absence of lymphovascular space invasion (LVSI),
lack of distant metastases, and lymph node involvement.
Conversely, a higher Treg cell/CD8+ T cell ratio is associated
with EC advanced stages, poorly differentiated grading, and
LVSI. Therefore, disease-free survival (DFS) in these patients
is significantly lower. Furthermore, CD3+ and CD8+ TIL cell
counts are much higher in POLE ultra-mutated and MSI
hyper-mutated tumors, with a higher tumor antigen load and
an upregulation in PD-1 and PD-L1 expressions: a related
strengthened immune activation could be responsible for their
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better prognosis compared to microsatellite stable EC (159,
160). TAM presence is mostly associated with LVSI, myometrial
invasion, and lymph node metastases, showing a proangiogenic
phenotype. Furthermore, a higher density in tumor immune
infiltrate has been correlated with advanced FIGO stage and
higher tumor grade, with a trend in lower recurrence-free
survival (RFS) outcome (160).

PD-1 overexpression in both tumor-infiltrating and
peritumoral lymphocytes of POLE-ultra-mutated and hyper-
mutated/microsatellite unstable EC tumors suggests a potential
application of a targeted immunotherapy, acting on the
PD-1/PD-L1 pathway (161, 162).

Pembrolizumab, which is a humanized IgG4 monoclonal
antibody against PD-1 (163), obtained FDA approval and,
in patients affected by EC, showed progression after the
recommended conventional therapy without any other available
treatment approaches (164). The highest efficacy level of this
kind of immunotherapy has been shown in MSI-high patients,
in which specific microsatellite sequences are more subjected to
copying errors in case of a compromisedmismatch repair (MMR)
mechanism. Also, in POLE ultra-mutated tumors associated
with a high mutational burden, clinical beneficial effects have
been shown, after pembrolizumab administration (165). To sum
up, immunotherapy could open new personalized therapeutic
approach strategies, once biomolecular predictive markers will
be clearly identified in those EC patients who are at higher risk
of recurrence or metastatic disease.

FUTURE PERSPECTIVES

To use the knowledge in fetal–maternal immune tolerance
mechanisms and translate it into cancer immune-skipping
processes could be a strength and a potential cornerstone to
read the same problem from a different perspective, leading to
promising and unexpected results. To study what in nature has
been already built with a precise limitation in time and space,
such as in the fetal–maternal immune tolerance, could lead to the
recognition of these pathways also in processes not finely tuned,
such as cancer immune escape. If we read research as re-search,
this meaning could be to search again what already exists.

To know the exact composition of the intra-tumor immune
infiltrate might influence treatment choice and application,
as well as its outcome. Beyond the already well-known
potential EC immune target therapy (with related potential
application of IDO inhibitors, immune checkpoint inhibitors
B7-H4 monoclonal antibodies, MDSC and all transretinoic
acid, and NK-cell therapy), this parallel study setting could
offer further future applications. A multi-omics approach
(genomics, transcriptomics, proteomics, and immunomics)
coupled with imaging approaches (digital pathology), customized
onmaternal–fetal immune tolerance signature and to be analyzed
in the different tumor progression stages, could lead to the
building of a network in which immunological changes could be
identified at each time point.

As mentioned before, the immune adaptations through all
pregnancy have been shown to be precisely timed also at
a systemic level, outlining an immune clock of pregnancy.

To arrange the immunological events into a chronological
framework of pregnancy may unravel the immunological
aberrations involved in pregnancy complications.

This concept implies that the immune adaptation signature to
tumor progression could involve also systemicmodifications, and
it becomes crucial to study them in the peripheral environment.
By using mass cytometry and Luminex, the percentage and
functions of immune cell subsets, together with cytokine and
chemokine cancer environment signatures, respectively, will
be detected in peripheral blood samples, collected for each
step of EC progression. The framework of cancer environment
signatures involved in immune adaptations, precisely timed in
cancer progression, could reveal a specific “immune clock” in
tumor, and specifically in EC, which might be identified through
a liquid biopsy.

CONCLUSIONS

Based on the above considerations, the immune escape
mechanisms at the base of tumor progression could be due
to similar immune tolerance mechanisms occurring at the
maternal–fetal interface: studies approaching this hypothesis
could allow us to individualize personalized immunotherapy
targets, through the downregulation of the immune escape stage
or the reactivation of the pro-inflammatory processes suppressed
by the tumor.

To unravel the precise timing of immunological events
occurring during EC progression could have some clinical
implications. Their clinical relevance resides on the possibility
to stratify patients before and during treatments according to
the immunological patterns observed on patient endometrial
biopsies, leading to a personalized approach. It can be speculated
that if we are able to modulate the immune system at the
beginning of the immune-skipping process, this will be more
effective than to try to modulate only specific single targets, when
the immune process has already started.

To go further, using the immune tolerance system operating
during pregnancy progression as a model system could be
advantageous to identify molecular mechanisms responsible for
the cancer immune escape. The final goal could be, as mentioned
before, to orchestrate them in order to downregulate the cancer
immune escape process and/or re-activate the last step of the
pro-inflammatory response.
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