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Abstract

The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically
involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both
genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by
the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants
that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis
nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is
not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56
interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and
dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein
interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it
is involved in mRNA export from plant cell nuclei.
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Introduction

Nuclear pre-mRNA is extensively processed before it is

exported to the cytosol for translation and splicing represents a

central step in the mRNA maturation process. Assembly of the

splicing machinery is mediated by a range of splicing factors

including RNA helicases of the DEAD-box protein family, which

belong to the superfamily 2 (SF2) of helicases [1]. Structural

studies have shown that their conserved helicase core is often

surrounded by variable auxiliary domains, which may be critical

for the diverse functions of these enzymes. Typically, the helicase

core has a series of conserved sequence motifs that play roles in

ATP-binding, ATP-hydrolysis, RNA-binding, as well as dsRNA

unwinding [2,3]. DEAD-box helicases use ATP hydrolysis to

mediate a variety of RNA structural rearrangements that are

crucial during splicing and other RNA-dependent processes [2,3].

In mammals, the 56-kDa DEAD-box RNA helicase UAP56 is

an essential splicing factor that originally was identified as

U2AF65-associated protein prompting its name UAP56. U2AF65

recruits UAP56 to the mRNA, where it is required for stable

interaction between U2 snRNP and the pre-mRNA branch point

[4]. Subsequently, it was found that UAP56 and its yeast

counterpart termed SUB2 are involved in several steps of

spliceosome assembly and their ATPase and helicase activities

are required for that [5,6]. Biochemical characterisation of human

UAP56 revealed that it has RNA-stimulated ATPase activity and

ATP-dependent RNA helicase activity [7]. Studies in different

experimental systems have shown that UAP56 plays also an

important role in the nuclear export of the mRNA [8–12]. Here

UAP56 recruits the mRNA export adaptor ALY (Yra1 in yeast) to

the spliced mRNA, coupling mRNA splicing and export.

Moreover, human UAP56 can interact with another mRNA

export protein termed CIP29 [13]. An additional interactor of

UAP56 that contributes to mRNA export is the multiprotein

complex THO. THO associates with UAP56 and ALY forming

the TREX (transcription-export) complex and mutations in its

subunits cause nuclear mRNA accumulation [14]. Accordingly,

TREX contributes to the coordination of different steps in the

mRNA biogenesis including transcription, processing and export

[15,16].

In plants, RNA helicase gene families are larger and more

diversified than in other systems. The Arabidopsis genome, for

instance, encodes a total of 113 helicases and 58 of them are

putative members of the DEAD-box family of RNA helicases

[17,18], but only few of them have been experimentally analysed.

Initially, genes encoding the DEAD-box family of eIF-4A

translation initiation factors were identified that are differentially

expressed in tobacco [19,20]. Genes coding for various DEAD-

box proteins were found to be required for proper development in

Arabidopsis and Brachypodium [21–23], while others seem to play a
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role in plant responses to different types of abiotic stress and

pathogen infection [24–28]. Recently, rice UAP56 (termed AIP1/

2) was identified and it is involved in the degeneration of the

tapetum during anther development [29]. RNA helicase activity

was biochemically demonstrated for two plant DEAD-box

proteins, rice OsBIRH1 and Arabidopsis AtDRH1 [28,30], which

are only distantly related (,20% amino acid sequence identity) to

UAP56. Here, we have analysed Arabidopsis UAP56, which is

encoded by two genes. The Arabidopsis protein has RNA-stimulated

ATPase activity and ATP-dependent RNA unwinding activity.

Moreover, it binds both RNA and dsDNA, and it interacts with

the mRNA export factors ALY2 and MOS11.

Materials and Methods

Plant material
Arabidopsis thaliana (Col-0) and the T-DNA insertion lines from

the SALK collection [31] kindly provided by Nottingham

Arabidopsis Stock Centre (NASC, http://arabidopsis.info/) were

used. After sowing seeds were stratified (48 h at 4uC) and plants

were grown in soil in a phytochamber at 22uC and 16 h

photoperiods (LD) at ,7,000 lux [32]. Transgenic plants were

generated using Agrobacterium-mediated transformation as previ-

ously described [32,33].

PCR-based genotyping of plant lines and reverse-
transcribed PCR (rtPCR)

The presence of T-DNA insertions was analysed by PCR-based

genotyping [34]. Genomic DNA was isolated from leaves and was

used for PCR analysis with Taq DNA polymerase (Peqlab) and

primers specific for DNA insertions and the target genes (for

primer sequences, see Table S1). For rtPCR, total RNA was

extracted from ,100 mg of frozen plant tissue using the TRIzol

method (Invitrogen), before the RNA samples were treated with

DNAse (MBI Fermentas). Reverse transcription was performed

using 1 mg of RNA, random primers and Revert Aid H minus M-

MuLV reverse transcriptase (MBI Fermentas). The obtained

cDNA was used for PCR analyses using Taq DNA polymerase

(Peqlab).

Plasmid constructions
The coding sequence (CDS) of UAP56 was amplified by PCR

with Pfu DNA polymerase using an Arabidopsis thaliana cDNA

library as template and the primers (providing also the required

restriction enzyme cleavage sites) listed in Table S1. The PCR

fragments were inserted into suitable plasmids as detailed below.

For transient expression of a GFP-UAP56 fusion in protoplasts,

the coding sequence was inserted into plasmid p39GFP [35]

(providing the expressed protein with a C-terminal green

fluorescent protein (GFP) fusion). For expression of UAP56 in E.

coli, the CDS was inserted into plasmid pQE9 (Qiagen) providing

an N-terminal 66His-tag and into plasmid pGEX-5X-1 (Amer-

sham) providing an N-terminal glutathione S transferase (GST)

fusion. For overexpression in plants, the CDS was inserted under

control of the CaMV 35 S promoter into pGreenII0229myc

providing an N-terminal myc-tag. The CDS of ALY2 was inserted

into pBluescript (Stratagene) and the CDS of MOS11 into pQE9.

All plasmid constructions were checked by DNA sequencing, and

details of the plasmids generated in this work are summarized in

Table S1.

Production of proteins
E. coli M15 cells were transformed with the pQE9-UAP56 and

pQE9-MOS11 expression vectors and the recombinant 6xHis-

tagged UAP56 and MOS11 were purified by metal-chelate

column chromatography using Ni-NTA agarose (Qiagen) from

E. coli lysates essentially as described previously [36] with minor

modifications. After protein binding, the column was thoroughly

washed using a buffer containing (50 mM Tris-HCl, pH 7.5, 1 M

NaCl, 10% (v/v) glycerol, 10 mM 2-mercaptoethanol, 0.5 mM

PMSF, 100 mg/ml benzamidine, 10 mM imidazole) and eluted

with the same buffer containing 350 mM imidazole. The

production of 6xHis-tagged HMGB2 was previously described

[37]. GST and GST-UAP56 were expressed in E. coli using the

pGEX-5X-1and pGEX-5X-1-UAP56 vectors, respectively, and

purified by glutathione-sepharose affinity chromatography as

previously described [38]. Using PD10 columns (Pharmacia) the

buffer containing the purified proteins was changed to (10 mM

phosphate buffer, pH 7.0, 1 mM EDTA, 1 mM DTT, 0.5 mM

PMSF) and the recombinant proteins were analysed by SDS-

PAGE and MALDI-TOF mass spectrometry. Since we were

unable to produce 6xHis-tagged ALY2 in E. coli, it was synthesized

as a 35S-methione-labelled protein using plasmid pBluescript-

ALY2 and a coupled in vitro transcription/translation system (TNT

coupled wheat germ extract system, Promega).

Immunoblotting and immunofluorescence analyses
An antiserum against purified recombinant Arabidopsis 6xHis-

UAP56 was produced by commercial immunisation and tested as

previously described [32]. Protein extracts from leaves of three

week-old plants were prepared as previously described [39] and

analysed by immunoblot analyses [40] using the UAP56 antise-

rum. For immunofluorescence analyses sample preparation and

antibody binding was performed as previously described [33,40].

In addition to the UAP56 antiserum (diluted 1:300), commercial

monoclonal antibodies specific for the C-terminal domain of RNA

polymerase II (Abcam, ab817, diluted 1:100) and for fibrillarin

(Abcam, ab4566, diluted 1:300) were used as well as DAPI

counterstaining. As secondary antibodies CY3-conjugated anti-

rabbit IgG and fluorescein isothiocyanate (FITC)-conjugated anti-

mouse IgG (Dianova) were used. Immunofluorescence images

were recorded with an Axio Scope fluorescence microscope (Zeiss)

equipped with an AxioCam MRm camera (Zeiss).

Whole mount in situ mRNA localisation
To detect the localisation of total mRNA, we used an Alexa-488

end-labeled 48-mer oligo d(T) probe (MWG) as previously

described [41].

Transient protoplast transformation assays with GFP
fusion constructs

Protoplasts of dark-grown tobacco BY-2 cells were transiently

transformed using PEG-mediated transformation and analysed for

the localisation of GFP fusion proteins by confocal laser scanning

microscopy (CLSM) as previously described [32,40] using a LSM

510 microscope (Zeiss).

Microscale thermophoresis (MST) and electrophoretic
mobility shift assays (EMSAs)

Protein interactions with DNA and RNA oligonucleotides were

analysed by MST essentially as previously described [42,43]. In

brief, binding reactions containing 50 nM fluorescently labelled

RNA or DNA (see Table S2) in EMSA buffer [44] and various

concentrations of 6xHis-UAP56 were analysed in standard

capillaries using the Monolith NT.015T MST-instrument (Nano-

Temper) at 28uC. The recorded fluorescence is normalised and

processed using the software OriginPro 8.5 (OriginLab) and fitted

Arabidopsis RNA Helicase UAP56
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using the Hill equation as previously described [43]. Under these

experimental conditions, Kd corresponds to the protein concen-

tration resulting in binding of 50% of the oligonucleotides. In

addition, protein interactions with radio-labelled RNA and DNA

oligonucleotides were examined by EMSAs as previously de-

scribed [44]. In brief, different protein concentrations were

incubated with the 32P-labelled RNA or DNA probe (see Table

S2) and protein binding was analysed by polyacrylamide gel

electrophoresis followed by phosphorimaging.

Chromatin immunoprecipitation (ChIP)
ChIP experiments were performed essentially as previously

described [34] using Col-0 plants (14 days after stratification,

DAS). In addition to the UAP56 antibody and the corresponding

preimmune serum, an antibody against the C-terminal region of

H3 (ab1791, Abcam) and against SPT16 [45] were used. DNA

was analysed by PCR with locus-specific primers (Table S1), and

the amount of template was adjusted for amplification efficiency

relative to the DNA purified from chromatin prior to immuno-

precipitation (input). Thus, due to the different DNA concentra-

tions of the different samples, for SPT16, UAP56 and mock (no

antibody added) twice the amount of template was used relative to

the H3 sample, and four-times the amount relative to the input

DNA. ChIP experiments were repeated three-times.

ATPase assay
ATPase assays were essentially performed as previously

described [7]. The reaction was started by addition of 6xHis-

UAP56 (or HMGB2 control protein) to the reaction mixture

containing (50 mM Tris-HCl, pH 8.5, 50 mM KCl, 2 mM

MgCl2, 0.1 mg/ml BSA, 1 mM DTT, 10 mM unlabelled ATP,

2 mCi [a-32P]ATP) and different amounts of synthetic RNA

oligonucleotides (MWG). The reaction in a final volume of 20 ml

was allowed to proceed at 25uC for 30 min and was stopped by

adding EDTA to a final concentration of 20 mM. ATP was

separated from ADP by thin layer chromatography (TLC).

Therefore 5 ml of the reaction mix was spotted onto polyethyle-

neimin cellulose TLC plates (Merck), which was developed in a

buffer containing (2 M acetic acid, 0.5 M LiCl2). The plate was

dried and analysed by phosphorimaging.

RNA helicase assay
RNA helicase/unwinding assays were essentially performed as

previously described [7]. One strand of the RNA substrate was

labelled at the 59-end with [x-32P]ATP (Hartmann Analytic) using

T4 polynucleotide kinase (Fermentas). The reaction mix was

boiled for 5 min to inactivate the kinase. The complementary

unlabeled strand was added in a 1:1.2 molar ratio (labelled to

unlabelled). For annealing, the mixture was heated to 100uC for

5 min and then slowly cooled to 25uC. The labelled dsRNA was

then purified by using G25 columns (GE Healthcare). The helicase

assay was started by addition of 6xHis-UAP56 to the reaction

mixture containing (50 mM Tris-HCl, pH 8.5, 50 mM KCl,

2 mM MgCl2, 0.1 mg/ml BSA, 1 mM DTT, 5 U RiboLock) and

3 mM ATP (unless stated otherwise) and 2.5 nM dsRNA. After

incubation at 28 uC for 1 h, the reaction was stopped by adding

5 ml stop solution (0.5% SDS, 50% glycerol, 100 mM EDTA,

0.1% bromphenol blue). After Proteinase K treatment, the

unwound ssRNA was separated from the dsRNA substrate by

electrophoresis on 16% polyacrylamide gels in 1xTBE. The dried

gels were analysed by phosphorimaging.

Protein-protein interaction assays
Yeast two-hybrid assays were essentially performed according to

the manufacturer (Clontech). In brief, yeast cells of the strain

AH109 were cotransformed with pGBKT7 and pGADT7

plasmids and grown at 30 uC on SD/-Leu/-Trp. For interaction

assays, cells were grown on SD/-Leu/-Trp/-His medium for 2 d.

For b-galactosidase assays cells were grown on the same medium

and enzyme activity was detected after incubating the filters of

colony lifts in a solution containing X-gal. As positive and negative

controls served the interactions between p53 and the SV40 large

T-antigen, and between lamin and the SV40 large T-antigen,

respectively, provided by the manufacturer. Pull-down assays with

GST and GST-UAP56 were performed as previously described

[38] adapting published buffer conditions [5,13] for the interaction

with MOS11, HMGB2 and ALY2.

Results

Two Arabidopsis genes code for UAP56
To identify a possible ortholog of human UAP56 and yeast

SUB2, we searched the Arabidopsis database (http://www.

arabidopsis.org/) with the BLASTP program using these two

amino acid sequences as query. The search resulted in two

prominent hits. Despite some variation of the adjacent loci

(At5g11170, At5g11200) in the nucleotide sequences of the

transcribed regions, the two closely related genes code for an

identical UAP56 amino acid sequence of 427 residues (48,3 kDa).

Aligning the Arabidopsis UAP56 sequence with the amino acid

sequences of UAP56 proteins of other organisms revealed that the

characteristic helicase motifs [2,3,46] are well conserved including

motif I (which is involved in ATP-binding), motif II (which is

involved in ATP hydrolysis) and motifs IV and V (which are

involved in RNA binding) (Figure S1). Arabidopsis UAP56 shares

89%, 70% and 61% amino acid sequence identity with rice

UAP56, human UAP56 and yeast SUB2, respectively. Several

plant genomes, for instance, of the monocot plant Oryza sativa and

the dicot plant Populus trichocarpa have two genes encoding almost

identical UAP56 proteins with ,99% amino acid sequence

identity. The relationship of (putative) UAP56 sequences of

various plants and of other organisms is illustrated by a sequence

similarity tree (Figure S2).

We have examined several Arabidopsis T-DNA insertion mutant

lines, to study the expression of the two UAP56 genes and possible

effects of the inactivation of these genes. One T-DNA insertion

line for each gene was analysed in more detail (Figure S3A). In

both cases, the T-DNA is inserted within intron sequences. As

determined by PCR-based genotyping, we were able to isolate

plants homozygous for the T-DNA insertion in At5g11170,

termed uap56a-3, and in At5g11200, termed uap56b-1(Figure

S3B). Plants of both mutant lines homozygous for the T-DNA

insertion have wild type appearance (Figure S4). We examined the

transcript levels of UAP56a and UAP56b in the aerial parts of three

week-old plants by rtPCR, but due to the remarkable sequence

similarity of the transcribed regions of the two genes, it is difficult

to discriminate them reliably by PCR. For the amplification we

used primers that match both genes to test the expression level in

uap56a-3 and uap56b-1relative to the wild type Col-0. In plants of

the three genotypes similar transcript levels of UAP56 were

detected (Figure 1A). Moreover, only a single DNA fragment was

amplified, although according to the Arabidopsis database, within

the amplified region there are alternative splice sites predicted.

Hence, at least in the tested tissue, there is no indication of

alternative splicing within this region of the UAP56 genes. To

distinguish the transcripts originating from the two UAP56 genes,

Arabidopsis RNA Helicase UAP56
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the DNA fragments amplified from the three genotypes (Figure 1A)

were sequenced. Since there are few sequence differences between

UAP56a and UAP56b, the nucleotide sequence obtained from Col-

0 represents a mixture of the two sequences (Figure 1B), which is

evident from the three sequence positions indicated by arrows. In

contrast, the sequences obtained from uap56a-3 and uap56b-1

represent only a single sequence each, corresponding to the non-

mutated gene in these lines. This experiment demonstrates that in

Col-0 indeed both UAP56 genes are transcribed, whereas in the

mutant lines only the transcript of a single gene is detectable.

Nevertheless, the total transcript level is similar in the three

genotypes (Figure 1A). This indicates that in the mutant lines the

intact UAP56 gene can compensate for the lacking transcript of the

mutated gene, resulting in wild type transcript levels.

Production of recombinant UAP56 and detection of
UAP56 in Arabidopsis

To biochemically analyse Arabidopsis UAP56, we expressed a

6xHis-tagged protein in E. coli. The protein was soluble and could

be purified efficiently by metal-chelate affinity chromatography.

Analysis of the purified recombinant UAP56 by SDS-PAGE

revealed that it is essentially pure, except for a weak contaminating

band, migrating below the expected ,50-kDa band of UAP56

(Figure 1C). Examination of the two protein bands by MALDI-

TOF mass spectrometry identified the ,50-kDa band as UAP56,

while the band below most likely is a degradation product of

UAP56. The recombinant protein was used for immunisation to

raise antibodies against UAP56. The obtained antiserum reacted

with recombinant UAP56 (and the band corresponding to the

degradation product), but not with the control protein HMGB2

(Figure 1C). Protein extracts of leaves of the T-DNA insertion

mutants uap56a-3and uap56b-1as well as of Col-0 control plants

were analysed by immunoblot analysis using the UAP56-

antiserum. The antibody detected a single protein band of

,50 kDa (Figure 1D). Moreover, in line with the rtPCR results

(Figure 1A), comparable amounts of the UAP56 protein were

detected in the three genotypes. Since elevated levels of UAP56/

SUB2 cause severe defects in S. cerevisiae and C. elegans [11,12], we

generated plants overexpressing myc-tagged UAP56 (Figure S5).

However, plants overproducing UAP56 displayed wild type

appearance throughout development and according to whole

mount in situ mRNA localisation experiments their bulk mRNA

distribution appears to be not affected (Figure S5).

We expressed an UAP56-GFP fusion protein in BY2 cell

protoplasts, to examine the subcellular distribution of UAP56 by

confocal laser scanning microscopy (CLSM). The chromosomal

HMGB protein encoded by the At2g34450 locus that localises to

the cell nucleus [44] served as a reference (Figure 2A). The

UAP56-GFP fusion protein accumulated in the nucleus

(Figure 2B), indicating that as in other organisms [8,11,47]

Arabidopsis UAP56 is a nuclear protein. The nuclear localisation of

native UAP56 was analysed by immunofluorescence microscopy

of wild type Arabidopsis root tip cells. The UAP56 antiserum

specifically reacted with nuclei (Figure 2C), confirming the results

obtained with the GFP fusion proteins. The comparison with the

nucleolar marker fibrillarin [27] in the same nucleus (Figure 2D)

revealed that UAP56 localises predominantly to the nucleoplasm,

but weak signals are also seen in the nucleolus. Comparison with

the DNA dye, DAPI (Figure 2E), and the merge of the three

individual stains (Figure 2F) indicates that UAP56 is more

prominent in the less condensed euchromatin than in the

condensed chromocenters. In line with that the nuclear distribu-

tion of RNA polymerase II (RNAPII) and UAP56 are similar

(Figure 2G,H).

Figure 1. Expression of the UAP56 genes. A rtPCR analysis of RNA
isolated from Col-0, uap56a-3 and uap56b-1 plants using primers P7 and
P8 (cf. Figure S3), annealing at regions that are common to both UAP56
genes. As a reference the transcript of the house keeping gene UBQ5
was amplified and as negative control a reaction without addition of
reverse transcriptase is shown. PCR amplification was allowed to
proceed for a different number of cycles (27x, 30x, 33x). B The UAP56
sequences of the cDNA fragments amplified from the three genotypes
(cf. Part A of this figure) were determined by DNA sequencing. Within
the shown region, the sequences of UAP56a and UAP56b are identical
except for the three positions indicated by arrows. C Production of
recombinant UAP56 and an UAP56 antiserum. Analysis of purified
recombinant UAP56 (and the reference protein HMGB2) by SDS-PAGE in
a 12% polyacrylamide gel, which was stained with Coomassie (left
panel). Immunoblot analysis of recombinant UAP56 (and HMGB2 as a
reference) using the UAP56-antiserum (right panel). Full-length
recombinant UAP56 is indicated by an arrow. D Comparable amounts
of protein extracts of Col-0 and the two T-DNA insertion mutant lines
were analysed by SDS-PAGE and Coomassie staining (left panel) and by
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UAP56 can interact with both RNA and dsDNA, and
associates with transcribed loci

To examine the interaction of recombinant Arabidopsis UAP56

with nucleic acids in solution, we used microscale thermophoresis

(MST, [43]). The binding affinity was measured for fluorescently

labelled 29-nt long oligonucleotides of ssRNA and dsRNA as well

as for ssDNA and dsDNA. For comparison the Drosophila ssRNA-

binding protein, Decondensation Factor 31 (Df31, [42]), was

analysed in parallel (Figure 3A). UAP56 bound to both ssRNA and

dsRNA with KD values of 26.58 mM+/23.11 and 51.45 mM +/

25.30, respectively. In view of the fact that SF2 helicases usually

are strictly specific for RNA or DNA [1], it was surprising that

UAP56 in addition to the RNA substrates clearly interacted with

dsDNA (KD = 6.5 mM+/20.75), while ssDNA was not bound. As

shown before by MST [42], Df31 interacted with ssRNA (Kd

35.29 mM+/28.05) and failed to recognize dsDNA. The interac-

tion of UAP56 (and Df31) with nucleic acids was additionally

studied by electrophoretic mobility shift assays (EMSAs) using 32P-

labelled 25-nt long oligonucleotides, which differed in sequence

from the 29-nt oligonucleotides used for the MST analyses. As

seen with MST, UAP56 bound to the ssRNA, dsRNA and dsDNA

probes, and not to the ssDNA, while Df31 interacted exclusively

with ssRNA (Figure 3B). With the dsDNA UAP56 formed two

distinct complexes, while only a single complex was detected when

the protein bound to RNA. Both MST and EMSA experiments

show that UAP56 interacts with RNA and dsDNA, but there are

quantitative differences between the results obtained with the two

methods. Thus, higher protein concentrations are required to

detect binding in the MST experiments, and the relative binding

preferences differ to some extent. According to the MST

measurements, UAP56 binds with higher affinity to dsDNA than

to RNA, whereas the EMSAs indicate a more efficient binding to

RNA. However, it should be stressed that EMSA and MST

experiments were performed with oligonucleotides of different

length and sequence. Moreover, in EMSAs the binding reaction

occurs in solution, but it is well known that during gel

electrophoresis complex stability/lifetime is influenced by various

parameters most importantly the caging effect reducing the

dissociation of protein-nucleic acid complexes [48]. By contrast

MST measures interactions completely in solution. In conclusion,

both the MST and the EMSA experiments showed that Arabidopsis

UAP56 in addition to RNA can bind to dsDNA although DEAD-

box helicases usually are considered RNA specific [2,3].

We used chromatin immunoprecipitation (ChIP) to examine the

association of UAP56 with RNAPII-transcribed loci in Arabidopsis

plants. The UAP56 antiserum was compared with the preimmune

serum in ChIP experiments analysing the association with the

housekeeping genes UBQ5 and ACT8. Gene-specific DNA

fragments could be amplified by PCR using the input chromatin

and the UAP56 precipitate as template, but not from the

preimmune control sample (Figure 4A). Using the UAP56

antiserum and for comparison antibodies directed against histone

H3 and the RNAPII transcript elongation factor SPT16 (a subunit

of the FACT histone chaperone) selected genes were analysed by

PCR following ChIP with the three antibodies. Each two genes

(one intronless and one containing introns) encoding peroxidases,

invertases and heat shock protein 70 (HSP70) were chosen for this

analysis (Figure 4B). According to the Arabidopsis database (http://

www.arabidopsis.org/) the selected genes are expressed in two

week-old plants used for the ChIP experiment, which was

confirmed by rtPCR (not shown). In addition to these transcribed

genes, the association with the non-transcribed retrotransposons

Ta2 and Ta3 [49] was examined. As expected, H3 was detected at

all tested genomic regions. SPT16 was previously found to

associate with transcribed loci, but not with non-transcribed

regions [34,45], and in line with that SPT16 was detected at the

transcribed genes, but not at Ta2 and Ta3. Similar to SPT16,

UAP56 associated with the transcribed regions independent from

the presence/absence of introns, but not with the transcriptionally

silent genomic loci (Figure 4B). The ChIP analyses indicate that in

line with the immunfluorescence results (Figure 2), Arabidopsis

UAP56 associates with sites of RNAPII transcription independent

from mRNA splicing.

immunoblot analysis using the UAP56-antiserum (right panel). Arabi-
dopsis UAP56 detected by the antibody is indicated by an arrow.
doi:10.1371/journal.pone.0060644.g001

Figure 2. Arabidopsis UAP56 localises to the nucleus in
protoplasts and root cells. Tobacco BY2 cell protoplasts were
transformed with constructs driving the expression of the indicated GFP
fusion proteins and GFP fluorescence was visualised by CLSM (A,B; size
bar: 10 mm). GFP fluorescence of a nuclear HMGB protein and overlay
with the corresponding bright field image (A). GFP fluorescence of a
UAP56-GFP fusion (B). Analysis of Arabidopsis Col-0 root tip cells by
immunofluorescence microscopy using different antibodies and DAPI
staining (E–H, size bar: 5 mm). Immunostaining of fibrillarin and UAP56,
as well as visualisation of the DNA by DAPI staining of the same nucleus
(C–E). A merge of the three images is shown in (F) and examples of
brightly DAPI-stained heterochromatic chromocenters are indicated by
arrows. Immunostaining of RNAPII and UAP56 of the same nucleus
(G,H).
doi:10.1371/journal.pone.0060644.g002
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ATPase and helicase activity of UAP56
UAP56 was examined in vitro for its catalytic activities. To study

its ATP-hydrolysis activity, [a-32P]ATP (mixed with unlabelled

ATP) was incubated with UAP56 or the chromosomal high

mobility group HMGB2 protein, which served as a negative

control. Afterwards ATP and ADP were separated by TLC and

detected by phosphorimaging. In the absence of protein or in the

presence of HMGB2 ATP hydrolysis was hardly detectable,

whereas addition of UAP56 resulted in ATP hydrolysis, as evident

from the clearly visible ADP spot (Figure 5A). When UAP56 and

single-stranded RNA (ssRNA) was added to the reaction, ATP

hydrolysis was stimulated, resulting in ,60% increased amount of

the ADP product and reduced amount of the ATP substrate. To

further explore the ATPase activity of UAP56, ATP hydrolysis was

analysed in the presence of increasing amounts of ssRNA

(Figure 5B) and increasing amounts of UAP56 (Figure 5C). These

experiments demonstrate that increasing ATP hydrolysis is

observed in a dose-dependent manner with increasing input of

UAP56 or ssRNA. We then examined ATP hydrolysis catalysed

by UAP56 in the presence of different types of RNA (Table S2).

13-nt RNA was compared with 25-nt RNA and ssRNA was

compared with dsRNA. Quantification of the ATP conversion in

the presence of UAP56 and the different RNAs (Figure 5D)

revealed that ssRNA is more efficient than dsRNA and the 25-nt

RNA is more efficient than the 13-nt RNA in promoting ATP

hydrolysis. In view of the interaction of UAP56 with dsDNA

(Figure 3), it was tested whether dsDNA can stimulate the ATPase

activity. Addition of 25-bp dsDNA (the same as used in Figure 3B)

to the reaction resulted in stimulation of ATP hydrolysis that is

similar to that seen with the 13-nt ssRNA (Figure 5E). Taken

together these experiments show that Arabidopsis UAP56 has

ATPase activity that is stimulated by RNA and dsDNA.

To examine the helicase activity of Arabidopsis UAP56, we tested

whether the protein can unwind dsRNA. Boiling of the blunt-end

13-nt RNA duplex served as a positive control for the strand

separation. The 32P-labelled dsRNA and ssRNA were separated

by polyacrylamide gel electrophoresis and detected by phosphor-

imaging. We analysed the unwinding activity in the presence or

Figure 3. Arabidopsis UAP56 binds ssRNA, dsRNA and dsDNA, but not ssDNA. A Interaction with nucleic acids measured by MST.
Fuorescently labelled 29-nt oligonucleotides of dsRNA, ssRNA, dsDNA and ssDNA were incubated with increasing concentrations (0.01–80 mM) of
UAP56 (or as a reference with 0.2–411 mM Df31). Protein-nucleic acid interactions were quantified by MST and binding data are plotted using the Hill
equation. Data represent the mean +/2 SD of at least three technical replicates. B Interaction with nucleic acids analysed by EMSA. 32P-labelled 25-nt
oligonucleotides were incubated without protein addition or with increasing concentrations (0.25–5 mM, except in case of ssDNA 10–30 mM) of
UAP56 (or as a reference with 35 mM Df31). Protein binding was detected after electrophoresis by phosphorimaging and appearing protein-nucleic
acid complexes are indicated by arrow heads.
doi:10.1371/journal.pone.0060644.g003
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absence of different nucleoside triphosphates. In the presence of

ATP UAP56 clearly displayed unwinding activity, which is seen by

the reduced amount of the dsRNA substrate and an increasing

amount of the ssRNA product. In the absence of NTPs or in the

presence of CTP, GTP or UTP no unwinding of the dsRNA could

be detected (Figure 6A). This demonstrated that the unwinding

activity of UAP56 is ATP-dependent. In the presence of ATP with

increasing UAP56 protein input a protein concentration-depen-

dent unwinding of the dsRNA is observed (Figure 6B). A time-

course of the RNA unwinding assay revealed that the reaction

progressed during 60 minutes (Figure 6C). The RNA helicase

activity of UAP56 was further examined using various dsRNA

substrates with different length and blunt-ends or single-strand

overhangs (Table S2), since unwinding efficiency may depend on

the length/stability of the substrate as well as the nature of its ends

[2,3]. Comparison of the unwinding of blunt-ended 13-nt and 16-

nt RNAs (R13ds and R16ds, respectively) revealed that the shorter

RNA substrate is unwound approximately threefold more

efficiently than the longer version (Figure 6D). We also designed

three RNA substrates with 13-nt base pairs that differed in their

ends. The RNAs with 39and 59overhangs (R13/R16 and R13C/

R16C, respectively) were unwound by UAP56 with comparable

efficiency (,60%), while the unwinding of the blunt-ended

substrate (R13ds) was more efficient (,90%, Figure 6C). Since

dsDNA stimulated the ATPase activity of UAP56 (Figure 5E), we

tested whether the protein displays also DNA helicase activity.

When increasing amounts of UAP56 were incubated with a 32P-

labelled 13-bp dsDNA probe (corresponding in sequence to R13ds

used above) in the presence of ATP, no unwinding was observed

(Figure 6E). Our experiments demonstrate that Arabidopsis UAP56

has ATP-dependent dsRNA unwinding activity, but apparently it

is unable to unwind dsDNA.

UAP56 interacts directly with mRNA export factors
Using the yeast two-hybrid method, we examined whether

UAP56 can interact with proteins involved in mRNA export. In

Arabidopsis, four nuclear ALY proteins were identified [50] and the

amino acid sequence of ALY2 is closely related to that of the

human mRNA export adaptor ALY. Moreover, the nuclear

protein MOS11 was identified as the Arabidopsis ortholog of human

mRNA export factor CIP29 [41]. Therefore, the coding sequences

of UAP56, ALY2 and MOS11 were inserted into the pGBKT7

and pGADT7 vectors that allow expression of the proteins fused to

the DNA-binding domain (BD) or the activation domain (AD) of

GAL4, respectively. Yeast cells were cotransformed with versions

of both vectors and the growth of the yeast strains was scored as

well as the expression of the b-galactosidase reporter gene. Each

protein was tested both as an AD and BD fusion along with

established positive and negative control combinations. In this

yeast two-hybrid assay, UAP56 clearly interacted with ALY2 and

MOS11 (Figure 7A), as evident from the growth of the cells on

selective medium (left panels) and reporter gene expression (right

panels), while the negative controls showed only poor growth and

no b-galactosidase staining. To validate the interactions seen with

the yeast two hybrid method, pull-down experiments were

performed with GST and with GST fused to UAP56 (GST-

UAP56; Figure 7B). 6xHis-tagged MOS11 or HMGB2 and in vitro

translated ALY2 were incubated with GST-UAP56 and as a

negative control with GST. GST and GST-UAP56 were

immobilised on glutathione cellulose beads. After washing the

beads, bound proteins were eluted with SDS-loading buffer and

analysed by SDS-PAGE. Both MOS11 and ALY2 clearly bound

to GST-UAP56, but not to GST, whereas the control protein

HMGB2 did not bind to the affinity matrices (Figure 7C).

Therefore, in yeast cells and in vitro the mRNA export factors

MOS11 and ALY2 interacted with Arabidopsis UAP56.

Discussion

In different organisms the RNA helicase UAP56 is a critical

factor for pre-mRNA splicing and mRNA export from the cell

nucleus. We have identified two Arabidopsis genes that code for an

identical UAP56 protein, which shares a high degree of amino

acid sequence conservation with candidate UAP56 proteins of

other plants. Both UAP56 genes are expressed in Arabidopsis

seedlings. Upon inactivation of one of the genes in T-DNA

insertion mutants, the other gene can compensate for that,

resulting in approximately wild type UAP56 levels. In line with

that, the mutant plants have wild type appearance. The

maintenance of UAP56 wild type levels in the mutant plants

indicates the importance of sufficient cellular amount of UAP56.

The subcellular localisation of UAP56 fused to GFP was examined

in tobacco protoplasts and the native protein was examined in

Arabidopsis wild type cells using immunofluorescence. As in

mammalian cells, D. melanogaster and C. elegans [8,11,47], both

experiments demonstrated that Arabidopsis UAP56 is a predomi-

nantly nuclear protein. Recently, it was found that human UAP56

can shuttle between nucleus and cytosol [51], but from our results

Figure 4. UAP56 associates with loci transcribed by RNA
polymerase II independent from the presence of introns, but
not with non-transcribed regions. A Chromatin was immunopre-
cipitated with the UAP56 antiserum and the corresponding preimmune
serum (PI). DNA purified from the precipitated samples or input
chromatin was examined by PCR using gene-specific primer combina-
tions (cf. Table S1). B Chromatin was immunoprecipitated without
addition of antibody (mock) or using antibodies against histone H3, the
SPT16 subunit of FACT and UAP56. DNA purified from the precipitated
samples was examined by PCR and the presence/absence of introns at
the respective locus is indicated. For comparison two non-transcribed
retrotransposons were analysed. Representative PCR analyses based on
three independent ChIP experiments are shown.
doi:10.1371/journal.pone.0060644.g004
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there is no clear indication for cytosolic localisation of UAP56 in

Arabidopsis cells. Rice UAP56 fused to YFP was detected in both

nucleus and cytosol of transiently transformed Arabidopsis proto-

plasts [29], which could be due to overexpression of the fusion

protein or due to the use of a heterologous expression system.

Consistent with a role of UAP56 in mRNA splicing and export,

UAP56 was mainly detected in the euchromatic regions of

Arabidopsis nuclei by immunofluorescence, showing a distribution

similar to that of RNAPII. In line with experiments in plant cells

and protoplasts [29,52], but different from the distribution of

UAP56 in mammalian and Drosophila nuclei [8,47], Arabidopsis

UAP56 did not show a speckled distribution in the nucleoplasm. In

our experiments also weak nucleolar signals were observed,

indicating that low concentrations of UAP56 may occur in the

nucleolus. The DEAD-box helicase p68 (which is only distantly

related to UAP56) was found to interact with the nucleolar protein

fibrillarin [53]. Also consistent with a nucleolar localisation are

proteomic studies and the fluorescence microscopic analysis of an

UAP56-GFP fusion protein that detected UAP56 in addition to

the nucleoplasm in Arabidosis nucleoli [52]. Since these authors in

addition to UAP56 identified in the nucleolus other proteins

known to interact with mRNAs, they suggested that in plants

nucleoli may have also functions in mRNA export or surveillance.

The interaction of UAP56 with nucleic acids was studied using

EMSA and MST analyses. Both approaches revealed that UAP56

can interact with ssRNA and dsRNA, but also with dsDNA, while

ssDNA was not recognised. The interaction with dsDNA was

unexpected, since DEAD-box helicases typically are specific for

RNA (and RNA-DNA duplexes) [2,3] and accordingly human

UAP56 was shown to interact with various RNA substrates [7].

Previously, two DEAD-box proteins, human DDX3 and yeast

DBP9p, which are only distantly related to Arabidopsis UAP56

(19.7% and 17.6% amino acid sequence identity, respectively)

were reported to interact with both RNA and DNA [54,55].

Structural studies on DEAD-box helicases in complex with RNA

have indicated mechanisms that may explain the specificity for

RNA. Thus, the Drosophila Vasa helicase forms several specific

interactions with 29-OH groups of ssRNA [56], and in case of the

yeast helicase Mss116p, in addition to (non-conserved) contacts

with 29-OH groups of the RNA, the phosphate backbone

geometry serves as an important determinant of RNA duplex

recognition [57]. Currently, for UAP56 no structure in complex

Figure 5. Arabidopsis UAP56 has ATPase acitivity that is stimulated by RNA and dsDNA. A ATP hydrolysis by UAP56 (or the control protein
HMGB2, each 8 mM) was tested in the presence (absence) of ssRNA (R13, 50 mM). ATP and ADP were separated by TLC and analysed by
phosphorimaging. B Stimulation of the ATPase activity of UAP56 (8 mM) by different amounts of ssRNA was quantified from three independently
repeated experiments, and error bars indicate standard diviations. C ATPase activity of different concentrations of recombinant UAP56 in the
presence of ssRNA (R13, 50 mM). D Stimulation of the ATPase activity by different RNAs (cf. Table S2). The effect of ssRNA vs. dsRNA and of short (13-
nt) vs. longer (25-nt) RNA (50 mM each) on the ATPase activity of UAP56 (4 mM). As evaluated using Students t-test, the different RNAs stimulate the
ATPase activity to different extents (P,0.05).E ATP hydrolysis of UAP56 in the absence of nucleic acids and in the presence of 13-nt ssRNA or 25-bp
dsDNA.
doi:10.1371/journal.pone.0060644.g005

Arabidopsis RNA Helicase UAP56

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e60644



with RNA has been solved explaining the interaction with both

RNA and dsDNA.

In line with the immunofluorescence experiments, revealing

that UAP56 primarily localises to the euchromatin of Arabidopsis

nuclei, in ChIP experiments the protein was found to associate

with loci transcribed by RNAPII, but not with non-transcribed

regions. UAP56 was detected at both intronless genes as well as

intron-containing genes. This is in agreement with studies in other

organisms, where UAP56 can be recruited in a splicing-dependent

manner, but also independent from mRNA splicing [4,5,58,59].

These findings are consistent with the role of UAP56 in splicing

and mRNA export [46]. Formaldehyde (used as the standard

fixative in ChIP) produces efficiently protein-DNA, but also

protein-RNA and protein-protein crosslinks [60]. Therefore, from

ChIP experiments it is difficult to judge, whether UAP56 directly

interacts with chromatin. In addition to a direct interaction

mediated by its DNA binding activity, it is possible that UAP56 is

tethered to chromatin by RNA or a partner protein.

Using recombinant UAP56 we have examined the catalytic

properties of the Arabidopsis enzyme. It displayed basal ATPase

activity that is stimulated by the addition of RNA, and ssRNA was

more efficient than dsRNA in promoting ATP hydrolysis, which

was also observed with human UAP56 [7]. The RNA helicase

activity of Arabidopsis UAP56 was analysed in unwinding assays,

revealing that the unwinding of RNA duplexes is strictly ATP-

dependent. Moreover, shorter RNA duplexes were unwound more

efficiently than longer (more stable) RNA duplexes and RNA

substrates with 59or 39overhangs were somewhat less efficiently

unwound than a comparable blunt-ended substrate. With human

UAP56 blunt-ended substrates and those with (longer) overhangs

were unwound with similar efficiency, while the RNA length-

dependence of the reaction was also observed [7]. For comparable

unwinding efficiency, for instance with the 13-nt substrate, with

Arabidopsis UAP56 approximately threefold higher protein con-

centrations were required than with the human enzyme. Most

likely this difference is due to the fact that our helicase assays were

performed at 28uC, while the assays with human UAP56 were

performed at 37uC. Both increased enzymatic activity and lower

RNA duplex stability at higher temperature may contribute the

different efficiencies. Despite the fact that DEAD-box proteins are

bona fide helicases, they unwind RNA rather inefficiently when

helix length rises above 10–15 bp, but helical elements within

structured RNA substrates are rarely longer than 10 bp [2,3]. Our

EMSA and MST analyses revealed that Arabidopsis UAP56 in

addition to RNA can bind dsDNA, but not ssDNA. Therefore, we

tested whether dsDNA stimulates the ATPase activity of UAP56,

and we observed a similar efficiency as seen with ssRNA.

However, in our helicase assay UAP56 was unable to unwind

dsDNA. The two DEAD-box proteins, human DDX3 and yeast

DBP9p (73 and 68 kDa, respectively), which also interact with

Figure 6. Arabidopsis UAP56 has ATP-dependent RNA helicase activity. A dsRNA unwinding activity of recombinant UAP56 (12 mM) in the
presence of R13ds RNA in the absence or presence of different NTPs (3 mM, as indicated). dsRNA and ssRNA were separated by polyacrylamide
electrophoresis and analysed by phosphorimaging. B The dsRNA unwinding activity of different amounts of recombinant UAP56 (0–12 mM) was
analysed in the presence of ATP and a 13-nt dsRNA substrate (R13ds). Helicase activity was quantified from three independently repeated
experiments, and error bars indicate the calculated standard diviations. C The dsRNA unwinding activity of 12 mM UAP56 was monitored for different
times in the presence of ATP and a 13-nt dsRNA substrate (R13ds). D dsRNA unwinding activity of UAP56 (0 or 12 mM) in the presence of ATP and
different dsRNAs (cf.Table S2). Helicase activity was quantified from three independently repeated experiments, and error bars indicate the calculated
standard diviations. E The dsDNA unwinding activity of different amounts of recombinant UAP56 (0–20 mM) was analysed in the presence of ATP and
a 13-nt dsDNA substrate (D13ds).
doi:10.1371/journal.pone.0060644.g006
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RNA and DNA, were found to unwind both dsRNA and dsDNA

[54,55], but these proteins are significantly bigger than UAP56,

having additional domain(s).

Both yeast two-hybrid and GST pull-down experiments

demonstrated that Arabidopsis UAP56 can interact with the mRNA

export adaptors ALY2 and MOS11, suggesting that also in plants

the RNA helicase in combination with the corresponding export

factors is involved in mRNA export from the nucleus. We have

tested ALY2, because according to sequence alignments it is a

close relative of human ALY [50], while MOS11 most likely is the

Arabidopsis ortholog of human CIP29, and mutant mos11 cells

display mRNA export defects [41]. The export adaptors ALY

(yYRA1) and CIP29 were found to be recruited by human UAP56

(ySUB2) to mRNAs [12,13], finally resulting in a ‘‘hand-over’’ of

the mRNA to export receptors mediating translocation of the

mRNPs through the nuclear pore complexes [15,16]. UAP56 is

thought to be involved in various steps of remodelling of the

mRNPs during maturation and export [15,16,46]. In mammals,

there is a second DEAD-box RNA helicase URH49, sharing

,90% amino acid sequence identity with UAP56. Apparently,

Figure 7. Arabidopsis UAP56 interacts with mRNA export factors. A Yeast two-hybrid assays. Yeast cells cotransformed with the indicated
plasmids were grown on SD/-Leu/-Trp/-His medium (left panels). Cells grown on the same medium were used to detect b-galactosidase reporter
gene activity by colony-lift filter assays and incubation of the filters with the X-gal substrate (right panels). B Purified GST and GST-UAP56 used for
pull-down assays were analysed by SDS-PAGE and Coomassie staining. C Pull-down assays with GST and GST-UAP56. Recombinant MOS11, HMGB2 or
in vitro translated 35S-Met-labelled ALY2 were incubated in the presence of ATP with GST and GST-UAP56, which were bound to glutathione cellulose
beads. After washing the beads, eluted proteins were analysed by SDS-PAGE. 6xHis-MOS11 and 6xHis-HMGB2 were detected by immunoblotting
using an antibody directed against the 6xHis-tag and ALY2 by phosphorimaging. Aliquots of the protein input of MOS11, HMGB2 (10%) and ALY2
(25%) are also shown.
doi:10.1371/journal.pone.0060644.g007
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both UAP56 and URH49 can interact with CIP29, whereas ALY

seems to interact with UAP56 and not with URH49 [13,61]. In

Arabidopsis, according to database searches, there is no second

helicase closely related to UAP56. Therefore, it is likely that

Arabidopsis UAP56 is a functional interactor of both ALY2 and

MOS11.

Consistent with its essential role in splicing and mRNA export,

depletion as well as overexpression of UAP56 in mammals,

Drosophila, Caenorhabditis and yeast severely affected mRNA export

and cell growth/survival [8,11,12,62,63]. In yeast, for instance,

depending on the strain background inactivation of the SUB2 gene

can be lethal, while overexpression of SUB2 impairs mRNA

export in a dominant negative manner presumably by titrating

mRNA export factors [12,63]. In Arabidopsis however, the

overexpression of UAP56 does not result in altered growth and

development of the transgenic plants. In rice, down-regulation of

the UAP56 (AIP1/2) transcript levels by amiRNA resulted in

reduced fertility, presumably due to defects in anther/pollen

development [29]. The authors suggest that AIP1 negatively

controls the expression of the CP1 gene (encoding a Cys protease)

by specifically binding to the CP1 promoter, thereby regulating

tapetum degeneration in anthers. Due to the close proximity of the

two Arabidopsis UAP56 genes on chromosome 5, it is unlikely to

obtain double mutants (by crossing of the single mutants analysed

here) that do not express UAP56. We have attempted generating

Arabidopsis plants with down-regulated expression of UAP56 using

the RNAi strategy. So far we were unable obtaining plants with

significantly reduced expression of UAP56 (data not shown), but

this is clearly a goal of future experiments.
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