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Humans have long been fascinated by the opportunities afforded through motor
augmentation provided by the supernumerary robotic fingers (SRFs) and limbs
(SRLs). However, the neuroplasticity mechanism induced by the motor augmentation
equipment still needs further investigation. This study focused on the resting-state brain
functional reorganization during longitudinal brain–computer interface (BCI)-controlled
SRF training in using the fractional amplitude of low-frequency fluctuation (fALFF),
regional homogeneity (ReHo), and degree centrality (DC) metrics. Ten right-handed
subjects were enrolled for 4 weeks of BCI-controlled SRF training. The behavioral
data and the neurological changes were recorded at baseline, training for 2 weeks,
training for 4 weeks immediately after, and 2 weeks after the end of training. One-
way repeated-measure ANOVA was used to investigate long-term motor improvement
[F (2.805,25.24) = 43.94, p < 0.0001] and neurological changes. The fALFF values
were significantly modulated in Cerebelum_6_R and correlated with motor function
improvement (r = 0.6887, p < 0.0402) from t0 to t2. Besides, Cerebelum_9_R and
Vermis_3 were also significantly modulated and showed different trends in longitudinal
SRF training in using ReHo metric. At the same time, ReHo values that changed
from t0 to t1 in Vermis_3 was significantly correlated with motor function improvement
(r = 0.7038, p < 0.0344). We conclude that the compensation and suppression
mechanism of the cerebellum existed during BCI-controlled SRF training, and this
current result provided evidence to the neuroplasticity mechanism brought by the
BCI-controlled motor-augmentation devices.

Keywords: supernumerary robotic finger, resting-state fMRI, fALFF, ReHo, DC, neuroplasticity

INTRODUCTION

The hands and fingers are the important mediums for humans to interact with the outside
world and have a well-established functional representation in the brain (Jones and Lederman,
2006; Dall’Orso et al., 2018; Arcaro et al., 2019). Scientists are currently focusing on the
hand or arm motor augmentation device like the supernumerary robotic fingers (SRF) and
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even the entire limbs (SRL) (Llorens-Bonilla et al., 2012; Parietti
and Asada, 2013; Parietti et al., 2014; Prattichizzo et al., 2014;
Wu and Asada, 2015; Hussain et al., 2017a,b,c; Kieliba et al.,
2021). These devices have changed the way our inherent limbs
interact with the external environment and bring some effects on
the brain and the corticospinal motor synergies (Kieliba et al.,
2021; Rossi et al., 2021). However, despite motor augmentation
caused by these devices can be clearly observed in behavioral
experiments, little notice is given to the brain neuroplasticity
mechanism. Here, we used the brain–computer interface (BCI)-
controlled SRF system to investigate longitudinal neuroplasticity
changes in 4 weeks by using resting-state fMRI (rs-fMRI) local
metrics like ALFF, ReHo, and DC.

In the present research on the SRF, the motor augmentation
effects were clearly investigated in behavior measurement. For
normal people, the extra robotic finger can enhance manipulation
dexterity and enlarge the workspace of humans, like grasping
a larger-sized object using one hand or completing two-handed
collaboration tasks using one hand (Prattichizzo et al., 2014; Wu
and Asada, 2015; Kieliba et al., 2021). For patients, the extra
robotic finger can compensate missing grasping abilities and
help rehabilitation training, like assistance in grasping the cup
or manipulation dexterity training for the paretic hand (Hussain
et al., 2017a,b,c). However, there was only some preliminary
research focus on the brain neuroplasticity effect caused by SRF.
From task-based fMRI analysis, it was clearly found that the
bilateral cingulate cortex, bilateral superior parietal lobule, left
inferior parietal lobule, and right middle frontal gyrus have
greater neural representation in the finger opposition task after
2 days of SRF training (Hussain et al., 2017b). The biological hand
neural representation in the sensorimotor cortex will generate a
shrinkage after 5 days of third thumb wearing training (Kieliba
et al., 2021). In addition, healthy humans wearing the SRF
will rapidly reshape the pattern of corticospinal outputs toward
the forearm and hand muscles governing imagined grasping
actions of different objects after a few minutes of training
(Rossi et al., 2021) and suggesting that human beings are open
to very quick welcoming emerging augmentative bioartificial
corticospinal grasping strategies. However, these studies did not
pay attention to the long duration training effect on the resting
state neuroplasticity of the brain, and these results are affected by
the control method of the SRF.

Different from the EMG control (Kieliba et al., 2021)
or toe switch control (Hussain et al., 2017b) that required
residual motor function, the brain–computer interface (BCI)
has been developed to transmit autonomous control intentions
to corresponding external execution devices such as robots,
orthosis, and functional electrical stimulation (Yuan et al., 2020).
A previous study has proven that the human brain has the ability
to bear the load of the supernumerary finger from the research
of polydactyly subjects (Mehring et al., 2019) and the six-finger
illusory perception creation (Newport et al., 2016; Cadete and
Longo, 2020). The motor imagery (MI) technology based on BCI
has great advantages of transmitting human intentions into the
control of the external devices proven in the research of the
third arm (Penaloza and Nishio, 2018). From task-based fMRI
analysis, MI consistently recruits the frontoparietal network and

the subcortical and cerebellar regions (Hetu et al., 2013). As for
the reason that MI possesses a similar activation of the motor
area during the motor execution, it has been widely used in
clinical rehabilitation (Eaves et al., 2014). Clinical studies have
found that functional connectivity between sensorimotor regions
was significantly modulated after motor imagery training of the
own inherent inborn limbs of stroke patients (Zhang et al.,
2016). In addition, the rehabilitation neuroplasticity effect has
also been fully proved in combination with MI and rehabilitation
equipment (Kim et al., 2016; Biasiucci et al., 2018; Wang et al.,
2018; Yuan et al., 2021). A study has found that the MI-
guided robot-hand training robot has significantly modulated the
time variability of the sensory–motor areas, attention network,
auditory network, and default mode network in stroke patients
than the no MI-guided training group (Wang et al., 2018), and
training promotes the recruitment of selected brain areas and
facilitates neuroplasticity by providing feedback on the intended
movement (Cervera et al., 2018). However, there is currently
no neuroplasticity research on the MI-controlled supernumerary
robotic limb training. Here, we used the BCI-controlled SRF
system based on MI mechanism to investigate the resting state
changes of the human brain.

Resting-state functional magnetic resonance imaging (rs-
fMRI) is a promising tool to investigate functional alterations
in the human brain, which takes into account the advantages
of both spatial resolution and time resolution, and also has
unique advantages in clinical conditions because it does not
require participants to engage in cognitive activities (Biswal
et al., 1995; Fox and Raichle, 2007). Although the majority
of analytic techniques [functional connectivity (FC) (Friston,
1994), graph theory, independent component analysis (ICA),
etc.] for rs-fMRI data characterize the function of the brain
network, the local dynamics cannot be fully addressed with
these approaches (Lv et al., 2019). Several methods have been
proposed to characterize the local dynamic properties of the rs-
fMRI signal: fractional amplitude of low-frequency fluctuation
(fALFF) (Zou et al., 2008), regional homogeneity (ReHo) (Zang
et al., 2004), and degree centrality (DC) (Buckner et al., 2009).
The fALFF measures the relative predominance of low-frequency
amplitude to the amplitude of all oscillations across the entire
power spectrum (Zou et al., 2008). ReHo was proposed to
measure the synchronization of the voxel time courses with the
neighboring voxels based on the hypothesis that voxels within
a functional brain area synchronize their metabolic activity
depending on specific conditions (Zang et al., 2004). DC mapped
the degree of intrinsic FC across the brain in order to reflect
a stable property of cortical network architecture at the voxel
level (Buckner et al., 2009). These three voxel-wise metrics
define brain functional characteristics from different perspectives
(single voxel, neighboring voxels, and whole brain) and present
the progressive relationship (Lv et al., 2019).

This current study aims to fill this gap by investigating the
functional reorganization of 4 weeks of BCI-controlled SRF
training based on the new supernumerary robotic finger imagery
paradigm. Specifically, we sought to determine how SRF training
influence the local function by using three local metrics (fALFF,
ReHo, and DC) and whether those local changes (if observed)
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are associated with behavioral performance of the participants.
These findings in this study may bring some insights into the
mechanism of neuroplasticity brought by the BCI-controlled
augmentative device.

MATERIALS AND METHODS

Participants
Ten participants (4 females; aged 21.5 years; range 20–23 years)
were recruited from Tianjin University. Participants were all
right handed (laterality quotient 0.89 ± 0.09; range 0.60–
1.0) as assessed by the Edinburgh Handedness questionnaire.
Participants gave informed consent, and the study was approved
by the Tianjin University Human Research Ethics Committee.

Training System and Intervention
Protocols
A self-designed brain control supernumerary robotic finger (SRF)
system was used in this training (Figure 1A; Liu et al., 2021a,b).
The whole system contained six modules: EEG acquisition, EEG
control, SRF control, SRF finger, TENS feedback, and status
information module. The EEG acquisition module uses the
module OPENBCI to collect the eight channels of EEG signals
of FC1, FC2, FCZ, etc., with a sampling frequency of 250 Hz.
Then the EEG signal is resampled, filtered (8- to 13-Hz bandpass,
50-Hz notch), re-referenced, ICA, and time-frequency features
extracted. Finally, the preprocessed EEG signal is imported into
the convolutional neural network (CNN) to obtain the training
model. The CNN was formed by two convolutional layers, a
pooling layer and two fully connected layers. The first layer of
convolution kernel was to extract the time characteristics of each
channel and frequency band of EEG signal. The second layer of
convolution kernel was to integrate the eight channel features and
extract the signal spatial features. Finally, the two fully connected
layers were used to realize the training of the two-feature
classification model of MI state and resting state (Dose et al.,
2018). A novel “sixth-finger” motor imaginary (MI) paradigm is
performed to provide the SRF natural control. Participants wear
the SRF and imagined the SRF finger opposing with the inborn
inherent finger from the first-person perspective. Based on the
developed “sixth-finger” MI decoding algorithm, the difference
between the MI and resting (rest) state of the EEG signal can be
classified, and the training model of the MI state is used for online
classification. The EEG characteristic investigation interrelated
with the new MI paradigm is investigated in detail in another
paper of our team (Liu et al., 2021b).

The SRF finger module is driven by a single actuator and
has one DOF (degree of freedom) to perform the flexion and
extension. When the system captures the MI signal, the SRF
finger module will flex, and participants will move their inborn
inherent finger to cooperate with the SRF finger. In the SRF
fingertip, a capacitive sensor detects the finger force signal and
give the feedback to the system to make the SRF finger extend.
At the same time, the TENS feedback module will release a 0.2-s
electrical stimulation (duty factor: 50%, frequency: 5 Hz, voltage:
10 V) to the median nerve of the forearm wearing the SRF.

The SRF finger was worn on the left hand, and the reason for
using subdominant hands (left hand) instead of dominant (right
hand) is the better anti-interference ability for daily life activities
(Figure 1C). During the training, participants were asked to sit
in front of a table to keep their bodies relaxed. All participants
received a 20-session BCI-controlled SRF training in 4 weeks with
an intensity of five sessions per week and 1 h per session. During
each training session, the subject was required to imagine the MI
paradigm. When the system completes one MI trigger, the SRF
finger will bend four times and cooperate with the inherent four
fingers to complete a round of SRF-finger opposition task. The
training opposition sequence is little, middle, ring, index (Sale
et al., 2017; Figure 1B), and the intermittent breaks every 10
repetitions were given to avoid fatigue.

Data Acquisition
Behavioral and rs-fMRI measures were obtained in four
time periods: before training (t0), training for 2 weeks (t1),
immediately after 4 weeks of training (t2), and 2 weeks after the
intervention (t3).

Behavioral Measure
The performance of participants on the SRF-finger opposition
tasks was evaluated by the number of correct sequences
completed in 30 s. The performance was documented online
with a handheld video camera and quantified offline. Participants
performed both trained and control sequences (Sale et al., 2017)
using their left hand with SRF, as shown in the opposition
sequence figure of Figure 1B. The trained sequence (order:
little, middle, ring, index) was used for every day training
and collected in data acquisition periods. The control sequence
(order: little, index, ring, middle) was only acquired in data
acquisition periods to investigate whether training induced any
spill-over of effects to a novel sequence. This method has
been used in other finger training tasks (Sale et al., 2017).
Furthermore, prior to the quantification of baseline performance
of the sequences (before training), participants were given
a brief period of time (two to three sequences) to practice
the two sequences.

Image Data Acquisition
All participants were scanned with a 3T Siemens MAGNETOM
Skyra scanner at Tianjin Huanhu Hospital (Department of
Neurosurgery, Tianjin, China). Resting-state fMRI images
were acquired using T2-weighted gradient-echo planner
imaging (EPI) sequence (TR = 2,000 ms, TE = 30 ms, flip
angle = 90◦, FOV = 220 × 220 mm2, matrix = 64 × 64, slice
thickness = 3 mm, gap = 0 mm, voxel size = 3.5 × 3.5 × 4 mm3,
acquisition time = 8:06 min). During the scanning, participants
were instructed to stay still and keep their eyes closed without
falling asleep. In addition, a T1-weighted structural image
was acquired for each participant using the MPRAGE
sequence (TR = 2,000 ms, TE = 2.98 ms, flip angle = 9◦,
FOV = 256 × 256 mm2, matrix = 256 × 256, slice
thickness = 1 mm, voxel size 1 × 1 × 1 mm3, acquisition
time = 4:26 min).
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FIGURE 1 | Training system and intervention protocols. (A) The hardware design of the brain computer interface (BCI)-controlled supernumerary robotic finger (SRF)
system and the signal transmission diagram (B). The display of the portable SRF and behavioral measure paradigm. (C) Scene of subjects wearing SRF training.

Image Processing
Resting-State fMRI Data Preprocessing
Resting-state fMRI data were processed using SPM12 and
RestPlus (Jia et al., 2019) including (1) removing the first 10

time points to make the longitudinal magnetization reach
steady state and to let the participant get used to the scanning
environment, (2) slice timing to correct the differences in image
acquisition time between slices, (3) head motion correction,
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(4) spatial normalization to the Montreal Neurological
Institute (MNI) space via the deformation fields derived
from tissue segmentation of structural images (resampling voxel
size = 3 mm × 3 mm × 3 mm), (5) spatial smoothing with an
isotropic Gaussian kernel with a full width at half maximum
(FWHM) of 6 mm, (6) removing linear trend of the time course,
(7) regressing out the head motion effect (using Friston 24
parameter) from the fMRI data (Friston et al., 1996), and (8)
band-pass filtering (0.01–0.08 Hz). One participant was excluded
from further analysis due to large head motion (more than
3.0 mm of maximal translation in any direction of x, y, or z or
3.0◦ of maximal rotation throughout the course of scanning).

Fractional Amplitude of Low-Frequency Fluctuation
Calculation
After data preprocessing (exclude preprocessing part 8: band-
pass filtering), the time series for each voxel was transformed
into the frequency domain using a fast Fourier transform, and
the power spectrum was then obtained. The averaged square
root was obtained across 0.01–0.08 Hz at each voxel, and this
value was regarded as the power and then a ratio of the power
of each frequency at the low-frequency range (0.01–0.08 Hz) to
that of the entire frequency range (0–0.25 Hz) as the fALFF value
(Zou et al., 2008).

Regional Homogeneity Calculation
After preprocessing (exclude preprocessing part 5: spatial
smoothing), ReHo maps were produced by the Kendall’s
coefficient of concordance (KCC) of the given voxel time series
with its nearest 26 neighbors. The formula is as follows:

W =
∑

(Ri)2
− n

(
R̄
)2

1
12K

2
(
n3 − n

) (1)

where W is the KCC among the given voxels, ranging from 0 to
1; Ri is the sum rank of the ith time point; R = [(n+1)K]/2 is the
mean of Ri′s; K is the number of the time series within a measured
cluster (K = 7, 19, and 27, respectively. 27 in the current study);
and n is the number of ranks. This method measures the local
synchronization of the given time series (Zang et al., 2004).

Degree Centrality Calculation
Degree centrality is defined as the sum of weights from edges
connecting to a node. After preprocessing (exclude preprocessing
part 5: spatial smoothing), Pearson’s correlation of time series was
performed between each voxel, and the correlation coefficients
were summed up for each voxel after taking the threshold
(r ≥ 0.25), and then a weighted DC was obtained for each
voxel. The weighted DC of each voxel was further divided by
the global mean weighted DC of each individual for group
comparison (Zuo et al., 2012). This method is also called the
function connectivity strength (FCS).

Statistical Analysis
The performance of SRF-finger opposition sequences was
analyzed using one-way repeated measures ANOVA at time level
(t0, t1, t2, and t3) and post-hoc analyses were performed using

Bonferroni’s post-hoc test. At the same time, the correct number
changes of the SRF-finger opposition sequences were counted
and used to correlate with the MRI data. Statistical analyses were
performed using SPSS 22 (IBM SPSS Statistics, NY, United States)
with the significance level set at p < 0.05.

For longitudinal comparisons, one-way repeated-measure
ANOVA and Bonferroni’s post-hoc test was used to explore the
significance of differences in ALFF, ReHo, and DC changes
among various time-related subgroups. In addition, multiple
comparisons were corrected using the GRF correction (the voxel-
wise, p < 0.005; the cluster-wise, p < 0.05) in the RestPlus
toolbox. For any measure (fALFF, ReHo, and DC) showing
training-related alterations, a Pearson correlation analysis was
used to assess its associations with behavioral performance of
the participant. The correlations were considered significant at
a threshold of p < 0.05.

RESULTS

Behavioral Performance
Following training, there was a significant improvement in the
number of sequences completed in the 30-s period [Figure 2A;
F(2.805,25.24) = 43.94, p < 0.0001]. The number of correct
sequences completed on the trained sequence significantly
increased from t0 to t1 (effect of time p < 0.0001), reached to
the maximum value at the period of t2, and decreased slightly at
the period of t3. At the same time, the control sequence showed
the same trend with the trained sequence [F(2.267,20.40) = 14.01,
p < 0.0001].

Longitudinal Analysis Contains
Fractional Amplitude of Low-Frequency
Fluctuation, Regional Homogeneity, and
Degree Centrality
In the result of fALFF, participants exhibited a significantly
altered right cerebellum posterior lobe (Cerebelum_6_R) after
the repeated-measure ANOVA test (GRF correction, voxel
p < 0.005, cluster p < 0.05, cluster size > 31 voxels) (Figure 3
and Table 1). In addition, the fALFF values in Cerebelum_6_R
significantly increased during the training period (t0 to t2),
reached to the maximum at t2 period, and decreased significantly
in the follow-up period (t3 to t4) (post-hoc Bonferroni test, all
p < 0.01).

In the result of ReHo, participants exhibited a significantly
altered right cerebellum posterior lobe IX (Cerebelum_9_R)
(GRF correction, voxel p < 0.005, cluster p < 0.05, cluster
size > 39 voxels) and right cerebellum anterior lobe III
(Vermis_3) (GRF correction, voxel p < 0.005, cluster p < 0.05,
cluster size > 81 voxels) after the repeated-measure ANOVA test
(Figure 4 and Table 1). In Cerebelum_9_R, the ReHo values
showed a decreased trend during training (t0 to t2) and reached
the minimum at t2 period. Then it increased (not significantly) in
the follow-up period (t2 to t3) but still significantly lower than
the baseline stage (t0) (post-hoc Bonferroni test, all p < 0.05).
In Vermis_3, the ReHo values significantly increased to the
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FIGURE 2 | (A) Increase in performance of motor training tasks following 4 weeks of SRF training. Group data (n = 10) showing number of correct sequences
(trained and control sequence) performed in 4 periods (t0, t1, t2, t3) of data collection. (B) Increase in performance of motor training tasks following 2 weeks of finger
movement training. Group data (n = 9) showing number of correct sequences (trained and control sequence) performed in 2 periods (t0, t1) of data collection. Data
represent mean ± SEM, ∗ indicates a significant difference in the two groups. ∗∗p < 0.01, ∗∗∗p < 0.005, ∗∗∗∗p < 0.001.

maximum after 2 weeks of training (t0 to t1) and decreased
in the next 2 training weeks thought not significantly. In the
period of t3, the ReHo values in Vermis_3 kept steady with t2
but were significantly higher than the baseline stage (t0) (post-hoc
Bonferroni test, all p < 0.05).

No regions showed significant differences in DC after the
repeated-measure ANOVA test between different time groups
(GRF correction, voxel p < 0.005, cluster p < 0.05, cluster
size > 28 voxels).

Correlation With Behavioral Function
The correlations between the metric changes and behavioral
improvement are shown in Figure 5. We mainly compared the
behavioral correlations corresponding to the time periods when
the rs-fMRI results changed most significantly. We found a
significantly positive correlation between fALFF values change
in the Cerebelum_6_R and improvement in the behavioral
performance (the change in correct finger opposition number)
from t0 to t2 (r = 0.6887, p < 0.0402). The ReHo values of the
Vermis_3 also showed a significantly positive correlation with
the improvement in the behavioral performance from t0 to t1
(r = 0.7038, p < 0.0344).

DISCUSSION

In this study, we investigated the long-term functional
reorganization from the rs-fMRI perspective after BCI-
controlled supernumerary robotic finger training. The brain
regional changes could be identified sensitively from progressive
perspectives using these three rs-fMRI analysis metrics: fALFF,
ReHo, and DC. Significant changes were observed using fALFF

and ReHo analysis, and no changes were found in the DC
analysis. The fALFF analysis showed that Cerebelum_6_R
was comparatively more active after training, and the fALFF
values of Cerebelum_6_R were significantly correlated with
motor function improvement. The ReHo analysis showed that
Cerebelum_9_R and Vermis_3 were changed comparatively
during training, and the ReHo values in Vermis_3 significantly
correlated with motor function improvement. To the best
of our knowledge, this is the first study to explore BCI-SRF
training-induced neural modulation effect from resting state in a
longitudinal manner.

Robot-assisted equipment has shown the potential to augment
and restore the motor function after training whether in normal
people or patients (Yuan et al., 2020; Kieliba et al., 2021). Our
results also validated the long-term effect of BCI-controlled robot
finger training on normal subjects. It can be clearly found that
after 4 weeks of training, not only the operation ability of the
training sequence was significantly increased but also the learning
ability of the control sequence was significantly increased (as
shown in Figure 2). Significant improvement in the control
sequence may be related with the generalization of learning,
which was correlated with the interaction with the primary visual
or motor cortices encoding the stimuli or movement memories
(Censor, 2013). However, the present study found no significant
changes in the motor and visual cortex, which may be related
with the closed loop control system, which has sensory feedback,
which will reduce the dependence of the brain on visual resources
(Kato et al., 2009). It may also be related with the simplicity
of the training task. Future research should be detailed in
this generalization phenomenon. This significant improvement
of the behavioral results also indicated the effectiveness and
acceptance of people to the whole SRF system, which integrated

Frontiers in Neuroscience | www.frontiersin.org 6 February 2022 | Volume 15 | Article 766648

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-766648 February 7, 2022 Time: 15:43 # 7

Liu et al. Neuroplasticity of SRF Training

FIGURE 3 | The fractional amplitude of low-frequency fluctuation (fALFF) differences among different time-subgroups. (A) One-way repeated-measure ANOVA
showed brain regions with fALFF differences among four subgroups in the Cerebelum_6_R. The color bar indicated the F scores. (B) Bar plots showed the fALFF
values of the Cerebelum_6_R at four different time-subgroups. Cerebelum_6_R, right cerebellum posterior lobe VI; t0, t1, t2, and t3, different time subgroups; LH,
left hemisphere; RH, right hemisphere, ∗ indicates a significant difference in the two groups. ∗p < <0.05, ∗∗p < 0.01, ∗∗∗p < 0.005.

TABLE 1 | Brain regions with longitudinal fALFF and ReHo changes.

MNI coordinate (mm)

Regions Cluster size Peak T value X Y Z

fALFF

Cerebelum_6_R 14 3.6021 36 −54 −24

REHO

Cerebelum_9_R 39 4.1268 15 −54 −30

Vermis_3 81 4.0347 0 −30 −6

the neuroplasticity of the MI (Varkuti et al., 2013; Jeunet et al.,
2019) and the effect of the close loop sensory feedback (Kato et al.,
2009; van Dokkum et al., 2015).

Resting-state fMRI is widely used in clinical research because
of its unique advantages, which require less participants to
engage in cognitive activities (Fox and Raichle, 2007). The
fALFF, ReHo, and DC, three voxel-wised metrics, define brain
functional characteristics from different perspectives and present
the progressive relationship (Zang et al., 2004; Zou et al., 2008;
Buckner et al., 2009). For a single voxel, fALFF characterizes

neural activity intensity of the single voxel, ReHo reveals the
importance of this voxel among the nearest voxels, while DC
portrays the importance of this voxel in the whole brain (Lv
et al., 2019). In this study, fALFF and ReHo had significant
results, which indicated that SRF training mainly modulated
brain function from single-voxel level and local level. However,
the DC metric had no significant results in the longitudinal
ANOVA analysis. The reasonable explanation was that SRF
training may not lead a certain brain area to take an important
position, which has a significant correlation change with all
voxels in the whole brain. In addition, we also speculated that
some true positive brain regions may not survive the multiple
comparison correction when using strict threshold to decrease
false positive. In our longitudinal fALFF and ReHo investigation,
the values of Cerebelum_6_R (right cerebellum posterior lobe VI)
and Vermis_3 (cerebellum anterior lobe III) were significantly
increased with the training time. Besides, Cerebelum_6_R and
Vermis_3 test values changes were significantly correlated with
motor function improvement. Therefore, we speculated that
a strong compensatory mechanism existed between the using
SRF and changing cerebellum. When the human body adds
a supernumerary sixth finger, the brain will undertake greater
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FIGURE 4 | Regional homogeneity (ReHo) differences among different time-subgroups. (A) One-way repeated-measure ANOVA showed brain regions with ReHo
differences among four subgroups in the Cerebelum_9_R and Vermis_3. The color bar indicated the F scores. (B) Bar plots showed the ReHo values of the
Cerebelum_9_R at four different time-subgroups. Cerebelum_9_R, right cerebellum posterior lobe IX; Vermis_3, cerebellum anterior lobe III; t0, t1, t2, and t3,
different time subgroups; LH, left hemisphere; RH, right hemisphere, ∗ indicates a significant difference in the two groups. ∗p < <0.05, ∗∗p < 0.01, ∗∗∗p < 0.005.

load and will recruit more somatomotor and sensorimotor
networks to participate. Cerebellar lobules IV–VI and VIII were
proven to engage in motor processing and activated in the task-
based fMRI analysis (Stoodley and Schmahmann, 2009; Stoodley
et al., 2010; Keren-Happuch et al., 2014), and the anterior lobe
was engaged in overt limb movements (Rijntjes et al., 1999;
Bushara et al., 2001). The study of the cerebellum resting-state
function connectivity found that cerebellar lobules I–VI have
a high correlation with the sensorimotor area (Stoodley et al.,
2016; Guell et al., 2018), and then the anterior lobe III was
also correlated with the somatomotor networks (Buckner et al.,
2011). Therefore, the increased activation in Cerebelum_6_R
and Vermis_3 was used to compensate the extra brain load
caused by the supernumerary robotic finger. However, activation
showed different trends in the two brain areas with the change

in training time. The activation in Cerebelum_6_R increased
with training time and decreased in the follow-up period (t3),
which indicated that the SRF training did not cause long-lasting
effects (as shown in Figure 3B). This result shows that the
compensation effect of the sensorimotor area mapped in the
cerebellum will return to the baseline stage with the cessation
of training, but in Vermis_3, the activation increased in the
early training stage (t0 to t1), decreased in the post-training
stage (t1 to t2), and kept steady in the follow-up period (as
shown in Figure 4B). This result shows that the somatomotor
network mapped in the cerebellum plays a compensation role
in the early training stage (t0 to t1). With the SRF gradually
accepted, the compensation effect decreased by degrees in the
post-training stage (t1 to t2), but this effect still maintained a
higher level than the baseline (t0) in the post-training stage
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FIGURE 5 | Correlations between fALFF values, ReHo values, and behavioral scores. (A) The participants showed a significantly positive correlation between the
fALFF values increased in Cerebelum_6_R and the enhancement of behavioral performance (the changes of in correct finger opposition number) from t0 to t2.
(B) Significantly positive correlation between the ReHo values increased in Vermis_3 and the enhancement of behavioral performance (the changes of in correct
finger opposition number) from t0 to t1.

(t2) and follow-up period (t3), which proved that SRF training
generated long-lasting effects.

Compared with the increased activation of the cerebellum
posterior lobe VI and anterior lobe III, the decreased ReHo
values in Cerebelum_9_R (right cerebellum posterior lobe IX)
was also a significant result in this research (as shown in
Figure 4A). Resting-state fMRI found that lobule IX has a
high correlation with the default mode network, which was
suppressed during tasks that demand external attention and
was active during remembering, envisioning the future, and
making social inferences (Buckner et al., 2011; Buckner and
DiNicola, 2019). Therefore, we speculated that the decreased
activation in the default mode network mapped in the
cerebellum may be related with the suppression mechanism
during tasks that demand external attention. The SRF as the
added finger needs additional attention resources of the human
brain to control, and Cerebelum_9_R could be inhibited in
this active task to achieve the control purpose. As for the
suppression mechanism of the default network, the reliable
explanation was the significant competition effect that existed
between the extensive information processing modes, which
were supported by different independent network groups
(Stoodley and Schmahmann, 2009). In addition, this suppression
mechanism in Cerebelum_9_R was enhanced with training time
and recovered in the follow-up period (t3), which indicated that
the SRF training did not cause long-lasting effects (as shown
in Figure 4B).

After 4 weeks of brain-controlled SRF training, this study
innovatively found that the changes in the resting state of the
human brain were mainly on the cerebellum. Some factors should

be taken into account for this innovative result. (1) The present
study takes normal people as the subject who have full use of
hands in daily life. Such an experimental arrangement can better
explore the neuroplasticity effect in motor augmentation of SRF
training in the daily lives of normal people. This experiment
arrangement may be one of the reasons for this innovative
result, which is different from others. (2) The different imaginary
paradigm is also one of the reasons for this innovative result. This
present paradigm focused on the device of SRF and was different
from the previous imaginary paradigm, which mainly focused
on inborn inherent limbs (IIL) (Varkuti et al., 2013). Using
IIL as the imaginary paradigm has been proven to activate the
limb execution network like the somatomotor and sensorimotor
network (Hardwick et al., 2018). Besides, the body part involved
in the movements and the nature of the MI tasks all seem to
influence the consistency of activation within the general MI
network (Hetu et al., 2013). However, different from motor
imagery of the IIL, using the supernumerary robot limb device,
imaginary as the paradigm, was also proven to modulate other
brain areas (Penaloza and Nishio, 2018). Therefore, we speculated
that the new motor imagery paradigm has the potential to activate
the new targeted area of the brain. (3) Unlike motor imagery
training, this study mainly explored the neuroplasticity effect of
the whole SRF system integrated motor imagery, extra robotic
finger, and electrical stimulation feedback. This mixed influence
may be different from each effect.

The difference between training with SRF and pure finger
movement training on the resting-state neuroplasticity is also
a very interesting question. Therefore, we preliminary arranged
2 weeks of pure finger sequence moving training experiment of
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nine subjects, and the training dose was matched to the SRF
group. Although the behavioral performance has a significant
improvement (Figure 2B), we have not found any significant
changes in this control group after paired t-test and GRF
correction in the ALFF, ReHo, and DC metrics of resting state
in the cerebellum. Therefore, we inferred that the results of the
SRF group were produced by the joint effect of the SRF with
our body, and pure finger movement training will not cause this
similar result. The results of the control group were different from
the previous study in Ref. (Sale et al., 2017), and this may be
related with the different duration and intensity of training or
the different data process methods. In view of the preliminary
implementation of this control experiment, the detailed effect
needs to be further explored in the future.

Several limitations need to be noted in this study. First of all,
the sample size was not large, which may limit the generalization
power. More participants should be recruited to validate and
extend the findings of this study. Second, it would be better to
differentiate the effect caused by the motor imagery and SRF
finger training. In the current study, we cannot tell the key part
contributing to the neurological changes and functional recovery
under the joining of the two components. In further studies,
a control group is needed. Third, the effect of different task
paradigms and training duration need to be further investigated.
Moreover, based on the present results of behavioral performance
and cerebellar neuroplasticity, the BCI-controlled SRF can be
applied to the rehabilitation of patients with cerebellar stroke or
functional impairment in the future.

CONCLUSION

To the best of our knowledge, this is the first study to investigate
brain alterations in long-term BCI-controlled supernumerary
robotic finger training. Significant changes were found in
Cerebelum_6_R, Cerebelum_9_R, and Vermis_3 using fALFF,
ReHo, and DC metrics in longitudinal resting-state fMRI
study. In addition, fALFF value changes in Cerebelum_6_R
and ReHo value changes in Vermis_3 were significantly
correlated with motor function improvement. We conclude
that the compensation mechanism of the sensorimotor and
somatomotor networks mapped in the cerebellum existed

during BCI-controlled SRF training. At the same time, the
suppression mechanism was also observed in the default mode
network mapped in the cerebellum in this study. Our new
findings supplement the literature on motor-augmentation
neuroplasticity brought by BCI-controlled augmentative device
training and may facilitate future research on SRF.
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