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Abstract: In this study, silver nanoparticles (AgNPs) are synthesized through a green approach by
employing Rosa indica L. petal (RE) extracts as reducing and stabilizing agents, which are extracted
using three different solvents: ethanol (Et), acetone (Ac), and water (Aq). The phase formation of
the AgNPs is confirmed using X-ray diffraction (XRD). Morphological analysis is performed using a
field-emission scanning electron microscope (FESEM), which reveals that the AgNPs are spherical in
shape. The size is estimated using ImageJ software, which is found to be ~12, 18, and 770 nm for RE-
Ac-Ag, RE-Et-Ag, and RE-Aq-Ag, respectively. The phytochemicals of Rosa indica L. petals involved
in the formation of the AgNPs are studied using Fourier transform infrared spectroscopy (FTIR).
Finally, these materials are studied for their antibacterial, antidiabetic, antioxidant, and hemolytic
activity, as well as cell toxicity properties. The materials, RE-Ac-Ag and RE-Et-Ag, are found to be
more effective than RE-Aq-Ag in inhibiting E. coli (Gram-negative bacteria) and S. aureus (Gram-
positive bacteria). Hemolytic studies reveal that all of the samples show concentration-dependent
activity up to 50 µg/mL. RE-Ac-Ag and RE-Et-Ag exhibit nonhemolytic behavior, whereas RE-Aq-Ag
remains nonhemolytic until 100 µg/mL. The antidiabetic ability of the AgNPs is evaluated using
α-amylase inhibition assay (DNSA assay) and α-glucosidase inhibition assay. The results are found
to be effective, with IC50 values of α-amylase and α-glycosidase being 50, 50, and 75 µg/mL for
RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag, respectively. DPPH assay shows that the AgNPs inhibited
the antioxidants well, with IC50 values of 40 µg/mL for RE-Et-Ag and RE-Ac-Ag and 60 µg/mL
for RE-Aq-Ag. The toxicity study reveals that the AgNPs show size- and concentration-dependent
behavior. Overall, it is realized from the findings that RE-Ac-Ag, RE-Et-Ag, and RE-Aq-Ag show
size-dependent antibacterial, antidiabetic, and toxicity properties.
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1. Introduction

The widespread use of nanoparticles in medicine, technology development, and in-
dustry is increasing the demand for controlled synthesis of nanomaterials with improved
multifunctional properties. Among the metallic nanomaterials, silver nanoparticles (Ag-
NPs) are frequently used in photocatalysis, antimicrobial treatments, microelectronics,
and photonics applications [1,2]. Nanomedicine is a thriving research area. Scientists are
concerned about developing safe, efficient, and less hazardous drugs to treat diseases such
as epilepsy, cancer, and diabetes [3,4]. The fast clearance rate of silver nanoparticles from
the body is one of the benefits of using them in biomedical applications [5,6]. Microbial in-
fections have recently become a major concern in the healthcare industry [7–9], particularly
in the case of dental and orthopedic implants. Microbial formation on implantable devices
can cause wound healing to be delayed and eventually lead to implant failure and require
implant replacement [10,11].

According to a recent study, combining silver nanoparticles with filler materials
improves root canal activity when compared to existing root canal therapies [12]. Micro-
galvanic effects occur when titanium (Ti) is coated with AgNPs, enhancing antibacterial
activity and osteoblast compatibility. Biological approaches have been often used over
chemical procedures to synthesize AgNPs since chemical methods involve the use of toxic
reducing agents that are dangerous to both humans and the environment. Fungi, bacte-
ria, and plants are used in the biological synthesis of nanoparticles (NPs) [13]. However,
due to specialized requirements during maintenance, the use of bacteria and fungi in the
production of nanomaterials is limited.

As a result, plant-based biosynthesis has emerged as a promising alternative to the
chemical approach for reducing the risk of hazardous chemicals and their inflammatory
effects [14]. Several studies have discovered that Gram-negative bacteria have developed
resistance to AgNPs because of the development of flagellin proteins, which lower the
antibacterial activity of AgNPs. As a result, combining silver nanoparticles with phytochem-
ical ingredients can prevent the aforementioned problems [15]. Antioxidants are essential in
maintaining a healthy balance of free radicals, as these free radicals attack macromolecules,
such as proteins, nucleic acids, and lipids, resulting in cell damage and death. Chronic
abnormalities such as heart disease, the development of cancer [16], and neurodegenerative
disorders are exacerbated by the increased accumulation of reactive oxygen species in the
environment. Despite the fact that the literature indicates that AgNPs have significant
activity in vitro, their therapeutic efficacy is still not fully determined [17]. Rose petals are
rich sources of anthocyanins, which are phenolic compounds that belong to the flavonoids
family and have two benzene rings connected by a three-carbon linear chain with the
basic skeleton C6–C3–C6 associated with sugar molecules. Traditionally, anthocyanins
have been utilized as natural food colorants. The strong antioxidant property of antho-
cyanins helps prevent cardiovascular illness, diabetes, cancer, neuronal diseases, ulcers,
and inflammation [18]. Accordingly, Rosa indica L. petals could be a suitable phytochemical
source to prepare AgNPs.

In this context, the present study demonstrates the successful synthesis of AgNPs
using Rosa indica L. petals extracted using ethanol, acetone, and water, and the effects of
these solvents on the properties of AgNPs are compared. Furthermore, these materials are
also examined for their efficacy towards antibacterial, antidiabetic, antioxidant, hemolytic
activity, and cell toxicity properties.

2. Results and Discussion
2.1. X-ray Diffraction (XRD)

As shown in Figure 1, the XRD patterns of the phytosynthesized AgNPs are very
similar to those of the standard AgNPs (JCPDS No.: 89-3722). The diffraction peaks are
detected at 37.9◦, 43.9◦, 64.3◦, and 77.3◦, which correspond to the (111), (200), (220), and (311)
planes, respectively, indicating that the AgNPs have a face-centered cubic (FCC) structure.
Peaks appearing at 27.7◦ and 31.9◦ can be attributed to the deposition of phytocompounds
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by RE. The crystallite sizes of the prepared AgNPs were calculated using Debye–Scherrer’s
formula, and the average crystallite is estimated to be 14, 17, and 26 nm for RE-Ac-Ag,
RE-Et-Ag, and RE-Aq-Ag, respectively. The result suggests that the crystallite size of the
AgNPs increased with respect to the various biomolecules present in the solvents.
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Figure 1. XRD patterns of RE-Ac-Ag, RE-Aq-Ag, and RE-Et-Ag nanoparticles.

2.2. Functional Group Analysis

Fourier transform infrared spectroscopy (FTIR) measurements were used to detect the
functional groups that were present in the Rosa indica L. extract, which is responsible for the
reduction process of Ag+ ions and stabilization of AgNPs. In the spectra of RE-Et, RE-Aq,
and RE-Ac, shown in Figure 2a, the bands at 3435 and 3450 cm−1 correspond to the O-H
stretching vibration, suggesting the presence of phenol and alcohol. The band at 2972 cm−1

in RE-Ac is formed by aromatic compound C-H stretching, but this peak is not found in
RE-Et or RE-Aq. The C=O stretching vibrations are allocated to the band at 1630 cm−1

in RE-Et and RE-Aq. The band appearing at 633 cm−1 in RE-Et and RE-Aq indicates C-C
stretching in the alkyl group. The peaks at 1736 cm−1, 1363 cm−1, and 1214 cm−1 in RE-Ac
can be ascribed to C-C stretching, N=O stretching of nitro compounds, and C-N stretching
of amines, respectively [19,20]. The existence of bands at 3297, 1636, and 1046 cm−1 for
RE-Et-Ag, RE-Aq-Ag, and RE-Ac-Ag is shown in Figure 2b. These FTIR findings clearly
indicate that several biological molecules are likely to be involved in the synthesis and
stabilization of AgNPs [21]. Furthermore, slight peak shifts are observed for all the samples,
and several peaks disappeared in RE-Ac-Ag, which suggests that the biomolecules in the
extracts are involved in the formation of AgNPs.
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2.3. Field-Emission Scanning Electron Microscopy (FESEM)

The morphological structure is an important indicator because it can directly impact
the electro-optic and biological properties. Figure 3a–c displays the FESEM images showing
the spherical-like morphology of the AgNPs. Figure 3d–f reveals the average size of the
three samples, RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag, is estimated to be around 18, 12,
and 770 nm, respectively. The solvents employed in the fabrication of silver nanoparticles
clearly altered the size of the nanoparticles. The shape of the formed AgNPs does not vary
considerably with size; therefore, the discrepancies in antibacterial outcomes can only be
ascribed to changes in the size of the nanoparticles [1,22]. Similarly, Jahan et al. (2019)
prepared AgNPs using Rosa santana extract in microwave conditions, and transmission
electron microscope (TEM) results showed spherical-shaped NPs with an average size of
14 nm [23]. Suarez-cerda et al. (2015) showed that AgNPs size depends on the concentration
of Rosa extracts [24]. Hibiscus rosa-sinensis extract was used as a reducing and capping agent
for AgNP synthesis. The SEM results showed an aggregated spherical-shaped morphology
with an average size of ~48.5 nm [25]. These results showed the potential synthesis of
AgNPs using aqueous extracts of plants. Furthermore, as shown in Figure 3g–i, the energy-
dispersive X-ray spectroscopy (EDS) spectrum of the green-produced AgNPs offered
semiquantitative information on the elemental content of the samples. The EDS spectra
clearly show that the rose extracts successfully participated in the formation of AgNPs.
Furthermore, RE-Aq-Ag (Figure 3i) contains less Ag% than RE-Et-Ag and RE-Ac-Ag, which
may influence its biological properties.
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2.4. Antimicrobial Activity

AgNPs with different sizes were tested by the well diffusion method for their inhibitory
effect against E. coli and S. aureus bacterial strains. The antibacterial experiments reveal
that all three samples have strong antibacterial activity against both bacteria; however, the
obtained zone of inhibition values showed size-dependent activity, as shown in Figure 4.
Additionally, the lower amount of Ag in the sample RE-Aq-Ag may have affected its
bactericidal ability. These findings reveal that the smaller-sized AgNPs obtained from the
solvent acetone (RE-Ac-Ag) and ethanol (RE-Et-Ag) have greater inhibitory efficacy than
the water-derived AgNPs (RE-Aq-Ag). The current study demonstrated that AgNPs with
sizes of 12 nm (RE-Ac-Ag) and 18 nm (RE-Et-Ag) have zone of inhibition values of 25 and
21 mm against E. coli and 23 and 19 mm against S. aureus, respectively. In the case of larger-
sized (770 nm) AgNPs (RE-Aq-Ag), the antibacterial activity against E. coli and S. aureus is
determined to be 15 and 13.5 mm, respectively. The observed changes in the antibacterial
activity can be attributed to the size variation of the nanoparticles and the percentage of Ag,
as well as the abundant availability of the functional groups of RE molecules extracted using
acetone and ethanol, which are found to be responsible. In addition, the phytochemicals
facilitated the ability to produce more reactive oxygen species (ROS), which are then used
to inhibit bacterial growth [26]. This also demonstrated that the effect of nonaqueous
solvents on the surface chemistry of the AgNPs produced improved their antibacterial
capabilities by allowing them to readily interact with the bacterial nucleus, resulting in
the highest interaction of the nanoparticles with the bacteria for efficient killing. For
instance, Loo et al. (2018) synthesized AgNPs using aqueous extracted tea leaves, and the
antibacterial activity against E. coli was found to be 15 mm. Likewise, Ahmed et al. (2016)
synthesized AgNPs using aqueous leaf extract of Azadirachta indica. The antibacterial
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activity results against E. coli and S. aureus were determined to be 9 mm for both bacterial
strains [19]. Previous literature has also suggested that nanoparticles exhibit size-dependent
antibacterial action. Smaller particles have shown stronger antibacterial action due to their
better capacity to penetrate bacteria. Smaller AgNPs have a superior surface area than
larger bacteria, resulting in an increased antibacterial action. The results showed that
AgNPs are more harmful to E. coli than to S. aureus. This might be related to changes
in the rate of diffusion, structure of the cell, cell metabolism, and surface interaction of
nanoparticles with microorganisms [27].
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2.5. Hemolysis

The size-dependent hemolytic behavior of AgNPs was evaluated at concentrations
ranging from 10 to 200 µg/mL (Figure 5). From the results, it is observed that the samples
RE-Et-Ag and RE-Ac-Ag demonstrated less than 2% hemolysis until 50 µg/mL, indicating
that the materials are totally nonhemolytic. However, at concentrations from 75 µg/mL to
200 µg/mL, the hemolytic percentage is around 2 to 5%, indicating that the materials show
slight hemolytic action at these doses. The sample RE-Aq-Ag is found to be nonhemolytic
up to 100 µg/mL, but at 200 µg/mL, it displays mildly hemolytic activity. The results show
that AgNPs with smaller sizes had higher hemolytic activity than AgNPs with larger sizes.
Further, the results obtained suggest that the hemolytic effect is concentration dependent.
According to the literature, smaller nanoparticles are more harmful than the bigger particles
because they can readily breach the membrane due to their larger surface area and may
powerfully interact with biomolecules [28,29]. Chen et al. (2015) observed size-dependent
hemolytic activity of AgNPs with sizes of 15, 50, and 100 nm against fish RBCs. The
results show that nanoparticles with a size of ~15 nm have a stronger capacity to cause
hemolysis and membrane damage than nanoparticles with sizes around 50 and 100 nm.
It can be stated that such hemolytic behavior caused by AgNPs should be ascribed to the
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nanoparticle’s direct contact with the RBCs, which results in the generation of oxidative
stress, membrane damage, and, ultimately, hemolysis. According to the findings, the
particle size of AgNPs has a significant impact during their interaction with RBCs [30].
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2.6. Cell Viability

MTT assay was carried out to assess the influence of AgNPs on the proliferation rate
of MG63 cell lines (Figure 6). The cells were cultured for 24 and 48 h with varied sizes of
AgNPs at varying concentrations, and the viability of cells was determined by plotting the
graph of cell proliferation efficiency. The findings clearly demonstrated the size-dependent
cytotoxic activity, with the samples RE-Et-Ag and RE-Ac-Ag exhibiting cytotoxic behavior
at 125 µg/mL and RE-Aq-Ag exhibiting cytotoxic behavior at 500 µg/mL. Furthermore,
the obtained data also revealed that the AgNPs behave in a concentration-dependent way;
as the concentration increased from 7.8 to 500 µg/mL, the viability of all samples reduced.
Cell viability dropped after 24 h of incubation for the samples RE-Et-Ag and RE-Ac-Ag.
In contrast, after 48 h of incubation, the cell proliferation rate in lower concentrations
increased above the control. This might be attributable to AgNPs achieving the optimal
conditions after extending the incubation time, which increased the rate of cell growth [31].
Optical microscopic images (Figure 7) also revealed similar results, demonstrating that
cell proliferation is visible after 48 h as compared to 24 h. Soares et al. (2016) studied the
size-dependent cytotoxicity of AgNPs using the sizes of 10 and 50 nm. According to their
findings, 10 nm AgNPs are more hazardous than 50 nm AgNPs. The data showed that
nanoparticles impede lysosomal function, cause membrane damage, and cause neutrophils
to undergo an oxidative burst. Wu et al. (2019) investigated the cytotoxicity of nanoparticles
against B16 cells of different sizes, finding that nanoparticles as small as 5 nm were found
in the cytoplasm and nucleus, whereas the larger nanoparticles (20, 50, and 100 nm) were
found outside the cells. This might be owing to the ease with which smaller nanoparticles
penetrated the cells, but bigger nanoparticles were exceedingly difficult to enter [32].
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2.7. Inhibitory Effect of α-Amylase and α-Glucosidase

Alpha-amylase (α-amylase) and alpha-glucosidase (α-glucosidase) are enzymes that
contribute to carbohydrate breakdown and glucose absorption. Inhibiting these two
digestive enzymes suppresses starch breakdown and slows down the glucose release in the
blood. AgNPs were incubated with α-amylase and α-glucosidase at various concentrations
(10, 25, 50, 75, and 100 µg/mL), and acarbose was used as a control. Figure 8a,b shows
that α-amylase and α-glucosidase were significantly inhibited in a dose-dependent manner.
The percentage of inhibition is found to be increased with the increasing concentration of
AgNPs. The IC50 values of α-amylase and α-glucosidase are determined to be around 50,
50, and 75 µg/mL for RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag respectively. Thus, the results
indicated that the AgNPs and acarbose show a significant inhibition of α-amylase and α-
glucosidase. Likewise, Balan et al. (2016) reported the antidiabetic activity of AgNPs, with
IC50 values of 54.56 µg/mL and 37.86 µg/mL for α-amylase and α-glucosidase, respectively.
In another study, Saratalae et al. (2018) developed AgNPs using Punica granatum leaves
and tested them for their antidiabetic activity. The IC50 values were found to be 65.2 and
53.8 µg/mL for α-amylase and α-glucosidase, respectively [17].
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2.8. DPPH Assay

The capacity to scavenge free radicals is examined using the free radical compound
DPPH. The scavenging ability is determined at various concentrations of AgNPs (20,
40, 60, 80, and 100 µg/mL) via the characteristic absorbance at 517 nm. The reduction
in absorption indicates that the free radicals are being scavenged [22]. The findings, as
depicted in Figure 9, suggested that the free radical scavenging efficacy of RE-Et-Ag, RE-
Ac-Ag, and RE-Aq-Ag is size dependent. The IC50 values of DPPH inhibition were found
to be ~40 µg/mL for RE-Et-Ag and RE-Ac-Ag and 60 µg/mL for RE-Aq-Ag. Additionally,
increasing the concentration of the samples enhanced the scavenging efficacy of the AgNPs,
as well as the activity of the positive control by 83, 80, 77, and 62% at 100 µg/mL for ascorbic
acid, RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag, respectively. According to the results, AgNPs
with a lower size have a higher potential for scavenging than the larger nanoparticles.
This might be related to the increased surface-to-volume ratio of the smaller AgNPs as
compared to the larger-sized NPs, which essentially causes the particles to effectively
interact and considerably inhibit the free radicals [17]. The lower percentage of Ag in
the larger-sized sample could potentially be contributing to the lower DPPH activity.
The findings show that smaller AgNPs have substantial antioxidant properties, which is
important for biological applications.
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3. Materials and Methods
3.1. Preparation of Rosa indica L. Petals Extract

Fresh rose flowers (Rosa indica L.) were purchased from the local flower market in
Adyar, Chennai, India. They were then authenticated by taxonomist Dr. Jeyaraman,
Professor, Plant Anatomy Research Centre, Chennai, and voucher specimens (Voucher
No.: PARC/2022/4806) were deposited in this department. The Rosa indica L. petals were
plucked and cleaned with distilled water followed by acetone. Cleaned young petals
were cut into small pieces. A 20 g amount of the rose petals (without drying) was taken
separately in three conical flasks containing distilled water, ethanol, and acetone, which
were denoted as RE-Aq, RE-Et, and RE-Ac, respectively. The beakers RE-Et and RE-Ac
were kept undisturbed for 90 min for the extraction of phytochemicals. The RE-Aq-Ag
beaker alone was heated at 50 ◦C for 90 min to extract the phytochemicals. The extract was
filtered and stored at 5 ◦C.

3.2. Preparation of Silver Nanoparticles (AgNPs)

In this synthesis method, 90 mL of 0.01 M silver nitrate (AgNO3) solution was prepared
under constant stirring. To this, 10 mL of RE-Et was added drop wise, and the change in
color was observed from pale yellow to reddish-brown. The same procedure was carried
out with RE-Ac and RE-Aq. Finally, the prepared AgNPs were employed for centrifugation
at 6000 rpm for 30 min, followed by drying in an oven at 60 ◦C for 1 h. The AgNPs
prepared using Rosa + ethanol, Rosa + acetone, and Rosa + water were denoted as RE-Et-Ag,
RE-Ac-Ag, and RE-Aq-Ag, respectively [33].

3.3. Characterization of AgNPs

The crystallinity of the prepared AgNPs was determined using powder X-ray diffrac-
tion by a Bruker diffractometer, model D8 Advance. The crystallite size of the prepared
AgNPs was determined using Debye–Scherrer’s formula:

D =
Kλ

βcosθ
(1)
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where D is the crystallite size, β is the full width at half maximum (FWHM), λ is the X-ray
wavelength (0.154 nm), θ is the diffraction angle, K is a constant related to the crystallite
shape and is approximately 0.94. The functional groups in the produced samples and
extracts were identified using Fourier transform infrared spectroscopy (FTIR, Perkin Elmer
spectrometer, model Spectrum One). The samples were scanned over a range of 4000 to
500 cm−1. The shapes and sizes of the synthesized nanoparticles were examined using a
field-emission scanning electron microscope (FESEM, JEOL Japan).

3.4. Antimicrobial Studies

The standard agar well diffusion method was followed to evaluate the antibacterial
efficacy of the prepared AgNPs. The bacterial cultures of E. coli and S. aureus were procured
from the National Centre for Microbial Resource (NCMR, Pune). Nutrient agar was used
to cultivate the bacterial strains (SRL Chemicals, India). The nutrient agar was sterilized
using an autoclave and transferred to a sterile Petri plate, and the cultured bacterial strains
were spread on the solidified agar medium. Afterwards, wells were made by puncturing
the agar using a sterile micropipette tip. The prepared AgNPs samples were added to the
wells at various concentrations, such as 10, 25, 50, 75, and 100 µL. The zone of inhibition
was measured after a 24-hour incubation period at 37 ◦C [34].

3.5. Hemolysis Assay

The experiments were carried out in accordance with applicable laws and institutional
policies and procedures (Ethical Certificate Ref No.: IHEC/SDC/FACULTY/22/OPATH/416).
The blood donor gave informed consent before participating in the experiment. A healthy
volunteer’s blood was drawn with the assistance of clinicians, and the results were an-
alyzed. To prevent coagulation, 3.2% trisodium citrate was mixed with blood in a ratio
of 1:10. Phosphate-buffered saline (PBS) was used to prepare various concentrations of
AgNPs (10, 25, 50, 75, 100, and 200 µg/mL), and anticoagulated blood was used as the test
specimen. The positive and negative controls were anticoagulated blood with 0.1% sodium
carbonate and PBS with anticoagulated blood, respectively. All the samples and controls
were incubated for 3 h at 37 ◦C. The tubes were then centrifuged for 5 min at 2000 rpm.
Finally, OD values were recorded at 545 nm [31]. To ensure reproducibility, all experiments
were repeated three times. The hemolysis % was determined as follows:

Hemolysis (%) =
(Test sample − Negative control)

(Positive control − Negative control)
× 100 (2)

3.6. MTT Assay

The experiment was conducted to examine the cytocompatibility of the prepared
AgNPs. MG63 cell lines were obtained from the National Centre for Cell Sciences (NCCS,
Pune). The culture was maintained in a humid atmosphere of 50 g/mL CO2 at 37 ◦C
using Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal bovine serum (FBS),
penicillin (100 U/mL), and streptomycin (100 g/mL). In 24-well plates, MG63 cells (approx-
imately 1105/well) were seeded and incubated at 37 ◦C in a CO2 atmosphere. The AgNPs
prepared were of various concentrations, such as 7.8, 15.6, 31.2, 62.5, 125, 250, 500, and
1000 µg/mL, and incubated for 24, 48, and 72 h at 37 ◦C. Then, the cells were treated for 4 h
with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). To dissolve the
formazan crystals, 1 mL of dimethyl sulphoxide (DMSO) was added, and OD values were
recorded using an ELISA reader (Bio-Rad 680, USA) at 570 nm. The assay was carried out
in triplicate, and the percentage of viable cells was estimated using the following formula:

Cell Viability (%) = (A_570 of treated cells)/(A_570 of control cells)× 100 (3)

The cells that had been treated with various concentrations of AgNPs were fixed with
4% paraformaldehyde and then observed under an optical microscope [35].
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3.7. Inhibitory Effect of α-Amylase

The DNSA (3,5-dinitrosalicylic acid) technique was used to assess the alpha-amylase
inhibition assay. The test combination was 500 µL of 0.02 M sodium phosphate buffer
containing alpha-amylase (µg/mL) and AgNPs (10 to 10 µg/mL). The mixture was incu-
bated at 37 ◦C for 20 min. At first, 250 µL of starch (1%) was introduced to the tubes and
incubated at 37 ◦C for 15 min. The process was stopped by adding 1 mL of dinitrosalicylic
acid, followed by incubating it for 10 min in a hot water bath. The tubes were cooled, and
the absorbance at 540 nm was measured. The percentage of inhibition of α-amylase, which
is shown in the equation below, was determined.

Inhibition (%) = A − B/A × 100 (4)

where A and B represent the absorbance of the control sample and the treated sample,
respectively [5].

3.8. Inhibitory Effect of α-Glucosidase

The inhibition of α-glucosidase was determined by using the following method. The
assay mixture contained 150 µL of sodium phosphate (0.1 M), alpha-glucosidase (1 U), and
AgNPs (10–100 µg/mL). The mixture was preincubated at 37 ◦C for 10 min before adding
paranitrophenyl alpha-D-glucopyranoside (50 µL, 2 MM) in sodium phosphate buffer
(0.1 M) and incubating for 20 min at 37 ◦C. The reaction was stopped by adding sodium
carbonate (50 µL, 0.1 M), and the absorbance at 405 nm was measured. The percentage
inhibition was calculated using the following equation:

Inhibition (%) = A − B/A × 100 (5)

where A and B represent the absorbance of the control sample and the treated sample,
respectively.

3.9. Antioxidant Activity

The DPPH (1,1-diphenyl-2-picryl hydrazyl) assay was used to determine the antioxi-
dant activity of the synthesized AgNPs. The test samples and the standard were prepared
at various concentrations (20, 40, 60, 100, and 200 g/mL) by adding ascorbic acid to 1 mL
of 1 mM DPPH in ethanol and incubating for 30 min at 37 ◦C in the dark. The absorbance
at 517 nm was measured using a UV–visible spectrophotometer. This mechanism involves
the release of free radicals from DPPH, which the AgNPs scavenge, thereby inhibiting its
antioxidant activity [36]. The standard formula to calculate the percentage of inhibition
values is given in the below equation.

Radical Scavenging = [Control − Test]/Test × 100 (6)

4. Conclusions

The present study demonstrated the successful synthesis of AgNPs using Rosa indica
L. petals extracted using ethanol, acetone, and water solvents. All three extracts produced
spherical-shaped AgNPs; however, ethanol and acetone extracts produced smaller-sized
AgNPs, while water extract produced larger-sized AgNPs. The ethanol and acetone extracts
used to prepare AgNPs showed significant antibacterial, antidiabetic, and antioxidant
activities. Furthermore, the overall results demonstrated that solvent-dependent extraction
can preserve the bioactive molecules in the extract, indicating that the materials developed
by these extracts can be favorable and can have the potential to be effectively useful in
biomedical applications. Accordingly, the smaller-sized AgNPs were found to be excellent
antibacterial agents for minimizing bacterial infections. Additionally, the biocompatibility
results showed that the biosynthesized AgNPs could be used as potential candidates for
various applications.
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