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Abstract: Mobile crowdsensing (MCS) is a promising paradigm for large-scale sensing. A group of users
are recruited as workers to accomplish various sensing tasks and provide data to the platform and
requesters. A key problem in MCS is to design the incentive mechanism, which can attract enough
workers to participate in sensing activities and maintain the truthfulness. As the main advantage of MCS,
user mobility is a factor that must be considered. We make an attempt to build a technical framework
for MCS, which is associated with a truthful incentive mechanism taking the movements of numerous
workers into account. Our proposed framework contains two challenging problems: path planning
and incentive mechanism design. In the path planning problem, every worker independently plans a
tour to carry out the posted tasks according to its own strategy. A heuristic algorithm is proposed for
the path planning problem, which is compared with two baseline algorithms and the optimal solution.
In the incentive mechanism design, the platform develops a truthful mechanism to select the winners
and determine their payments. The proposed mechanism is proved to be computationally efficient,
individually rational, and truthful. In order to evaluate the performance of our proposed mechanism,
the well-known Vickrey–Clarke–Groves (VCG) mechanism is considered as a baseline. Simulations are
conducted to evaluate the performance of our proposed framework. The results show that the proposed
heuristic algorithm for the path planning problem outperforms the baseline algorithms and approaches
the optimal solution. Meanwhile, the proposed mechanism holds a smaller total payment compared
with the VCG mechanism when both mechanisms achieve the same performance. Finally, the utility of a
selected winner shows the truthfulness of proposed mechanism by changing its bid.
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1. Introduction

Mobile crowdsensing (MCS) is an emerging technique to leverage the capacities of mobile devices
(e.g., smartphones, tablet computers, and wearables) in large-scale sensing and computing. The term
“mobile crowdsensing” was first coined by Ganti in [1]. Thanks to the explosive growth of mobile devices,
MCS has attracted more and more attention in recent years [2,3]. MCS enables a different way to sense
based on the great quantity of mobile devices, which has several advantages over the traditional sensing
methods. For example, MCS is able to cover a large sensing area without deploying a wireless sensor
network, since a mass of users can be recruited from a huge user pool to satisfy the sensing requirements.
These advantages make MCS suitable for a broad range of sensing applications, e.g., environment
monitoring [4], traffic management [5], and healthcare [6]. Waze [7] is a typical representative of MCS
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applications, which receives the traffic reports from smartphone users to provide navigation information
and route details back to mobile users.

Although MCS possesses so many advantages, there still exist some challenges to implement an MCS
framework. One key problem is to design an appropriate incentive mechanism, which is the component to
attract mobile users as workers to participate in the sensing activities and maintain a sufficient number
of workers in the framework [8–10]. Basically, there are two main functions of the incentive mechanism.
The first one is the method to select workers from the user pool taking some specific requirements into
account. For example, the mechanism needs to select workers who can provide high-quality sensing
data when the data quality is the target of the framework, while spatially dispersed users can be hired
when the target is the coverage. The second function of the mechanism is to determine the payments
after recruiting the workers. It is well known that the budget is a critical restriction on a project. Thus,
the requesters generally set a budget after posting their tasks on the framework. In this case, it is desirable
to use a method that spends the budget wisely to recruit a group of workers.

Moreover, user mobility offers the benefit of allowing workers to travel around and finish tasks,
but also raises an important question on who should be the decision maker for the workers’ paths [11,12].
On one hand, the platform is considered as the path planner, since it has more computing power and
information to obtain a global optimal solution. The platform is able to coordinate all workers when it
assigns the tasks to the workers. This is termed the platform-centric mode. The drawback of this mode is
that the platform has to collect all the information of workers, e.g., the locations and moving trajectories.
The information collection costs substantial efforts and may also infringe on the privacy of workers. On the
other hand, the workers can decide their paths on their own based on individual strategies in order to
improve their autonomy. This is termed the worker-centric mode. In this mode, the workers just provide
the data samples to the platform without revealing their location information, which is a great benefit for
the privacy of workers. The worker-centric mode also has some weak points. For example, without the
central coordination or awareness of each other’s choice, potential competition may exist among the
workers when they contend for the same tasks.

In this paper, we aim at building a technical framework for MCS that involves an incentive mechanism
and takes user mobility into account. The main structure of our proposed framework is shown in Figure 1.
First, we propose a location-protected method to assign the tasks to the workers by leveraging the
worker-centric mode. The workers plan their paths to accomplish the tasks according to their own
strategies. Then, the workers submit their bids to the platform without revealing any location information,
which is called location-protected. A heuristic bidirectional searching algorithm is proposed to solve the
path planning problem for the workers. Second, the platform conducts an auction after receiving the bids
from the workers to determine the winners and payments. A truthful incentive mechanism is designed
to select winners from the bidders according to the assignment rule and determine the payments by a
payment rule. Finally, the selected winners submit their collected data samples to the platform to receive
the reward payments.

Specifically, our main contributions are three-fold.

• We build an MCS framework including two phases, path planning and incentive mechanism design.
The separation between the path planning and the incentive mechanism design makes the proposed
framework balanced since neither the platform (or requesters) nor the workers play a dominant
role. The workers can choose to participate in the sensing activities or not during the phase of path
planning, while the platform has the authority to select the workers as winners and pay the winners.
Therefore, the proposed framework gives all stakeholders a chance to develop their own strategies
and optimize their utilities.
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Figure 1. The proposed technical framework for mobile crowdsensing.

• In the phase of path planning, a heuristic bidirectional searching algorithm is proposed to plan the
paths of workers. The proposed heuristic algorithm can leverage the current remaining resources to
explore a possibility in the near future, which improves the performance of the searching. Compared
with two baseline algorithms and the optimal solution, our proposed heuristic algorithm outperforms
the baseline algorithms and approaches the optimal solution.

• In the phase of incentive mechanism design, a truthful mechanism is designed for the platform,
which is proved to be computationally efficient, individually rational, and truthful. It is worth pointing
out that the proposed mechanism is truthful not only in the task sets of workers but also in the cost
bids of workers. To evaluate the proposed mechanism, the well-known Vickrey–Clarke–Groves (VCG)
mechanism is considered as a baseline and the results show that the proposed mechanism spends a
smaller total payment than the VCG mechanism with the same performance.

The remainder of this paper is organized as follows. The related work is presented in Section 2.
Section 3 gives the system model and problem formulation. We present the details of the proposed
solutions in Section 4. The simulation results are shown in Section 5. Section 6 concludes this paper.

2. Related Work and Technical Background

In this section, we review the related work on MCS. For ease of comparison, we classify the existing
solutions into two groups: i.e., incentive mechanism design and task allocation.

2.1. Incentive Mechanism Design

As already known, the incentive mechanism design is an important and also challenging problem
in MCS. In some survey papers, a variety of techniques are reviewed for designing the incentive
mechanism [8–10,13,14]. The most widely used method is auction theory. Auction theory is an effective
tool to design the incentive mechanism, in which bidders submit their bids to the auctioneer; then,
the auctioneer selects the winners and determines the payments [15]. Applying auction theory to design
the incentive mechanism for mobile crowdsensing, researchers regard the platform as the auctioneer and
the workers as the bidders. The platform designs and announces the assignment rule and the payment
rule to the workers, while the workers submit their bids to compete for the tasks. In general, there are three
desired properties when implementing an incentive mechanism by auction theory, i.e., computational
efficiency, individual rationality, and truthfulness. The computational efficiency requires the mechanism to
obtain the results within a polynomial time complexity. The individual rationality means that the utilities
of bidders cannot be negative with the auction outcome. The mechanism is truthful if the bidders maximize
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their utilities by bidding their true costs or values. As already seen, these three properties are essential to
ensure implementability of the incentive mechanism in practice. Meanwhile, these properties also pose
challenges to the design.

Although auctions are easy to implement and operate, it can be hard to ensure the truthfulness
of the mechanism, especially when the allocation problem is computationally intractable. For example,
though VCG auction is a general method to design truthful mechanisms, the truthfulness of the VCG
auction rules is lost if the optimal outcome is not available [16,17]. As a result, mechanism designers need
to find a different way to achieve truthfulness when the allocation problem is hard to solve. In addition,
there is another problem with using auctions. It is essential to maintain a large group of workers, which is
the foundation of MCS. Since auctions are strongly competitive, “weak” workers do not even have a
chance to win and they would opt out of the auctions in the future [18]. Therefore, other methods are also
proposed in incentive mechanism design, e.g., lottery [13] and bargaining [19].

Yang et al. [20,21] considered the incentive mechanism design in both the platform-centric model
and user-centric model. In the platform-centric model, a Stackelberg game is used as the incentive
mechanism. The platform as the leader in the game announces its total reward at the beginning. Then,
the workers are motivated to participate in the sensing based on their strategies and the announced reward.
In the worker-centric model, an auction-based incentive mechanism is proposed, which is proved to be
computationally efficient, individually rational, profitable, and truthful. The authors firstly designed a
reverse auction based on the Local Search-Based (LSB) auction to achieve an approximation of the optimal
solution. However, the LSB auction cannot ensure truthfulness. In order to achieve truthfulness, a novel
auction mechanism called MSensing is proposed by leveraging the well-known Myerson’s theorem [22].
The simulation results show that truthfulness is guaranteed in the proposed mechanism.

In [20], the bids are the sensing time of workers. Differently, Wang et al. [23] presented an incentive
mechanism taking the quality of crowd (QoC) into account. The QoC is the measurement of the workers’
potential capacities to provide high-quality data or services. Four different models are defined to calculate
the value of QoC, i.e., the linear model, probabilistic coverage model, logarithmic model, and hyperbolic
tangent model. The proposed mechanism takes the QoC and costs of workers as bids and selects winners
to minimize the total cost while satisfying a quality requirement. The truthfulness of the mechanism
is proved by leveraging Myerson’s theorem. The simulation results show that the proposed incentive
mechanism produces the near-optimal solutions.

In addition to truthfulness, how to maintain a large user group is another key problem in the long-term
sensing. Lee et al. [24,25] designed a reverse auction based dynamic price (RADP) mechanism to maintain
an adequate number of workers. The proposed mechanism prevents the workers from dropping out
of sensing activities by virtual participant credit (VPC), which is provided to workers who lose in the
previous auction. The VPC plays two roles during the long-term sensing. First, it improves the winning
probability of weak workers if the workers keep losing all the time. Second, it would compensate the
workers for staying in the auction by an extra credit when the workers win the auction. As a result
of winning, the VPC is paid to the winners at once and then reset to zero. In addition, the mechanism
reveals the highest selling price to the dropped workers to attract them back to the auction. Compared
with a random-selection-fixed-price incentive mechanism, the simulation results show that the proposed
mechanism not only decreases the cost but also maintains the desired number of workers.

We have reviewed two key challenges in incentive mechanism design, i.e., truthfulness and long-term
sensing. Apparently, there are many other research directions. For instance, if the cost budget is changed
to the payment budget, the incentive mechanism design would target a budget feasible mechanism [26,27].
Instead of truthfulness, some efforts are made to solve the intractable allocation problem by using a
randomized mechanism to achieve truthfulness in expectation [28,29]. In the long-term sensing, online
mechanisms have started to attract researchers’ attention. Several works have been published in the area
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of online mechanism design [30,31]. In addition, privacy is another focus in recent research on incentive
mechanism design [32,33].

The research so far mainly focuses on the single-parameter environment, which can leverage
Myerson’s theorem to prove the truthfulness. In some studies, the workers just need to bid their costs on
the platform and their task sets are assumed to be truthfully submitted to the platform. However, in the
worker-centric mode, which is considered in our work, the workers may manipulate their task sets because
they are allowed to plan their paths. As a result, the platform cannot be assumed to know a priori the tasks
to be completed by each worker. The workers should bid both their task sets and the corresponding costs
to the platform. Myerson’s theorem cannot be applied in this situation, since it is not a single-parameter
environment any more. In addition, the VCG mechanism is also not viable due to the computational
intractability of the winner selection problem. To address these issues, we aim to design an incentive
mechanism that is computationally efficient and truthful with respect to both the task sets and costs of
workers.

2.2. Task Allocation

Task allocation aims to efficiently assign the tasks among the workers. It is a key problem of MCS
and directly determines the performance of an MCS application. An efficient task allocation method can
reduce the costs of the workers and further save the budget of the platform and requesters. The task
allocation problem has been addressed in different perspectives, e.g., with single task or multiple tasks,
and with the goals of low cost or quality enhancement [34]. In our proposed framework, we intend to
address the task allocation problem by taking user mobility into account and thereby turning it into the
path planning problem.

Similar to our path planning problem, He et al. [35,36] considered the mobility of workers and
proposed a task allocation problem within the travelling distance limit. The target of the platform is to
maximize the value of tasks by properly recruiting workers who collect the data samples. In order
to suppress data redundancy, the platform limits the maximum number of workers for each task.
A local-ratio-based algorithm is proposed to achieve the target of the platform, which is shown to be an
efficient solution by the simulation results.

The data quality and data cost are two fundamental elements in task allocation [37]. There is a
trade-off between the data quality and the data cost. Improving the data quality requires the platform to
spend more to attract the workers who are able to provide higher data quality. That is, the improvement of
data quality may cause an increase of the data cost. Zhou et al. [38] and Zhang et al. [39] both considered
the data quality and data cost. However, the data quality and data cost have different definitions. In [38],
the authors aimed at maximizing the data quality at a cost of the travelling distance, while, in [39], the data
quality is defined as the coverage and the target of the platform is to maximize the coverage of the tasks
under the budget constraint.

Some previous works formulate the task allocation problem as the set cover problem, in which each
worker has a sensing range and can complete one or more tasks located within the range. Then, the platform
assigns the tasks to the workers to achieve a maximum coverage of the tasks as in the platform-centric
mode. Here, a task is covered when it is finished by at least one worker. However, user mobility is often
neglected in such formulation. In our study, we formulate the task allocation problem as the path planning
problem in the worker-centric mode, taking user mobility into account. Compared with the previous
studies for the platform-centric mode, our formulation allows the workers to be more influential and
more independent.
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3. System Model and Problem Formulations

In this section, we first provide the system model for our proposed technical framework. Then,
we formulate the path planning problem and the incentive mechanism design problem in detail. Finally,
we analyze the computational hardness of our formulated problems. For easy reference, we list the
important notations used in this paper in Table 1.

Table 1. Notation definitions.

Notations Definitions Notations Definitions

T Set of tasks Fi Path and true data set of worker i
tj Task j B Budget of total cost
W Set of workers Si Data set in the bid of worker i
wi Worker i bi Cost in the bid of worker i
vj Original value of task j ci True cost of worker i
gj Energy cost of task j γi True cost per distance of worker i
hi Intrinsic path’s length of worker i xi Winner assignment of worker i
θi Energy limit of worker i yj Number of competitors for task j
li Maximum travelling distance of worker i v̂j Cumulative value of task j

3.1. System Model

As shown in Figure 1, the requesters post their tasks to the platform and each worker plans the
path based on the posted task information. Then, the incentive mechanism receives the budgets from
the requesters and the bids from the workers. After the winner selection and payment determination,
the incentive mechanism returns the data that are provided by the winners to the requesters and the
payments to the workers. Therefore, there are two basic problems in our proposed framework, i.e., the path
planning problem for workers and the incentive mechanism design for the platform.

When it comes to the path planning, we consider a special scenario shown in Figure 2. There are
a set of tasks and a set of workers, denoted by T = {t1, t2, ..., tj, ..., tm} and W = {w1, w2, ..., wi, ..., wn},
respectively. The tasks are uniformly distributed in the area, while the workers often move from the start
points (e.g., houses) to the end points (e.g., working places). The start points and end points of workers
follow two different uniform distributions. As shown in Figure 2, the direct paths from the start points to
the end points are called the intrinsic paths of workers. In addition, for every posted task tj ∈ T, its value
and energy cost are defined by its requester, which are denoted by vj and gj, respectively. Note that our
proposed solutions are not limited by this sensing scenario.

Figure 2. An example scenario.
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3.2. Path Planning

Since the workers are given the autonomy to plan their own paths, the workers desire to find a
strategy to improve their competitiveness. Without loss of generality, we assume that the platform makes
the decision on behalf of requesters in the following. It is known to the workers that the requesters or
the platform intend to achieve the largest value of the posted tasks. Therefore, it is a natural strategy for
the workers to choose tasks of large value. However, the resources of workers are limited. The workers
have to plan their paths under some constraints. First of all, every worker wi ∈W has the fixed start point
and end point, which leads to an intrinsic path with length hi. Second, for every worker wi ∈W, there is
an energy limit θi, which is the maximum battery power that worker wi is willing to spend on sensing.
At last, every worker wi ∈W has a maximum travelling distance li, which is larger than the length hi of
the intrinsic path. Since every worker is an independent planner, there are n path planning problems and
the problem for worker wi is formulated as follows:

max. ∑
tj∈Fi

vj, (1a)

s.t. d(Fi) ≤ li, (1b)

∑
tj∈Fi

gj ≤ θi, (1c)

where Fi denotes the designed path of worker wi and d(Fi) is a function to calculate the length of path Fi.

3.3. Incentive Mechanism Design

The platform collects the budgets from the requesters and the bids from the workers. Here, we assume
that the platform sets a budget B for the total cost of tasks after integrating all the budgets of the requesters.
For each worker wi ∈W, the bid is a pair of the task set and the cost, which is denoted by (Si, bi). Since the
true task set of worker wi is the set of tasks along path Fi, for notation convenience, we also use Fi to
represent the true task set of worker wi. As seen here, worker wi only submits the bid to the platform
without any location information to protect the privacy. The true cost of worker wi is defined to be
proportional to the additional travelling distance beyond that of the intrinsic path, which is the difference
between total travelling distance d(Fi) and the length hi of the intrinsic path. Specifically, the true cost ci of
worker wi is characterized by

ci(Fi) = γi × (d(Fi)− hi), (2)

where γi is the true cost per distance of worker wi.
The true cost in Equation (2) depends on the real expenses of the work for travelling the additional

distance. However, worker wi may not submit its true task set along path Fi to improve its winning chance.
For example, worker wi may include task tj /∈ Fj in its bid Si. Task tj may be to take a photo of a building.
Suppose that worker wi wins, but it will not pass by the building when travelling along path Fi and thus
cannot complete this task. Thus, worker wi just submits a dog’s photo pretending to have finished the task.
In this case, the platform can catch that worker wi is cheating using many techniques to detect such fake
data, e.g., machine learning methods. Then, worker wi is deprived of the payment and even subject to
more serious punishment. As seen, such cheating behaviour can cause a prohibitively large cost to the
worker. Accordingly, we model these characteristics of the cost bid bi of worker wi for set Si as follows:

b(Si) =

{
bi, Si ⊆ Fi,
+∞, Si * Fi.

(3)
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Here, if worker wi bids fewer tasks in the task set, i.e., Si ⊆ Fi, the cost bid is still bi since the platform
cannot find any fake data in the bid of worker wi. On the other hand, if worker wi bids for some tasks that
are not included in its path Fi, i.e., Si * Fi, the cost to worker wi can be infinitely large. That is, the platform
can punish worker wi and exclude it from this and any future bidding.

Next, we define the task value in more detail. Although every task has its own value, it is still a
problem for the platform to evaluate the total value of a task when duplicate data samples are received.
This is known as the data redundancy problem. With data redundancy, it is possible for the platform to
spend too much budget on a specific task, which is destructive to the coverage of tasks. To solve the data
redundancy problem, we employ the cumulative value of a task by taking into account all competitors for
it. If we denote the assignment of winners by {xi|∀wi ∈W}, where xi = 1 indicates worker wi is selected
as a winner and otherwise xi = 0. Then, for every task tj ∈ T, the number of competitors for it, denoted by
yj, is calculated by

yj = ∑
wi∈W

xi · 1(tj ∈ Si), (4)

where 1(·) is the indicator function, which equals 1 when the condition in the function argument is
satisfied. For every task tj ∈ T, its original value is vj. Then, its cumulative value, denoted by v̂j, follows
the diminishing marginal increase and is characterized by

v̂j = vj × log2(1 + yj). (5)

Since the true task set and the true cost are the private information of worker wi, the bids received
by the platform may not be the true information. As a result, the platform has to design an incentive
mechanism to motivate the workers to reveal their true information. The incentive mechanism needs to
solve two problems, i.e., the winner selection and payment determination. The result of winner selection
is the foundation to determine the payments. Thus, we consider the winner selection problem first.

Based on the above definitions for costs of workers and values of tasks, the winner selection problem
is formulated as follows:

max. ∑
tj∈T

v̂j, (6a)

s.t. ∑
wi∈W

xi · b(Si) ≤ B, (6b)

xi = {0, 1}, ∀wi ∈W. (6c)

In problem (6), the objective of the platform is to maximize the cumulative value of the completed
tasks. In addition, the total cost of all winners cannot be larger than the budget of total cost. After the winner
selection, a payment rule needs to be applied to determine the payments to the winners, which makes the
incentive mechanism complete.

3.4. Computational Hardness

In the following, we first analyze the computational hardness of the path planning problem.

Theorem 1. The path planning problem in Equation (1) is NP-hard.
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Proof. First, we consider the decision form of problem (1), given by

find. Fi, with ∑
tj∈Fi

vj ≥ ρ, (7a)

s.t. d(Fi) ≤ li, (7b)

∑
tj∈Fi

gj ≤ θi. (7c)

As seen, the decision form is to obtain a yes-or-no answer to the problem that whether the given path
Fi has a value not less than the threshold ρ. Obviously, the decision form in Equation (7) is NP, since it only
takes a polynomial time at most of O(m) to verify the constraints and compare the objective value with
the threshold ρ.

Next, we prove that problem (7) is NP-complete, by reducing a known NP-complete problem,
i.e., the decision form of the knapsack problem, to an instance of problem (7). The knapsack problem is to
select a subset from a given set of items, each item with a weight and a value, to maximize the total value
under a limit of the total weight. The decision form of the knapsack problem is to determine whether a
value of ν can be achieved without exceeding the weight ω.

In the following, we construct an instance of problem (7) to solve the decision form of the knapsack
problem. In constraint (7b), we assume that there is a very large maximum travelling distance li of worker
wi, which is enough to take all the tasks. As a result, we only need to consider the energy constraint (7c).
The energy costs of tasks correspond to the weights of items in the knapsack problem and the energy limit
θi is mapped to the total weight ω. The values of tasks and the total value are mapped to the values of
items and the total value ν in the knapsack problem, respectively. Therefore, our constructed instance
of problem (7) is exactly a decision form of the knapsack problem, which is known to be NP-complete.
Thus, the decision form of the path planning problem (7) is also NP-complete. Hence, the corresponding
optimization form defined in Equation (1) is NP-hard.

As proved in Theorem 1, the path planning problem is NP-hard. However, when the problem size
is small, we can reformulate it as an integer linear program (ILP). Since the path planning problem is
essentially to find a path that traverses a subset of tasks under certain constraints, we reformulate it as a
graph-based ILP in the following:

max.
m

∑
k=1

vk(
m+1

∑
j=0

qj,k), (8a)

s.t.
m+1

∑
j=0

m+1

∑
k=0

dj,k · qj,k ≤ li, (8b)

m

∑
k=1

gk(
m+1

∑
j=0

qj,k) ≤ θi, (8c)

m+1

∑
j=0

qj,k ≤ 1, ∀k ∈ [0, m + 1], (8d)

m+1

∑
k=0

qj,k ≤ 1, ∀j ∈ [0, m + 1], (8e)
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m+1

∑
k=0

(qj,k − qk,j) =


1, j = 0,
0, ∀j ∈ [1, m],
−1, j = m + 1,

(8f)

rj,k ≤ (m + 1) · qj,k, ∀j ∈ [0, m + 1], ∀k ∈ [0, m + 1], (8g)
m+1

∑
k=0

r0,k =
m+1

∑
j=0

m+1

∑
k=1

qj,k, (8h)

qj,j = 0, ∀j ∈ [0, m + 1], (8i)
m+1

∑
j=0

rj,k −
m+1

∑
j=0

rk,j =
m+1

∑
j=0

qj,k, ∀k ∈ [1, m], (8j)

qj,k = {0, 1}, ∀j ∈ [0, m + 1], ∀k ∈ [0, m + 1], (8k)

rj,k = {0, 1, ..., m + 1}, ∀j ∈ [0, m + 1], ∀k ∈ [0, m + 1]. (8l)

Here, for every worker wi, there are (m + 2) nodes in the path planning problem including the
start point of worker wi, m tasks, and the end point of worker wi. Then, we can construct a weighted
bidirectional graph with these (m + 2) nodes, in which the starting point only has outgoing edges to all
other nodes, the end point only has incoming edges, and, for the remaining m nodes, each has an edge
to the other nodes. The weight for an edge between two nodes is the travelling distance between them.
Based on this graph, the path planning problem is to find a path, represented by qj,k, ∀j, ∀k, such that the
distance and energy cost limits are satisfied. Here, qj,k equals 1 if the path solution includes the edge from
node j to node k and qj,k equals 0 otherwise.

Based on the graph model and the path representation, Equation (8a) is the objective function to
maximize the value of the path. Equation (8b) is the travelling distance limit and Equation (8c) is the
constraint of energy cost. Equations (8d–f) define the in-degree, out-degree, and their relationship with
each node. As seen, Equations (8d–f) ensure that the solution is a path, in which the degree of each node
on the path is restricted by 1, and the start and end points of worker wi are the first and last nodes of the
path, shown in Figure 3a.

To ensure that the path solution as shown in Figure 3a does not include any loop, we use additional
variables rj,k, which can be understood as some flow amount for the edge from node j to node k. Consider
that the start point of worker wi produces a flow of an amount at most (m + 1), and each other node
consumes one unit of the flow. Then, the variables rj,k can be used to ensure that the path defined by qj,k
is fully connected and loop-free. First, constraint (8g) means that, if the path does not include an edge
between two nodes, there is no flow between them. Then, constraint (8h) defines the initial flow at the start
point, which is limited by the total number of nodes along the path excluding the source. Next, constraint
(8i) removes the self-loops of all nodes (e.g., the self-loop of task #1 in Figure 3b). Constraint (8j) indicates
that every edge on the path consumes one unit of the flow, which excludes the loops involving more than
one node (e.g., the loop with tasks #2 and #3 in Figure 3b). Finally, constraints (8k,l) limit the range of qj,k
and rj,k, respectively.
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(a) (b)

Figure 3. Paths without loops and with loops. (a) without loops; (b) with loops.

Next, we analyze the winner selection problem for the incentive mechanism and have the following
conclusion on its computational hardness.

Theorem 2. The winner selection problem in Equation (6) is NP-hard.

Proof. If we consider the cost of workers in Equation (6b) as the weight of items and the budget B
as the total weight ω in the knapsack problem, the winner selection problem (6) is an instance of the
knapsack problem. The only difference between the winner selection problem and the knapsack problem
is the way to calculate the total value. In the knapsack problem, the total value is calculated by linearly
adding up all the values of the selected items, while the total value of the winner selection problem is
determined by adding up the cumulative values of paths according to Equation (5). Actually, the winner
selection problem (6) is still a combinatorial optimization problem as a generalized knapsack problem,
which is NP-hard. The remaining of the proof is similar to that for Theorem 1, which is skipped here
for conciseness.

4. Solutions to Formulated Problems

In this section, we propose a heuristic bidirectional searching algorithm for the path planning problem
formulated in Equation (1) and an incentive mechanism, which first solves the winner selection problem in
Equation (6) and then determines the payments based on the result of winner selection. At last, we prove
that the proposed incentive mechanism is computationally efficient, individually rational, and truthful.

4.1. Heuristic Bidirectional Searching Algorithm

As analyzed in Section 3.4, the path planning problem is NP-hard. The search space of the solutions
to the path planning problem is huge, since MCS is a large-scale sensing paradigm with massive tasks and
workers. In addition, the workers need to consider not only the selection of tasks but also the order of the
selected tasks, which affects the length of the designed path. Thus, it is hard to find an efficient algorithm
to solve the path planning problem.

We propose a novel heuristic bidirectional searching algorithm to solve the path planning problem,
given in Algorithm 1. As seen, there are three phases of Algorithm 1, i.e., forward searching, backward
searching, and selection. In the forward searching, all the variables are first initialized (lines 1–5). Next,
the task with the largest expected value is added into the path and all variables are updated (lines 6–12).
The expected value of a task is discussed later. Here, ˆdistance in line 6 is different from distance in
line 10. When we calculate the current travelling distance of the path, denoted by distance, we only need to
consider the distance from the current location to the location of selected task, denoted by d(location, loct[j]).
However, when we investigate whether a task is eligible to be selected, we have to consider two distances
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from the current location to the location of selected task and further to the destination. If the travelling
distance limit is enough to take a specific task, while not enough to go to the destination after finishing this
task, the path cannot include this task due to the travelling distance constraint. Thus, ˆdistance includes
distances of two segments associated with a single task. Since distance does not count the last mile to
the destination, the distance from the last task to the end point is added into the total travelling distance
(line 13).

Algorithm 1: Heuristic bidirectional searching algorithm.
Input: T (set of tasks), wi (worker wi), loct (locations of tasks), locs (departure of worker wi), loce

(destination of worker wi), li (maximum travelling distance of worker wi), θi (maximum
enegy cost of worker wi), {gj|∀tj ∈ T} (energy costs of tasks), {vj|∀tj ∈ T} (original values
of tasks)

Output: Fi (travelling path of worker wi)
// Phase 1: Forward search

1 Fi ← ∅
2 value← 0
3 distance← 0
4 energy← 0
5 location← locs

6 while ˆdistance ≤ li and energy ≤ θi do
7 Find the task tj with the largest expected value
8 Calculate the distance d(location, loct[j])
9 location← loct[j]

10 distance← distance + d(location, loct[j])
11 energy← energy + gj

12 value← value + vj

13 distance← distance + d(loct[j], loce)

// Phase 2: Backward search
14 F′i ← ∅
15 loce and locs exchange with each other
16 Repeat the process of forward search
17 Achieve the value of F′i as value′

// Phase 3: Selection
18 if value > value′ then
19 return Fi
20 else
21 return F′i

In the backward searching, we plan a path from the end point to the start point by the method
mentioned above (lines 14–17). Since the distribution of tasks is not symmetrical in most instances,
the path of backward searching is not the same as the path of forward searching, while the path of
backward searching is also an optimized solution to the path planning problem (1). At last, we select a
better solution as the final path from the results of forward searching and backward searching (lines 18–21).

In line 7, we select the task with the largest expected value, which is defined by

v(tj) = vj + E(l̂i, θ̂i). (9)
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Here, for every task tj ∈ T, its expected value v(tj) is divided into two parts, i.e., the current value and
future value. The current value of task tj is its posted value vj, while the future value is obtained by the
function E(l̂i, θ̂i) to evaluate the value that can be achieved in the future. If we just consider the current
value vj, the worker may first take the task with the largest current value, which is also subject to a very
large energy cost or distance cost. In this case, the worker spends most resources on this task and has no
space for other tasks, while there may exist a better solution of taking two tasks with the second and third
largest values. Thus, we need a way to evaluate the value that is achievable with the remaining resources
(i.e., the remaining energy limit θ̂i and remaining travelling distance limit l̂i) after taking the task with the
largest value. Here, in the set of unvisited tasks, we simply take the task with the largest value that meets
the requirements for l̂i and θ̂i. Note that task tj is already visited when we evaluate the future value and
thus is not counted in this step. In this way, we obtain the future value E(l̂i, θ̂i) of task tj, which is added
to the posted value vj to evaluate the expected total value of task tj as in Equation (9).

In the worst case, line 7 for the calculation of future work takes time O(m) to explore all m tasks and
find the task with the largest value in the set of unvisited tasks. Meanwhile, the selection of the task in each
iteration of lines 6–12 is also O(m) since we have to consider every task in the worst case. Thus, the time
complexity of forward searching in lines 1–13 is at most O(m2). The backward searching in lines 14–17
has the same complexity as the forward searching and the selection in lines 18–21 is O(1). Therefore,
the overall time complexity of Algorithm 1 is O(m2). Since Algorithm 1 is proposed for only one worker
and workers are independent decision makers, the total computing time for the path planning problem is
at most O(nm2).

4.2. Truthful Incentive Mechanism

Based on the result of path planning, every worker wi ∈ W submits the bid (Si, bi) to the platform.
Algorithm 2 gives the details of the proposed incentive mechanism for the platform to select the winners
and determine the payments. There are two phases of Algorithm 2, i.e., winner selection and payment
determination. In the winner selection, Γ is the union of winners’ task samples and v(Γ) is a function to
compute the value of the union Γ according to Equation (5). The platform keeps selecting the worker with
the largest marginal contribution of value per cost in each iteration (lines 5–12), after the initialization
(lines 1–4). Here, C is used to record the current total cost and the budget constraint is checked in each
iteration before adding the task set of a winner into Γ (line 7).

In the payment determination, the mechanism runs a virtual auction to determine the payment for
every winner (lines 14–28) and sets the payment to 0 for others (lines 29–30). For every winner (line 13),
the virtual auction starts after the initialization (lines 15–18) and excludes the winner itself (line 21). Then,
the virtual auction keeps selecting the worker with the largest marginal contribution of value per cost in
each iteration (lines 19–27). Here, Ki is an integer that counts the iterations of lines 19–27. Meanwhile,
a temporary payment is calculated in each iteration taking the selected worker and the winner into account
(line 23). The payment to the winner is determined as the largest temporary payment in all iterations
during the virtual auction (line 28). At last, after all the virtual auctions are completed, the mechanism
returns the selected winners and corresponding payments (line 31).

Our proposed incentive mechanism is computationally efficient, individually rational, and truthful.
First, we need to prove the following lemma, which will be used in our proofs for the three properties.

Lemma 1. Given Γ, if X ⊆ Y, we have:

v(Γ ∪ X) ≤ v(Γ ∪Y), (10)

where the equivalent is obtained only if X = Y.
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Algorithm 2: Truthful incentive mechanism.
Input: {vj|∀tj ∈ T} (original values of tasks), {Si|∀wi ∈W} (task sets in bids), {bi|∀wi ∈W}

(costs in bids), B (cost budget)
Output: {xi|∀wi ∈W} (indications of winners), {pi|∀wi ∈W} (payments to workers)
// Phase 1: Winner selection

1 Γ← ∅
2 C ← 0
3 for i from 1 to n do
4 xi ← 0

5 while true do
6 j = arg maxk{

v(Γ∪Sk)−v(Γ)
bk

}
7 if C + bj ≤ B and v(Γ ∪ Sj)− v(Γ) > 0 then
8 xj ← 1
9 C = C + bj

10 Γ = Γ ∪ Sj

11 else
12 break

// Phase 2: Payment determination
13 for i from 1 to n do
14 if xi == 1 then
15 Γ′ ← ∅
16 C′ ← 0
17 pi ← 0
18 Ki ← 0
19 while true do
20 Ki = Ki + 1

21 j = arg maxk 6=i{
v(Γ′∪Sk)−v(Γ′)

bk
}

22 if C′ + bj ≤ B and v(Γ′ ∪ Sj)− v(Γ′) > 0 then
23 p′Ki

= bj · v(Γ′∪Si)−v(Γ′)
v(Γ′∪Sj)−v(Γ′)

24 C′ = C′ + bj

25 Γ′ = Γ′ ∪ Sj

26 else
27 break

28 pi = max{p′z|∀z ∈ [1, Ki]}
29 else
30 pi = 0

31 return {xi|∀wi ∈W}, {pi|∀wi ∈W}

Proof. According to Equation (5), an additional task sample brings extra value to the platform.
When X ⊂ Y, i.e., Γ ∪ X ⊂ Γ ∪ Y, there are some additional task samples in Γ ∪ Y beyond those in
Γ ∪ X. Thus, the value of Γ ∪ Y is larger than that of Γ ∪ X, i.e., v(Γ ∪ X) < v(Γ ∪ Y). When X = Y,
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i.e., Γ ∪ X = Γ ∪Y, Γ ∪Y and Γ ∪ X have the same data samples and thereby the same value. In summary,
v(Γ ∪ X) ≤ v(Γ ∪Y) and the equality is valid only if X = Y.

In addition, the utilities of workers are defined as

ui =

{
pi − ci, wi wins,
0, otherwise.

(11)

Theorem 3. The proposed incentive mechanism in Algorithm 2 is computationally efficient.

Proof. The initialization of the winner selection (lines 1–4) takes a time of O(n) and the selecting process
(lines 5–12) takes a time of at most O(n) when all the workers are selected as winners in the worst case.
Thus, the time complexity of the winner selection phase is O(n). In the worst case, when all workers
are winners, the mechanism runs a virtual auction for every worker. The time complexity of a single
virtual auction (lines 15–28) is O(n) because the virtual auction is similar to the winner selection problem.
There are n workers in total. Thus, the computing time of the payment determination (lines 13–30) is at
most O(n2). In total, the time complexity of the incentive mechanism in Algorithm 2 is O(n2), which proves
the computational efficiency.

Theorem 4. The proposed incentive mechanism in Algorithm 2 is individually rational.

Proof. A mechanism is considered as individually rational when all workers receive non-negative utilities
by bidding truthfully. On one hand, if a worker loses by bidding truthfully, the utility of the worker is
zero according to Equation (11), which is non-negative. On the other hand, for every worker wi who
wins by bidding truthfully, we assume that worker wi wins in the z-th iteration in the winner selection.
It can be observed that, before the z-th iteration, Γ in the winner selection and Γ′ in the virtual auction of
worker wi are the same. In the z-th iteration of the virtual auction, worker wj is selected and the temporary

payment p′z = bj · V(Γ′∪Fi)−V(Γ′)
V(Γ′∪Sj)−V(Γ′) = bj · V(Γ∪Fi)−V(Γ)

V(Γ∪Sj)−V(Γ) . In the winner selection, since worker wi wins in the

z-th iteration and worker wj does not win before the z-th iteration, we have V(Γ∪Fi)−V(Γ)
ci

≥ V(Γ∪Sj)−V(Γ)
bj

.

Applying this inequality into p′z, we can obtain p′z ≥ ci. Because the final payment is the maximum
of all the temporary payments, we finally get pi ≥ p′z ≥ ci. According to Equation (11), the utility of
worker wi as a winner is non-negative since ui = pi − ci ≥ 0. In conclusion, the utilities of all workers
are non-negative regardless of whether they win or lose, which proves the individual rationality of the
proposed mechanism.

Theorem 5. The proposed incentive mechanism in Algorithm 2 is truthful.

Proof. A mechanism is considered as truthful when all workers receive the maximum utilities by bidding
truthfully. In our proposed incentive mechanism, we need to prove that the workers are truthful with
respect to both the task set and the cost. In the following proof, we consider any worker wi ∈ W and
analyze three cases that worker wi may attempt to lie to improve its utility.

• Case 1: Si * Fi. In this case, since worker wi includes tasks that it cannot complete in set Si, the cost
bid bi can be infinitely large according to Equation (3) if the platform detects and punishes such
cheating behaviour. As shown in two sub-cases, worker wi loses anyway by bidding (Si, bi) and its
utility cannot be improved regardless of whether it wins or loses by bidding truthfully.

(i) When worker wi loses by bidding truthfully, its utility is 0, which is the same as that by bidding Si.
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(ii) When worker wi wins by bidding truthfully, the utility is non-negative, which is reduced to 0 if
it bids Si.

• Case 2: Si ⊆ Fi and bi ≥ ci.

In this case, since Si ⊆ Fi, we have v(Γ∪ Si) ≤ v(Γ∪ Fi) according to Equation (10). Then, v(Γ∪ Si)−
v(Γ) ≤ v(Γ ∪ Fi)− v(Γ), further v(Γ∪Si)−v(Γ)

bi
≤ v(Γ∪Fi)−v(Γ)

bi
≤ v(Γ∪Fi)−v(Γ)

ci
because bi ≥ ci. That is,

worker wi cannot improve its marginal value contribution per cost by bidding (Si, bi). As a result,
worker wi cannot change from lose to win by manipulation. Next, we consider three remaining
sub-cases if worker wi lies and changes from lose to lose, from win to lose, and from win to win.

(i) If worker wi loses by bidding truthfully and still loses by bidding (Si, bi), its utility is unchanged
as 0.

(ii) If worker wi wins by bidding truthfully, its utility is non-negative. If worker wi changes from
win to lose by bidding (Si, bi), its utility reduces to 0 and is not improved by lying.

(iii) If worker wi changes from win to win by bidding (Si, bi), according to Equation (11), its utility
depends on its payment since the worker utility is always based on the unchanged true cost
ci. In its payment determination, since Si ⊆ Fi, we have v(Γ′ ∪ Si)− v(Γ′) ≤ v(Γ′ ∪ Fi)− v(Γ′),
and further bj · v(Γ′∪Si)−v(Γ′)

v(Γ′∪Sj)−v(Γ′) ≤ bj · v(Γ′∪Fi)−v(Γ′)
v(Γ′∪Sj)−v(Γ′) . Thus, the temporary payment by biding Si is

not larger than that by bidding Fi in all steps. Therefore, the final payment by bidding Si is not
larger than that by bidding Fi, and its utility is not improved by untruthful bidding (Si, bi).

• Case 3: Si ⊆ Fi and bi < ci. In this case, we consider four sub-cases depending on whether worker wi
loses or wins when bidding truthfully and untruthfully.

(i) If worker wi wins by bidding truthfully, its utility is non-negative. When worker wi changes
from win to lose by bidding (Si, bi), its utility is decreased to 0.

(ii) If worker wi changes from win to win by bidding (Si, bi), its utility cannot be improved as proved
in Case 2, as the payment of worker wi does not depend on its cost bid bi.

(iii) If worker wi loses by bidding truthfully, its utility is 0. When worker wi changes from lose to
lose by bidding (Si, bi), its utility is still 0.

(iv) If worker wi changes from lose to win by bidding (Si, bi), we need to evaluate the change of
its utility. Assume that the maximum temporary payment is obtained at the z-th step in its
virtual auction. Then, we have pi = p′z = bj · v(Γ′∪Si)−v(Γ′)

v(Γ′∪Sj)−v(Γ′) ≤ bj · v(Γ′∪Fi)−v(Γ′)
v(Γ′∪Sj)−v(Γ′) , since v(Γ′ ∪ Si) ≤

v(Γ′ ∪ Fi) according to Equation (10). As we already know that worker wi loses by bidding (Fi, ci)

in the winner selection, we can obtain v(Γ∪Fi)−v(Γ)
ci

<
v(Γ∪Sj)−v(Γ)

bj
at the z-th step of the winner

selection. We can rewrite it as v(Γ′∪Fi)−v(Γ′)
ci

<
v(Γ′∪Sj)−v(Γ′)

bj
because Γ and Γ′ are the same before

the z-th step. Thus, we have pi ≤ bj · v(Γ′∪Fi)−v(Γ′)
v(Γ′∪Sj)−v(Γ′) < ci. Therefore, ui = pi − ci < 0. As seen,

the utility of worker wi is reduced to be negative by bidding (Si, bi).

Based on the above analysis, we can see that every worker maximizes its utility only by bidding
truthfully in the data set and cost. Therefore, the proposed mechanism is truthful.

5. Numerical Results and Discussion

In this section, we evaluate the performance of the proposed heuristic bidirectional searching
algorithm and incentive mechanism by comparing them with the baselines. For the path planning problem,
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we consider two baseline algorithms and reformulate the path planning problem to obtain the optimal
solution. For the incentive mechanism design, we leverage the well-known VCG mechanism to achieve
the same performance as the proposed incentive mechanism, and then compare their payments for such
performance.

5.1. Baselines for Path Planning

As proved in Theorem 1, the path planning problem is NP-hard. Based on the ILP formulation
in Equation (8) for the problem, we can obtain the optimal solution using some ILP solvers when the
problem size is not large. In addition, we consider some heuristic approximation algorithms, which are
needed for large-sized problems. Since the objective in the path planning problem (1) is the largest value
of the path, it is intuitive to keep selecting the task with the largest value until the constraints are not
satisfied. This method, known as the value-first algorithm in the following, is simple and effective. However,
the drawback is that it is short-sighted and never considers the remaining resources. As a result, it may
not achieve a large final value.

From another perspective, we can keep taking the task with the smallest cost for resources to find a
feasible path. Here, there are two resources in the path planning problem, i.e., energy cost and travelling
distance. In [40], the authors proposed an algorithm called minimum weighted sum first heuristic,
which gives weights to two different constraints. Following this idea, we define the cost of resources of

each worker wi in a similar way as
dj

l̂i
+

ej

θ̂i
. Here, dj is the travelling distance cost to finish task tj and l̂i

is the remaining travelling distance limit of worker wi. In the second term, ej is the energy cost to finish
task tj and θ̂i is the remaining energy limit of worker wi. Applying this resource cost definition to the path
planning problem, we consider the resource-first algorithm, which keeps selecting the task with the smallest
resource cost as long as the constraints are satisfied.

5.2. VCG Mechanism

In order to evaluate the performance of our proposed incentive mechanism, we use the well-known
VCG mechanism as a benchmark. However, we cannot directly use the winner selection problem (6) in
the VCG mechanism because problem (6) involves both the values of the platform toward tasks and the
costs of workers in the bids. Thus, we have to adapt the winner selection problem for the VCG mechanism.
Let Λ denote the maximum value in Equation (6a) obtained by the proposed mechanism. Then, we define
the winner selection problem in the VCG mechanism as

min. ∑
wi∈W

xi · b(Si), (12a)

s.t. ∑
tj∈T

v̂j ≥ Λ, (12b)

xi = {0, 1}, ∀wi ∈W. (12c)

Here, the VCG mechanism can determine the winners such that the achieved value is at least Λ
as constrained by Equation (12b). To calculate the payments for these selected winners, there remains
a problem before the VCG mechanism can be applied. If the path of one specific worker wi has a very
large value, worker wi would be selected as a winner. When determining the payment for winner wi,
the VCG mechanism needs to exclude wi from problem (12) to compute the total value. The VCG payment
is the difference between the total value without worker wi’s presence and the total value when worker wi
participates, but its contribution to the total value is excluded. Hence, it is possible that the maximum
achievable value without this worker is smaller than Λ, which means problem (12) does not have a feasible
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solution without worker wi. The VCG payment to worker wi becomes infinity. In order to solve this issue,
we consider a dummy worker with a task set of value Λ and a cost bid β. As a result, the payment to every
winner is not more than β, which serves as the reserve wage for the platform to recruit a worker.

In a small-scale scenario, the modified winner selection problem (12) for the VCG mechanism can
be solved by a brute-force algorithm to obtain the optimal solution. It is worth mentioning that we can
also obtain the optimal solution to the original winner selection problem (6) in our proposed incentive
mechanism by exhaustive search.

5.3. Simulation Settings

After giving the baselines, we conduct comprehensive simulations to evaluate the performance of our
proposed heuristic bidirectional searching algorithm and incentive mechanism. Table 2 lists the values
of the key simulation parameters. First of all, we set up the sensing region as a 400 × 200 rectangle.
The start points and end points of workers, and positions of tasks are generated uniformly within this area,
respectively. Figure 4 shows these locations and the intrinsic paths of workers. As seen, the start points of
workers are located in the residential area (1 ≤ x ≤ 100) and their end points fall into the business area
(300 ≤ x ≤ 400). The sensing tasks are distributed in the middle square area (100 ≤ x ≤ 300).

Table 2. Simulation parameters.

Parameter Value

Number of tasks m 30
Number of workers n 10
Energy cost of tasks gj 1 ∼ 3
Original value of tasks vj 5 ∼ 10
Maximum travelling distance of workers li 1.2× hi
Energy limit of workers θi 30
True cost per distance of workers γi 1
Cost budget of the platform B 500

Figure 4. Simulation scenario.

There are 30 tasks and 10 workers in the scenario. For tasks, the energy costs are randomly selected
from 1 to 3 as an integer number indicating the low level, mediate level, and high level of energy
consumption. The original values of tasks are randomly selected in the range of 5 to 10 as an integer
number. For workers, the maximum travelling distances are 1.2 times of the length of their intrinsic paths.
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The energy limits of workers are all set to 30. In the simulation for the incentive mechanisms, the true costs
per distance of worker are the same as 1 and the cost budget of the platform is 500.

5.4. Result of Path Planning

The most important performance metric for the path planning problem is the objective value,
i.e., the value of the path. Figure 5 shows the values of all paths with different algorithms. We can
see that the proposed heuristic bidirectional searching algorithm outperforms two baselines in all paths.
Simultaneously, the results of the proposed algorithm are very close to the optimal values in some paths.

Figure 5. Values of the planned paths.

In order to show the details of the paths obtained by different algorithms, we take worker #10 as an
example. Figure 6 shows four paths of worker #10 designed by different algorithms. It is obvious that the
optimal solution has the longest path and the largest value (as has been shown in Figure 5). The proposed
algorithm takes the same first task as the optimal solution, then goes to another direction and achieves a
moderate value about two-thirds that of the optimal solution. The resource-first algorithm takes the first
task with the smallest cost of resources, while this leads the worker to an isolated area with few tasks.
As a consequence, the resource-first algorithm finishes the minimal number of tasks and obtains the worst
value. The value-first algorithm selects the first task with the largest value, which is far away from the
start point. In this case, the worker misses some tasks near the start point, which may potentially increase
the value of the path. Eventually, the value-first algorithm receives a value less than half of that of the
optimal solution.

Figures 7 and 8 show the usage ratios of travelling distance and energy. It can be seen that the
maximum travelling distance is the main constraint of paths, whose usage ratio approaches 1 in all paths
and all four of the algorithms. On the other hand, the usage of the energy in the optimal solution is the
largest, followed by the proposed algorithm. This implies that the proposed algorithm has a better balance
in the usage of different resources (i.e., travelling distance and energy) than the baselines, although slightly
worse than the optimal solution. The proposed algorithm outperforms the baselines mainly because it can
utilize the resources in a balanced manner.
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Figure 6. Paths of different algorithms.

Figure 7. Usage ratio of travelling distance.

Figure 8. Usage ratio of energy.

5.5. Result of Incentive Mechanism

Based on the paths designed by the proposed algorithm, all workers submit their bids to the platform.
Then, the incentive mechanism first selects the winners. Table 3 lists the selection of winners in the
proposed mechanism, VCG mechanism, and the optimal solution to the winner selection problem (6).
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As seen, the proposed mechanism and VCG mechanism have the same set of winners, which makes
the comparison of payments discussed later meaningful. The optimal solution has the same number of
winners but different from those selected by the proposed mechanism. The values of all completed tasks
in the proposed mechanism and VCG mechanism are the same as 269.57 because of the same winner
selection, while the value of the optimal solution is 278.21. As seen, our proposed mechanism is efficient in
winner selection approaching the performance of the optimal solution. In addition, the used costs of the
proposed mechanism, VCG mechanism, and optimal solution are 468.42, 468.42, and 485.50, respectively.
All the costs are smaller than the cost budget 500.

Table 3. Results of winner selection.

Mechanism Winner Selection

Proposed mechanism {0, 1, 1, 1, 1, 1, 1, 1, 1, 0}
VCG mechanism {0, 1, 1, 1, 1, 1, 1, 1, 1, 0}
Optimal solution {0, 1, 0, 1, 1, 1, 1, 1, 1, 1}

The payments to the winners are determined after the winner selection. Figure 9 shows the payments
to winners in both the proposed mechanism and VCG mechanism. As seen, most winners have the almost
same payments in these two mechanisms, while some winners are paid significantly larger in the VCG
mechanism than in the proposed mechanism, e.g., workers #6 and #9. As a result, in our scenario, the total
payment in the VCG mechanism (746.23) is larger than that in the proposed mechanism (587.78). It is
worth noting that the payment rules in the proposed mechanism and the VCG mechanism are totally
different. Therefore, the relationship of the total payments in both mechanisms may vary in other scenarios.
However, when the distribution of tasks is dense and the values of tasks are close, the total payments in
both mechanisms are expected to be close.

Figure 9. Payments to winners.

According to the true costs of workers and the payments to winners, we obtain the utilities of workers,
shown in Figure 10. It is noticed that the utilities of losers are 0. As seen, the utilities are similar for
most workers in both mechanisms. However, due to the non-frugal payments in the VCG mechanism,
some winning workers achieve utilities that are significantly higher than in the proposed mechanism.
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Figure 10. Utilities of workers.

It is known that the most critical property of the incentive mechanism is truthfulness. In order to
show the truthfulness both in the proposed mechanism and VCG mechanism, we take worker #2 who is a
winner as an example. We change the cost bid of worker #2 from 0 to two times of its true cost. Figure 11
shows how the utility of worker #2 varies with its cost bid. As seen in Figure 11a with the proposed
mechanism, worker #2 achieves the highest utility when it bids truthfully. Even if worker #2 bids a cost
lower than its true cost, its utility is the same and will not be improved. A similar observation can be seen
in Figure 11b with a VCG mechanism. The results in Figure 11 verify the truthfulness of both mechanisms.

(a) (b)

Figure 11. Truthfulness of both mechanisms. (a) proposed mechanism; (b) VCG mechanism.

6. Conclusions

In this paper, we built a technical framework for MCS with novel solutions to two key problems,
i.e., path planning and incentive mechanism design. To take into account user mobility while protecting
workers’ privacy, we studied the path planning problem in the worker-centric mode so that the workers
plan their own paths. The heuristic bidirectional searching algorithm addresses the computational
complexity of the path planning problem to obtain an efficient solution. After the workers decide their
bids according to their paths, the platform runs an auction-based incentive mechanism to determine the
task allocation and corresponding payments to the winning workers. The proposed incentive mechanism
satisfy three desirable properties, especially truthfulness with respect to both the task sets and costs of
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workers. The simulation results validate the high efficiency and good properties of the proposed solutions,
and show performance improvement over the benchmarks in terms of total task value, workers’ utilities
and payments.

As already known, one drawback of the worker-centric mode is that the workers may have strong
competition when they are interested in the same tasks. In this case, the platform-centric mode is a
better option since the platform can coordinate all the workers in this mode. However, some workers
as independent decision makers may not be willing to have the platform control their paths. Therefore,
we are planning to develop a hybrid method to address this issue in the future. For example, the workers
can bid for the tasks as a group. Then, the key challenge is to create stable groups of workers and further
assign the tasks within each winning group. In addition, it would be interesting to implement the proposed
framework in a real MCS application and carry out small-scale tests. A mobile client can be built upon
the Android system to plan paths and determine bids, while a Web-based backend server can post tasks,
collect bids, and run an auction to allocate tasks.
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