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ABSTRACT Diabetes mellitus and its complication such as heart disease, stroke, kidney failure, etc. is
a serious concern all over the world. Hence, monitoring some important blood parameters non-invasively
is of utmost importance, that too with high accuracy. This paper presents an in-house developed system,
which will be helpful for diabetes patients with Chronic Kidney Disease (CKD) to monitor blood urea and
glucose. This manuscript discusses a comparative study for the prediction of blood urea and glucose using
Backpropagation Artificial Neural Network (BP- ANN) and Partial Least Square Regression (PLSR) model.
The NVIDIA Jetson Nano board controls the five fixed LED wavelengths in the Near Infrared (NIR) region
from 2.0 µm to 2.5 µm with a constant emission power of 1.2 mW. The spectra for 57 laboratory prepared
samples conforming with major blood constituents of the blood sample were recorded. From these samples,
53 spectra were used for training/calibration of the BP-ANN/PLSR model and the remaining 4 samples were
used for validating the model. The PLSR model predicts blood urea and glucose with a Root Mean Square
Error (RMSE) of 0.88 & 12.01 mg/dL, Coefficient of Determination R2

= 0.93 & R2
= 0.97, Accuracy

of 94.2 % and 90.14 %, respectively. To improve the prediction accuracy, BP-ANN model is applied. Later
the Principal Component Analysis (PCA) technique was applied to these 57 spectra values. These PCA values
were used to train and validate the BP-ANN model. After applying the BP-ANN model, the prediction of
blood urea & glucose improved remarkably, which achieved RMSE of 0.69 mg/dL, R2

= 0.96, Accuracy
of 95.96 % for urea and RMSE of 2.06 mg/dL, R2

= 0.99, and Accuracy of 98.65 % for glucose. The system
performance is then evaluated with Bland Altman analysis and Clarke Error Grid Analysis (CEGA).

INDEX TERMS Artificial Neural Network, chronic kidney, Diabetes mellitus, diabetes nephropathy, Jetson
Nano, PLSR.

Clinical and Translational Impact Statement: The system designed with Machine learning accurately estimates the
Blood Urea and glucose Blood concentration in the samples prepared which conforming to major constituents of human blood
tissue. With these encouraging results, the device can be used directly on human cartilage tissue after ethical clearance. This
device will immensely help the Diabetes mellitus patient suffering from CKD.

I. INTRODUCTION
The World Health Organization estimates that there are more
than 500 million people worldwide are affected by diabetes
and is expected to reach 642million by 2040 [1], [2]. Diabetes
is caused by poorly controlled blood glucose levels in the
blood, if it remains high (hyperglycemia) for quite a long
time, result in the development of serious and life-threatening
diseases such as stroke, heart attack, heart failure, kidney

failure, adult blindness and amputation [3]. Moreover, many
patients also experience episodes of very low blood glucose
(hypoglycemia) that can rapidly lead to coma and death [4].
About 40% of people with diabetes will develop chronic
kidney disease (CKD) [5].

Diabetes is the leading cause of End-Stage Kidney Dis-
ease(ESKD) in most of the developed countries and has
driven growth in ESKD globally over recent decades [6]–[8].
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There is a strong economic and health imperative to improve
outcomes for people with diabetes and kidney disease.
In CKD patients continuous monitoring of Blood Glucose
and urea is very crucial. Traditionally, CKD believed to
result from diabetes has been termed ‘‘diabetic nephropathy.’’
Recently, the Diabetes and CKD workgroup of the National
Kidney Foundation Kidney Disease Outcomes Quality Initia-
tive (KDOQI) suggested that a diagnosis of CKD presumed
to be caused by diabetes should be referred to as ‘‘Diabetic
Kidney Disease (DKD)’’ and the term ‘‘diabetic nephropa-
thy’’ should be reserved for kidney disease attributed to
diabetes with histopathological injury demonstrated by renal
biopsy [9]. Kidney damage may be demonstrated by abnor-
mal imaging studies, urine sediment, urine chemistries, or,
more commonly, proteinuria, blood urea nitrogen [10].

Monitoring blood urea andHbA1c are problematic in CKD
due to reduced red cell survival time, use of erythropoi-
etin, modifications of hemoglobin (e.g., carbamylation), and
mechanical destruction of red blood cells on dialysis. Thus,
clinicians may often need to rely more on random or con-
tinuous home blood glucose and urea monitoring. This is a
tedious, inconvenient approach in people with CKD, who are
often sick and frail [11].

Till now, a cure for diabetes has not been found, researchers
are trying to develop an effective glucose monitoring
device that will reduce complications associated to a cer-
tain extent [12]. There are several pick-based glucose mon-
itors, which are based on the electrochemical principle [13].
This invasive testing not only causes pain but also there
are high chances of infection risk. This is the reason why
a patient with diabetes is hesitant to monitor glucose sev-
eral times a day as recommended over the years [14], [15].
Hence the time demands the non-invasive approach for mon-
itoring blood glucose. Non-invasive glucose sensing is yet
another measurement strategy that promises pain-free oper-
ation without the complications of an adverse biological
response [16], [17]. Various spectroscopic methods for non-
invasive estimation of blood glucose have been proposed,
such as Raman, fluorescence, and bioimpedance spectro-
scopies, as well as polarimetric, photonic crystal, optoacous-
tic, optothermal, and optical coherence tomography [18].
We have aimed to use NIR spectroscopy since glucose, urea,
and other blood constituents have better signature in this
region, and also the absorptivity of water absorptivity is
minimal.

In the last few years, the use of Artificial Neural Net-
work (ANN) has been used more often for qualitative and
quantitative analysis because of its advantages such as anti-
interference, anti-noise, and strong nonlinear transmission
capability. ANN is a new technique of information processing
that is based on neuroscience research and is created by
simplifying and simulating biological structure. ANN pos-
sesses some important features such as it can approximate any
complex nonlinear relations; robustness and fault tolerance; it
can emulate and adapt to the unknown system and at the same
time can deal with the quantitative and qualitative knowledge

[19], [20]. Among all, the most famous and widely used is the
BP-ANN model. BP-ANN model realizes highly nonlinear
mapping between input and output, this model can achieve
any continuous nonlinear curve. The BP-ANN is preferred
over others because of its capability in handling both linear
and nonlinear relationships [21].

II. WAVELENGTH SELECTION AND
SAMPLE PREPARATION
A. SELECTION OF WAVELENGTH REGION
Infrared spectroscopy is based on optical absorption and scat-
tering of infrared radiation when impinges on human tissue
due to its interaction with biological components within the
tissues. This includes both Mid Infra-Red (MIR) and NIR
spectroscopies. Though the wavelength range suggested in
NIR for this region vary in the standards, we used 0.7µm to
2.5µm for NIR and 2.5µm to 25µm for MIR [22]. The NIR
spectra are mostly made up of broad bands corresponding to
overlapping peaks and first, second, third and combination
overtones formed by molecular vibrations. This technique
is based on the variations in radiation intensity caused due
to transmittance and reflectance [23]–[25]. The probing of
human tissue is preferred in the NIR region as the water
component present in human tissue has a good transmission
window. Also, InGaAs detectors are comparatively cheaper
than to HgCdTe detector. Also, glucose and urea exhibit sig-
nificant signature peaks in the NIR region. The above reasons
motivate the development of a sensor-based NIR absorption
spectroscopy. The absorbance peaks and valleys of urea and
glucose in the NIR range from 2µm – 2.5µm are shown
in Figure 1 & Figure 2 respectively.

FIGURE 1. Spectra of urea recorded with Jasco 770.

Our system uses NIR LEDs at the wavelength in the vicin-
ity of the peaks and valleys of urea and glucose namely
2.12 µm, 2.24 µm, 2.27 µm, 2.31 µm & 2.33 µm. Tradi-
tionally, NIR spectroscopy relied upon using a white light
source to probe urea and glucose, which makes the whole
equipment bulky and power-hungry. By making use of LEDs,
we are stepping towards making the entire system portable
and affordable.
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TABLE 1. 10 typical samples.

FIGURE 2. Spectra of glucose recorded with Jasco V770.

FIGURE 3. Spectra’s of 57 laboratory samples.

B. DATA PREPARATION FOR PREDICTION MODEL
57- Laboratory samples were prepared which resembles the
blood bymixingGlucose, ascorbate, urea, lactate, and alanine
in the proportion found in the blood in an aqueous solution.
The Analytical Grade compounds were procured from Sigma
Aldrich Ltd. The spectra of all 57 different aqueous samples
by mixing the above 5 constituents in different proportions as
shown in figure 3. Table 1 shows typical 10 of these samples
absorbances at 5 selected wavelengths. We have used a 1mm

pathlength Quartz glass cuvette to reduce water absorbance
effects and thus increases the S/N ratio.

If one looks at the absorbance at these LED wavelengths
as given in above table 1. It is observed that as the wave-
length is decremental from 2.33 µm to 2.12 µm they fol-
low an incremental pattern in the absorption when the urea
concentration is maximum i.e. 20 mg/dL. When urea is
minimum (11 mg/dL), the absorbance was found to be min-
imum at 2.24µm unlike for a sample of urea concentration
i.e 20 mg/dL. Which clearly indicates the influence of urea
concentration on the prediction of glucose. Hence, in order
to predict urea and glucose, we require to train two different
models one each for urea and glucose.

III. METHODOLOGY
The entire system is designed using NVIDIA JETSON Nano
Board having ARMCortex-57 which triggers individual NIR
LED sources (2.12, 2.24, 2.27, 2.31 & 2.33µm). The LED’s
with their drivers and detector was procured from IBSG Co.
Ltd Company (Russia). The LEDs used have been standard-
ized by appropriate current limiting resistance so that the
output power is 1.2 mW. The individual LED radiation is
then allowed to pass through the sample placed in a 1mm
cuvette. The light intensity passing through the sample is
attenuated according to the beer lamberts law in proportion to
the sample concentration. The detected light by the PD24-20
(InGaAs detector) having responsivity in 1.15 – 2.40 µm
is then conditioned with a gain of 100 and given to A/D
converter ADS1015 which has a resolution of 12 bit.

The block of the entire system is shown in figure 4. The
principles of acquiring the signal are based on Beer-Lambert
Law, which relates the incident power to the concentration of
the absorbing sample and also to the path length.

A = −log10

(
P
Po

)
= a× b× c (1)

where ‘‘A’’ is absorbance, ‘‘P’’ is the radiant power, absorp-
tivity is denoted by ‘‘a’’, the path length is denoted by ‘‘b’’,
and concentration is denoted by ‘‘c’’.
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FIGURE 4. Block diagram for estimation of blood urea and glucose.

FIGURE 5. The Photo of the entire setup.

The LEDs corresponding to the particular wavelength are
sequentially powered on, and the corresponding readings are
recorded. The absorbance is calculated using equation (1).
This is done for all the 57 laboratory prepared samples. These
readings are arranged in two datasets with 53 in calibration/
training and 4 in prediction. On these datasets, Python code
for PLSR and BP-ANN is executed on NVIDIA Jetson
Nano to estimate the blood urea and glucose in 3-5seconds.
Figure 5 shows the photo of the entire setup. Python code for
PLSR and BP-ANN is executed on NVIDIA Jetson Nano to
estimate the blood glucose and urea in 3-5 seconds.

A. PARTIAL LEAST SQUARE REGRESSION (PLSR)
PLSR is an extension of the multiple linear regression(MLR)
models. In its simplest form, a linear model specifies the
relationship between a dependent variable ‘‘Y ’’ and a set
of predictor variables, the ‘‘X’’. The PLSR finds its use in
the area of NIR non-destructive estimation of biomolecules.
As PLSR is a linear model which doesn’t consider nonlin-
ear characteristics of data while predicting [26]. This model
works very well if there are a large number of spectral data
points. As we reduce the spectral points, the prediction error
suffers. Hence to improve the RMSE and accuracy an ANN
model namely BP-ANN is used.

B. BACKPROPAGATION ARTIFICIAL
NEURAL NETWORK (BP-ANN)
Here, we have used feed-forward neural network architecture.
This network is trained using the Back propagation (BP)

algorithm which is a form of supervised learning of a multi-
layer network. Error at the output layer is back propagated
to earlier ones to update weights and bias of these layers.
We have implemented two BP-ANNmodels one for urea and
the other for glucose estimation. Training in the sequential
mode is advantageous because it is stochastic in nature and
hence can avoid local minima [27]. BP-ANN model for urea
has two hidden layers with 3 neurons each, 3 neurons at
the input layer, and one neuron in the output layer. In this
network, we will be predicting urea values based on the three
Principal component Analysis (PCA) inputs. The input data
set (X) is a 53×3matrix of three PCA components and output
data (Y) is a 53 × 1 matrix of urea values. The Four-layer
BP-ANN architecture is shown in figure 6.

FIGURE 6. A-4-layer BP-ANN architecture for urea.

FIGURE 7. A-3-layer BP-ANN architecture for glucose.

Whereas the BP-ANN model for glucose prediction has
one hidden layer with 8 neurons, 3 neurons at the input layer,
and one neuron in the output layer Here also, PCA inputs are
given to the input layer. The three-layer BP-ANN architecture
is shown in figure 7. The BP-ANN algorithm is implemented
on Jetson Nano using Python programming language.

First, the network is trained with 53× 3 inputs and 53× 1
corresponding outputs. Each element of input X is multiplied
by a corresponding weight and then added together with all
the other results for each neuron in the hidden layer. The
sigmoid activation function used for both models as shown
in figure 8 is used to get the final value for the hidden layer.

The flowchart of the BP-ANN for urea and glucose esti-
mation is shown in figure 9. In the BP-ANN algorithm,
spectral data is procedurally divided into two subsets: the
first one is called a calibration or training set and the other
is a prediction or validation set. The training data are used
to calibrate/train the network and a validation set is used to
check the prediction accuracy of the network.
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FIGURE 8. Activation function.

FIGURE 9. Flowchart of BP-ANN for urea and glucose estimation.

IV. RESULTS & DISCUSSION
A. ESTIMATION OF UREA AND GLUCOSE PREDICTION
Here, we have developed PLSR and BP-ANN model for
estimating urea and glucose.

PLSR technique is commonly used for analysis in econo-
metrics and social sciences and is an excellent method for
the determination of the concentration of blood analytes,
such as glucose, ascorbate, lactate, urea, cholesterol, etc.
For applying this technique to predict glucose concentration,
a set of calibration training data is formulated from the col-
lected absorption spectra of five major constituents which
contain absorption signatures associated with glucose along
with the absorption of other constituents [28].

In the PLSR method, both the absorption data and the
concentration data are used at the outset to formulate a
calibration model. The PLSR algorithm is developed using
Python programming language and ported on Jetson Nano to
predict the urea and glucose concentration.

A 4-layer & 3-layer BP-ANN is implemented on the Jetson
platform. Here, the important step is to train the network.
To get the best results Mean Sum Squared Loss (MSSL)
should be less than 0.002 which is achieved at the
2000th iteration for urea as seen from figure 10. For glucose,

FIGURE 10. MSSL vs Iterations for Urea.

FIGURE 11. MSSL vs Iterations for Glucose.

MSSL is shown in figure 11. Further increase in the number
of iterations further reduces the MSSL. We have run the
model for 10000 iterations to observe any significant change
in MSSL. A large data sample for training means the output
of the system will be more accurate. In order to eliminate
redundant interference, we have not trained the network with
original spectral data but we have performed PCA on these
data. Then the optimal principal component (PC) PC1, PC2&
PC3 are selected as the inputs for the BP-ANN model.

TABLE 2. Urea predicted result.

After completion of network training, we have to test the
network for the prediction of urea and glucose concentration.
The prediction result for urea and glucose with both PLSR &
BP-ANN models is depicted in table 2 and 3 respectively.
From table 2 & 3, it is very clear that the best estimation
for both is achieved with BP-ANN. The estimated/predicted
values are very near to the actual concentration whereas
prediction with the PLSR model has a large error.

The predicted values depending on how the model is fitted
to the calibration set. Hence, in some cases, the predicted
values are higher than the actual, and in some, it is lower.
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TABLE 3. Glucose predicted result.

FIGURE 12. Bland –Altman analysis for blood urea a) PLSR Model
b) BP-ANN Model.

The RMSE for estimating blood urea with PLSR Model
is 0.88 mg/dL and with BP-ANN Model is 0.69 mg/dL.
And also, the RMSE for estimating blood glucose with
PLSR Model is 12.01 mg/dL and with BP-ANN Model is
2.06 mg/dL.

B. SYSTEM VALIDATION
Here, we have used Bland –Altman analysis, coefficient
of determination (R2) for urea, and Glucose for validation.
Clark Error Grid Analysis (CEGA) was used to evaluate the
agreement between the estimated and actual values of Blood
Glucose.

1) BLAND-ALTMAN ANALYSIS
The Bland –Altman analysis is used to compare the esti-
mated and actual values graphically. It is a scatter plot of the
difference between the estimated and the actual reading on
the Y-axis and the corresponding mean of the estimated and

FIGURE 13. Bland –Altman analysis for blood glucose a) PLSR Model
b) BP-ANN Model.

actual values on the X-axis [29]. Horizontal lines are drawn
at the mean of the difference and at the limits of agreement,
which are defined ±1.96 times the Standard Deviation (SD)
from the mean of difference.

SD =

√
1

n− 1

∑n=4

K=1
((Actual− Estimated)k−Bias)

2 (2)

From figure 12, it can be observed that the mean
of the difference of estimated and actual value (Bias)/
standard deviation (SD) for estimating blood urea is
−0.03 mg/dL/1.02 mg/dL for PLSRModel and−1.0 mg/dL/
0.79 mg/dL for BP-ANN. Also, from figure 13, Bias/SD
for estimating blood glucose is −1.1 mg/dL/13.81 mg/dL
for PLSR Model and −1.6 mg/dL/1.52 mg/dL for BP-ANN
respectively. From the Bland –Altman plots, it is very clear
that most of the readings lie within the limits of agreement
and are less spread over for BP-ANN compared to PLSR
Model.

2) CLARK ERROR GRID ANALYSIS (CEGA)
Any designed system/Instrument for estimating glucose must
satisfy the CEGA for clinical acceptance [30]. We have
validated our system with CEGA as shown in figure 14(a)
with the PLSR model. CEGA plot shows that only two
estimated values exactly follow the regression line and two
estimated values lie on the edge of Zone A.Zone A signifies
the error of less than 20 %. As predicted concentration lie on
the borderline, there is uncertainty in accepting this prediction
model. The figure 14(b) shows the analysis for the BP-ANN
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FIGURE 14. CEGA Plot a) With PLSR b) With BP-ANN.

model. It can be seen that a better performance is obtained as
all the four estimated values lie in Zone A and exactly follows
the best fit regressor line.

C. REGRESSION ANALYSIS
Statistical methods such as Regression analysis are used for
finding out the relationships between a dependent variable
and one or more independent variables. The regression analy-
sis was done for both urea and glucose with the PLSR model
and BP-ANNModel. The regression analysis for urea gives a
coefficient of determination (R2) of 0.93 for the PLSR model
and 0.96 for the BP-ANN Model as shown in figure 15.
The same was computed for glucose which gives R2 as
0.97 & 0.99 forPLSR and BP-ANN respectively as shown
in figure 16.

D. ACCURACY OF THE SYSTEM
The system accuracy is calculated using equation 3.

A =
(
1−

∑
abs (Estimated − Reference) /Reference

No of Subjects

)
∗100 (3)

The accuracy for blood urea estimation using the PLSR
model was 94.2% and with the BP-ANN model was 95.96%
and for blood glucose estimation using the PLSR model was
90.14% and with the BP-ANN model was 98.65%.

FIGURE 15. Regression analysis for estimating blood urea with PLSR and
BP-ANN model.

FIGURE 16. Regression analysis for estimating blood glucose with PLSR
and BP-ANN model.

V. DISCUSSION
Prior to reducing the number of wavelengths points to five,
we had designed a PLSR prediction model for the sam-
ple which resembled blood over 2500 wavelength points
recorded on spectrophotometer V770. This gave excellent
accuracy for urea/glucose with RMSE of 0.4/0.5 mg/dL [26].
As our ultimate focus is to make a non-invasive portable
system that will be useful for diabetes patients, we have
decided to select only five wavelength points in the NIR
region which corresponds to spectral features of glucose and
urea. The first and second LED wavelength i.e. 2.12 µm
and 2.24 µm are exactly coinciding with urea and glucose
signatures and the other three are in the vicinity for both urea
and glucose. When PLSR multivariate prediction model was
run on these five wavelength points, the prediction error has
substantially increased which makes the system unrealizable.
With five wavelength points, the PLSR model is not able to
find a good correlation between the predictor variables. This
led us to explore the ML approach to improve the accuracy
of the system. To train the network, PCA components are fed
as input to the model. Extracting the main components of the
original spectral data for urea and Glucose, the contribution
rates of the first three principal components, PC1, PC2, and
PC3 were 98.95%,0.92%,0.12%, and the total contribution
rate was 99.99%. These three principals components explain
most of the spectral feature differences present in glucose
and urea. These principal components are then used to train
the ML system for predicting glucose and urea. By using
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BP-ANN we got good accuracy and very low RMSE. This
makes the system capable of accurate prediction of glu-
cose. In this paper, we have used the blood resembles
samples prepared in the laboratory. Now, we aim to use
the actual human tissue for urea and glucose estimation
non-invasively.

VI. CONCLUSION
The large and growing global burden of Diabetes and CKD
needs urgent attention to identify novel monitoring to prevent
progressive kidney failure and its complications. Monitoring
blood glucose and blood urea in CKD patients non-invasively
is very important. To design a non-invasive glucose moni-
toring system, we have developed a system that estimates
blood urea and glucose. The system uses 5-fixed LED-
wavelengths in the NIR region. First, the PLSR model was
successfully developed in python and executed in NVIDIA
Jetson Nano for estimating urea/glucose with an accuracy
of 94.2%/90.14%, RMSE of 0.88 mg/dL /12.01 mg/dL, and
coefficient of Determination R2

= 0.93/0.97 for predicting
4 samples. To obtain better accuracy, the same dataset was
trained with BP-ANN to get an accuracy of 95.96%/98.65%,
RMSE of 0.69 mg/dL/ 2.06 mg/dL, and coefficient of Deter-
mination R2

= 0.96/0.99 for predicting the same 4 samples.
The PLSR and BP-ANN models for Glucose estimation are
validated with CEGA and Bland-Altman Analysis. PLSR
model and BP-ANN model for urea estimation were val-
idated with only Bland-Altman analysis. We cannot apply
CEGA for urea as it is the gold standard for Glucose esti-
mation. From the analysis, it is clear that BP-ANN outper-
forms the PLSR model when less spectral information is
available.

CONFLICTS OF INTEREST
The authors of this article want to declare that there is no
conflict between them.

REFERENCES
[1] T. Scully, ‘‘Diabetes in numbers,’’ Nature, vol. 485, no. 7398, pp. S2–S3,

May 2012.
[2] International Diabetes Federation, 7th ed. Brussels, Belgium: IDF

Diabetes Atlas, 2015.
[3] I. F. Godsland and C. Walton, ‘‘Maximizing the success rate of minimal

model insulin sensitivity measurement in humans: The importance of basal
glucose levels,’’ Clin. Sci., vol. 101, no. 1, pp. 1–9, Jul. 2001.

[4] K. Mclachlan and A. Jenkins, ‘‘The role of continuous glucose monitor-
ing in clinical decision-making in diabetes in pregnancy,’’ Austral. New
Zealand J. Obstetrics Gynaecol., vol. 47, no. 3, pp. 90–186, 2007.

[5] A. Goyal, Y. Gupta, R. Singla, S. Kalra, and N. Tandon, ‘‘American dia-
betes association ‘Standards of medical care–2020 for gestational diabetes
mellitus’: A critical appraisal,’’ Diabetes Therapy, vol. 37, no. 1, pp. S14–
S80, 2014.

[6] E. Villar, S. H. Chang, and S. P. McDonald, ‘‘Incidences, treatments,
outcomes, and sex effect on survival in patients with end-stage renal disease
by diabetes status in Australia and New Zealand (1991 2005),’’ Diabetes
Care, vol. 30, no. 12, pp. 3070–3076, Dec. 2007.

[7] U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of
Chronic Kidney Disease and End-Stage Renal Disease in the United
States, National Institutes of Health, Nat. Inst. Diabetes Digestive Kidney
Diseases, U.S. Dept. Health Hum. Services, USA, 2013, p. 340.

[8] T. Liyanage et al., ‘‘Worldwide access to treatment for end-stage kidney
disease: A systematic review,’’ Lancet, vol. 385, no. 9981, pp. 1975–1982,
May 2015.

[9] J. D. Kopple, ‘‘National kidney foundation K/DOQI clinical practice
guidelines for nutrition in chronic renal failure,’’ Amer. J. Kidney Diseases,
vol. 37, no. 1, pp. S66–S70, 2001.

[10] G. Eknoyan et al., ‘‘Proteinuria and other markers of chronic kidney dis-
ease: A position statement of the national kidney foundation (NKF) and the
national institute of diabetes and digestive and kidney diseases (NIDDK),’’
Amer. J. Kidney Diseases, vol. 42, no. 4, pp. 617–622, Oct. 2003.

[11] A. Chachou, C. Randoux, H. Millart, J. Chanard, and P. Gillery, ‘‘Influence
of in vivo hemoglobin carbamylation on HbA1c measurements by various
methods,’’ Clin. Chem. Lab. Med., vol. 38, no. 4, pp. 321–326, Jan. 2000.

[12] S. K. Vashist, D. Zheng, K. Al-Rubeaan, J. H. T. Luong, and F.-S. Sheu,
‘‘Technology behind commercial devices for blood glucose monitoring in
diabetes management: A review,’’ Analytica Chim. Acta, vol. 703, no. 2,
pp. 124–136, Oct. 2011.

[13] R. E. Pratley et al., ‘‘Ertugliflozin plus sitagliptin versus either individual
agent over 52 weeks in patients with type 2 diabetes mellitus inade-
quately controlled with metformin: The VERTIS FACTORIAL random-
ized trial,’’ Diabetes, Obesity Metabolism, vol. 20, no. 5, pp. 1111–1120,
May 2018.

[14] B. J. van Enter and E. von Hauff, ‘‘Challenges and perspectives in continu-
ous glucosemonitoring,’’Chem. Commun., vol. 54, no. 40, pp. 5032–5045,
2018.

[15] G. Reach, ‘‘Continuous glucose monitoring and diabetes health outcomes:
A critical appraisal,’’ Diabetes Technol. Therapeutics, vol. 10, no. 2,
pp. 69–80, Apr. 2008.

[16] O. S. Khalil, ‘‘Non-invasive glucose measurement technologies: An update
from 1999 to the dawn of the new millennium,’’ Diabetes Technol. Thera-
peutics, vol. 6, no. 5, pp. 660–697, 2004.

[17] O. S. Khalil, ‘‘Spectroscopic and clinical aspects of noninvasive glucose
measurements,’’ Clin. Chem., vol. 45, no. 2, pp. 165–177, Feb. 1999.

[18] S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, ‘‘Global prevalence
of diabetes: Estimates for the year 2000 and projections for 2030,’’ Dia-
betes Care, vol. 27, no. 5, pp. 1047–1053, May 2004.

[19] S. Yu, K. Zhu, and F. Diao, ‘‘A dynamic all parameters adaptive BP neural
networks model and its application on oil reservoir prediction,’’ Appl.
Math. Comput., vol. 195, no. 1, pp. 66–75, Jan. 2008.

[20] S. Haykin, Neural Networks and Learning Machines, vol. 3. Upper Saddle
River, NJ, USA: Pearson, 2009.

[21] L. Huang, J. Zhao, Q. Chen, and Y. Zhang, ‘‘Nondestructive measurement
of total volatile basic nitrogen (TVB-N) in pork meat by integrating near
infrared spectroscopy, computer vision and electronic nose techniques,’’
Food Chem., vol. 145, pp. 228–236, Feb. 2014.

[22] Y. He, X. Li, and X. Deng, ‘‘Discrimination of varieties of tea using near
infrared spectroscopy by principal component analysis and BP model,’’ J.
Food Eng., vol. 79, no. 4, pp. 1238–1242, Apr. 2007.

[23] H. M. Heise, A. Bittner, and R. Marbach, ‘‘Clinical chemistry and near
infrared spectroscopy: Technology for non-invasive glucose monitoring,’’
J. Near Infr. Spectrosc., vol. 6, no. 1, pp. 349–359, Jan. 1998.

[24] M. R. Heise, ‘‘Human oral mucosa studies with varying blood glucose
concentration by non-invasive ATR-FT-IR-spectroscopy,’’ Cellular Mol.
Biol., vol. 44, no. 6, pp. 899–912, 1998.

[25] H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared
Spectroscopy: Principles, Instruments, Applications, Hoboken, NJ, USA:
Wiley, 2008.

[26] J. S. Parab, R. S. Gad, and G. M. Naik, ‘‘Noninvasive glucometer model
using partial least square regression technique for human blood matrix,’’ J.
Appl. Phys., vol. 107, no. 10, May 2010, Art. no. 104701.

[27] S. Haykin, Neural Network a Comprehensive Foundation, 2nd ed. Upper
Saddle River, NJ, USA: Prentice-Hall, 2005.

[28] M. Sequeira, J. S. Parab, R. S. Gad, andG.M.Naik, ‘‘Estimation of glucose
using fixed wavelength NIR light sources,’’ Jour. Adv. Res. Dyn. Control
Syst., vol. 10, p. 119, Mar. 2018.

[29] J. M. Bland and D. G. Altman, ‘‘Measuring agreement in method com-
parison studies,’’ Stat. Methods Med. Res., vol. 8, no. 2, pp. 135–160,
Jun. 1999.

[30] H. Chung, M. A. Arnold, M. Rhiel, and D.W.Murhammer, ‘‘Simultaneous
measurements of glucose, glutamine, ammonia, lactate, and glutamate
in aqueous solutions by near-infrared spectroscopy,’’ Appl. Spectrosc.,
vol. 50, no. 2, pp. 270–276, Feb. 1996.

VOLUME 9, 2021 4900608


