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A B S T R A C T

The COVID-19 pandemic has caused a pronounced disturbance in the social environments and economies of
many countries worldwide. Credible forecasting methods to predict the pandemic’s progress can allow countries
to control the disease’s spread and decrease the number of severe cases. This study presents a novel approach,
called the Shifted Gaussian Mixture Model with Similarity-based Estimation (SGSE), that forecasts the future
of a specific country’s daily new case values by examining similar behavior in other countries. The model
uses daily new case values collected since the pandemic began and finds countries with similar trends using a
specific time offset. The daily new case values data between the first day and (𝑡𝑜𝑑𝑎𝑦−𝑁)th day are transformed
by employing the Gaussian Mixture Model (GMM) and, subsequently, a new vector of features is obtained for
each country. Using these feature vectors, countries that show similar statistics in the past are found for any
forecasted country. The future of the corresponding country is forecasted by taking the mean of the time-series
plots after the offset points of similar countries are calculated. A brand new metric called a trend similarity
score, which calculates the similarity between forecasted and actual values is also presented in this study. While
the SGSE trend similarity score median varies between 0.903–0.947, based on the selection of the distance
metric, the ARIMA model yields only 0.642. The performance of the SGSE was compared in seven European
countries using four different public projects submitted to The European COVID-19 Forecast Hub. The SGSE
gives the most accurate forecasts compared to all other models. The test sets’ results show that trends and
plateaus are predicted accurately for many countries.
1. Introduction

At present, the world continues to struggle with endless new waves
of coronavirus (COVID-19) variants. The pandemic has greatly affected
the economies, industries, business sectors, educational realms, and
social environments of many countries. It is therefore essential to apply
vaccination and social distancing rules that aim to ‘‘flatten the curve’’
and reduce daily new case values. Another important consideration is
analysis of newly developing waves of the pandemic. With the help of
credible predictions, countries can more effectively manage restrictions
and take better precautions in the face of future waves of COVID and
of similar diseases.

Since the first incidence of COVID-19, a significant number of stud-
ies have been conducted that forecast the number of future cases (Shinde
et al., 2020). Considering the incubation period and transmission
of the disease, the short-term future of the pandemic in a specific
country mainly depends on the recent past (Satrio, Darmawan, Nadia, &
Hanafiah, 2021; Tandon, Ranjan, Chakraborty, & Suhag, 2020; Zheng
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et al., 2020). On this basis, many recent studies have considered the
historical data of the corresponding country (Hu, Ge, Li, Jin, & Xiong,
2020; Pham, Nguyen, Huynh-The, Hwang, & Pathirana, 2021). In
general, the methods used in the literature mainly derive from auto-
regressive and deep learning models (Benvenuto, Giovanetti, Vassallo,
Angeletti, & Ciccozzi, 2020; Dehesh, Mardani-Fard, & Dehesh, 2020;
Hu et al., 2020; Ketu & Mishra, 2022; Liao et al., 2021; Naeem et al.,
2022; Saba & Elsheikh, 2020; Tandon et al., 2020).

Auto-regressive models are based on a country’s history, while
exponential models may not exactly depend on a country’s historical
information. However, geographic location and condition affect the
spread of the virus, both within countries and across countries.

Traveling to and from countries was and is one of the key rea-
sons why COVID-19 spread so widely (Farzanegan, Gholipour, Feizi,
Nunkoo, & Andargoli, 2021; Mousavi et al., 2020). Consequently, al-
though it seems that the disease has spread across countries in different
ways, in most places, the fluctuations in the number of new cases look
alike (Gautam, 2022; Hu et al., 2020).
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It starts with a single incident; then, the number of cases increases
rapidly, and the isolated case turns into a pandemic, resulting in the
first wave. Therefore, some countries followed stricter border policies
to further prevent the disease from spreading into their respective
territories (Imtyaz, Haleem, & Javaid, 2020). Depending on the exact
precautions taken, some countries managed to decrease the number of
new cases (Sahoo & Sapra, 2020; Sun, Zhang, Yang, Wan, & Wang,
2020). However, almost every country experienced a second and third
wave (Fisayo & Tsukagoshi, 2021; Seong et al., 2021). The behavioral
similarities in the number of new cases, which differ on the time axis,
lead to a search of a specific country’s progress in relation to other
countries’ past time-series data. When time-series data of countries’
daily new cases are examined, it can be observed that the data show
similar patterns for many countries.

Given the necessity of forecasting, several methods have already
been presented in the literature. The objective and fair performance
comparison among these proposed methods is another crucial require-
ment. Several general-purpose, widely-used performance metrics exist
such as mean absolute error (MAE), root means squared error (RMSE),
and mean absolute percentage error (MAPE); these can be used to com-
pare the performance of different approaches. These metrics consider
the exact numerical difference between actual data and forecast results;
however, the accurate estimation of the trend is more important than
the net difference in forecasting the course of the pandemic.

In order to address these issues, the following contributions are
made in this study: first, a novel method, the Shifted Gaussian Mixture
Model with Similarity-based Estimation (SGSE), is proposed. The SGSE
locates countries that have faced similar past patterns to forecast the
future of the forecasted country by imitating the progress of similar
countries starting from the end of the pattern found. Waves in the time-
series data of the countries are represented by Gaussian distributions
that make up a probabilistic model called the Gaussian Mixture Model
(GMM). The time-series data of the countries are cropped according to
various shifted time offsets, and GMM representations are constructed
for all country-time offset pairs. Subsequently, GMM representations
are used to find which countries’ pasts are similar to the progress of
the forecasted country (Eirola & Lendasse, 2013; Povinelli, Johnson,
Lindgren, & Ye, 2004). For each similar country-time offset pair, the
time-series data that follows the offset point is used while estimat-
ing the future new case values of the forecasted country. Second, a
completely new performance evaluation metric, the trend similarity
score (TSS), is presented. TSS is calculated using the cosine similarity
of actual and forecasted trends. By using TSS, we can observe how
much the forecasted values deviate from the actual trend—in contrast
to metrics that only employ numeric differences such as MAE, RMSE,
and MAPE. This new approach is validated using a publicly available
COVID-19 dataset published by Roser, Ritchie, Ortiz-Ospina, and Hasell
(2020) that uses 20 countries from different continents. The results
demonstrate that the SGSE outperforms the baseline model by a large
margin, considering all evaluation metrics. Third, the SGSE is an ex-
plainable model and can assist decision-makers while they take action.
As the SGSE finds similar country-time interval pairs, decision-makers
are able to pursue actions that result in a flattened curve or avoid
actions that can potentially cause a new wave of disease for a similar
country.

The remaining sections in this study are organized as follows: the
next section provides a list of related studies in the literature. Next,
details about the SGSE, along with the dataset, preprocessing opera-
tions, and data transformations are presented in Section 3. In Section 4,
the results of the experimental evaluation are presented using RMSE,
MAPE, and TSS metrics. The study concludes in Section 5.

2. Related work

Since the COVID-19 pandemic began, numerous studies have been
conducted on forecasting models; in these, researchers have looked at
2

the forecasting of various statistics such as mortality rate, pandemic end
date, and the number of daily new cases. This section examines studies
that have focused on the number of daily new cases. A majority of these
specifically observed auto-regressive and deep learning models.

In their study, Dehesh et al. (2020) used a naive auto-regressive
integrated moving average (ARIMA) model with different 𝑝 (order
of auto-regression), 𝑞 (order of moving average), and 𝑑 (degree of
non-seasonal difference) parameters. They applied the ARIMA training
process in the simplest form. Using auto-correlation function (ACF)
and partial auto-correlation function (PACF) graphics, the best 𝑝, 𝑑,
𝑞 parameters are observed. ARIMA models were trained using these
parameters on five different countries from different continents. The
data used cover 41 days for these five countries. The graphs show the
forecasting results, and the statistical behavior of these five countries in
the near future can be observed. Predictions for the next 17 days were
as follows: a stable trend for China, unstable trends for Italy and Iran,
a stationary trend for South Korea, and mostly controlled daily new
cases for Thailand. With the exception of China, these countries had
an uptrend between the specified dates. While numbers show a slight
increase in China, the country showed a more stable trend as figures
had already risen a lot by then.

Saba and Elsheikh (2020) integrated two commonly used
approaches: the autoregressive model and the neural network. In these
approaches, the model used is the nonlinear autoregressive neural
network (NARANN); it predicts a time-series stemming from that series’
past values. In this study, the authors compared the performances of
the ARIMA and NARANN models using accumulated daily new cases
in Egypt. The capabilities of the NARANN model are verified using test
data for both short-term and long-term forecasts. Different statistical
indices were used to measure the performance of the model. In the first
process, the researchers compared the 7-day forecasts of the ARIMA
and NARANN models. The ARIMA model’s absolute percentage error
increased with time, starting at 3.08% and eventually reaching 29.48%.
A longer forecasting process using the NARANN model resulted in 7.75
mean absolute error and 10.4 root mean squared error.

Hu et al. (2020) conducted a pioneering study that used auto-
encoders to forecast the number of daily new cases. The authors used
a modified auto-encoder in their work; this model has a different
structure than the classical auto-encoder because the number of nodes
in layers is not the same. Input data is formed in time segments
containing a particular day and its seven successive days. A total of 128
segments of time-series with a length of eight were used for training.
The previous day is used as an observational input in forecasting the
number of daily new cases for the next day. This process is repeated in
forecasting the future with different n-step models. In the study, results
were visualized for China and its provinces. The next two months for
China were forecasted, but the first eight days, which can be used for
the test, were used to measure model performance. For different steps
from 6 to 10, 1.64%, 2.27%, 2.14%, 2.08%, 0.73% absolute percentage
errors were obtained, respectively.

Singhal, Singh, Lall, and Joshi (2020) made COVID-19 predictions
using two different models. The first one is a mathematical model
accounting for various parameters relating to the spread of the virus.
The second is a nonparametric model. First, the Fourier Decomposition
Method decomposed time-series data into a desired set of frequency
bands. The spread size is estimated by fitting the mixture of Gaussian
functions on the trends obtained in the previous step. The performance
of the proposed GMM model for the number of daily new cases was
measured, and 1842.5 mean absolute error for the world, 731 for the
USA, 102.38 for Italy, and 53.53 for India were obtained. Ayoobi
et al. (2021) used a variety of deep learning models such as GRU,
LSTM, and convolutional LSTM to predict new cases and mortality
rates in Iran and Australia — one, three, and seven-day ahead. They
reported that the bidirectional models’ performances worked better
than non-bidirectional.
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Table 1
Summary statistics of smoothed daily new cases per million during the first and second waves with the structural view of the waves’ daily cases patterns between
given dates for several countries.

Team Model Description

Epiforecasts EpiNow2 EpiNow2 implements a Bayesian latent variable to create an exponential growth
model. The incidence of time steps is estimated using the trajectory of time-varying
𝑅𝑡 calculated for each subsequent time step (Abbott et al., 2020).

IEM Health CovidProjections It uses SEIR model projections for daily incident confirmed COVID-19 cases and
deaths by using AI to fit actual cases observed (Suchoski, Stage, Gurung, & Baccam,
2022).

Masaryk University VAR It uses a vector auto-regression model fitted to outlier-corrected transformed weekly
aggregated series (Pavlik et al., 2020).

European COVID-19 Forecast Hub ensemble It is an ensemble model of all projects submitted to the European COVID-19 Forecast
Hub (Sherratt et al., 2022).
Xu, Magar, and Barati Farimani (2022) combined deep learning
odels to forecast the subsequent 14 days of new case totals for Brazil,

ndia, and Russia only. They reported that the LSTM model performed
omparably well and exhibited the best performance considering the
valuation metrics MAE, 𝑅2, and EV. The model is not capable of
orecasting daily new cases totals for countries with rapidly changing
umbers, whereas it forecasts cumulative cases more successfully. The
eported MAE results of the CNN-LSTM model for Brazil, India, and
ussia are 15563, 5245, and 986, respectively.

In a more recent study, Gautam (2022) used transfer learning and
long short-term memory (LSTM) network to forecast the smoothed

umber of daily new cases. Approximately 20 days of past data were
iven to the model as input, and five consecutive future days were
redicted. The authors transferred the nonlinear patterns of certain
ountries to other countries’ training processes. Models trained and
ested with the same country and models trained with a country
nd tested with another country are visualized and compared. 5-day
redictions were made with the Italy and America models for five
ountries, and an average of 0.99 and 1.51 root mean squared errors
ere obtained, respectively.

It can be misleading to compare the performances of different
tudies due to the differences in experimental settings, i.e., the coun-
ries reported and the time frame used in the evaluations. Besides,
he data used differ in the studies. Some researchers use new case
alues daily, whereas others use cumulative daily new case values. The
aseline and proposed models must be applied to the same dataset. For
hese reasons, the results found in this study are compared against a
aseline method (ARIMA) widely used in the literature. Additionally,
he performance of the SGSE is compared with four chosen models that
re publicly available in The European COVID-19 Forecast Hub, which
s a collaborative project that aims to collect, evaluate, and combine
he forecasts of weekly COVID-19 cases in European countries (Sherratt
t al., 2022). The models that the SGSE is compared with are listed in
able 1 along with short descriptions.

. Shifted GMM with similarity-based estimation

In this section, as a first step, the input data that is fed into
he model is described. The preprocessing steps performed on the
ata are then explained, including the Gaussian mixture representation
onstruction. Finally, the details of the similarity-based forecasting
pproach are presented.

.1. Dataset & preprocessing

The data have been taken from an open dataset of Our World In
ata (Roser et al., 2020), which shows the number of daily new cases,

he number of new deaths, the accumulated number of new cases, the
ccumulated number of deaths, and numerous other statistics from all
ountries linked to the COVID-19 pandemic. This dataset is available
3

from December 31, 2019 to the present time; it is updated daily and
made publicly available. The present study uses data up to December
16, 2021. The smoothed daily new cases per million fields are used
within the scope of this study. The data are obtained by dividing the
number of daily new cases (7-day smoothed) by the total population,
then multiplying by 1 million. A total of 36 countries were excluded
from the dataset since their statistics were corrupted or noisy.

Table 2 shows the statistical summaries of smoothed daily new
cases per million during the first two waves some countries experienced
during the COVID-19 pandemic. The pattern column reveals that some
countries experienced the pandemic at similar structural patterns but
different magnitude and dates. For example, during the first wave,
Albania and Bosnia and Herzegovina had a similar pattern and nor-
malized mean and standard values, but the intensity of the new case
rate signal they experienced was different. Similarly, the Germany–
Japan–United Kingdom and Poland–Romania plots represent groups
with similar daily new case plot appearances with different amplitude
and width.

Countries do not always have to accompany a similar country as
time varies. During the second wave, Bosnia and Herzegovina’s plot
is not similar to Albania’s but coincides with Poland and Romania.
France–Belgium and Albania–Sweden have analogous plots. Moreover,
as shown in Table 2, the duration and start–end dates of the expe-
rienced waves may differ. When the dataset is examined, it can be
observed that the date difference was not more than two months to
find the similarity.

When the dynamics in the data are examined, detecting similar
patterns seems to be a beneficial approach in estimating the number
of future new cases in a country because some countries have experi-
enced the pandemic in a similar manner before others. Although it is
easy to detect pattern similarity between the two signals upon initial
observation, in order to express it mathematically, a representation for
times-series data is required. The GMM is leveraged to represent and
calculate the similarity.

3.2. GMM representation of time-series data

The GMM is a weighted sum of Gaussian densities, which consists
of mean 𝜇 and covariance 𝛴 values (Reynolds, 2009). It is possible to
use one-dimensional GMM, 𝑝(𝑥), to represent time-series data (Kumar,
Patel, & Woo, 2002):

𝑝(𝑥) =
𝐾
∑

𝑘=1
𝜔𝑘(𝑥 ∣ 𝜇𝑘, 𝛴𝑘) (1)

where 𝐾 represents the number of mixture components, 𝜔𝑘 is the prior
probability of the component, 𝜇𝑘 is the mean, 𝛴𝑘 is the covariance of
the component.

For a given dataset, the standard approach to train a GMM is the
EM algorithm (Zhou, Lim, Kwon, et al., 2014). It is essential to first
decide how many components – mean-covariance pairs – will represent
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Table 2
Summary statistics of smoothed daily new cases per million during the first and second waves with the structural view of the waves’ daily cases patterns between given dates for
several countries.

Country Wave 1 Wave 2

Dates Norm. Mean Norm. Std. Min Max Pattern Dates Norm. Mean Norm. Std. Min Max Pattern

Albania
2020-03-14
to
2020-05-13

0.478 0.292 1.85 8.21
2020-10-01
to
2021-06-04

0.427 0.287 4.35 389.48

Belgium
2020-03-04
to
2020-06-21

0.376 0.339 0.27 125.12
2020-09-03
to
2021-06-30

0.167 0.184 36.27 1533.14

Bosnia and H.
2020-03-10
to
2020-06-07

0.540 0.302 0.22 15.99
2020-10-01
to
2021-06-01

0.413845 0.299 25.33 499.90

France
2020-03-01
to
2020-05-04

0.209 0.264 0.379 196.66
2020-09-01
to
2021-07-01

0.315 0.189 27.05 906.66

Germany
2020-03-01
to
2020-06-16

0.308 0.304 0.230 67.08
2020-10-01
to
2021-07-01

0.474 0.266 7.24 309.93

Japan
2020-03-01
to
2020-06-01

0.306 0.326 0.14 4.37
2020-07-01
to
2021-07-01

0.316 0.267 0.88 52.12

Poland
2020-03-09
to
2020-07-09

0.648 0.263 0.06 11.81
2020-09-15
to
2021-06-15

0.348 0.272 7.79 753.85

Romania
2020-03-02
to
2020-06-03

0.551 0.339 0.02 19.22
2020-09-25
to
2021-07-01

0.401 0.272 2.71 440.87

Sweden
2020-03-02
to
2020-07-22

0.476 0.271 0.25 104.44
2020-09-18
to
2021-06-01

0.496 0.258 23.64 710.96

United Kingdom
2020-03-02
to
2020-07-04

0.467 0.343 0.22 72.17
2020-08-15
to
2021-04-14

0.280 0.245 14.77 887.05
the series. Bayesian information criterion (BIC) is a model selection
criterion commonly used to decide on the number of components of
the GMM (Schwarz, 1978).

Several values for selecting the ideal number of GMM components
for all countries are attempted, and by using the elbow method, 𝐾 = 5 is
set. Hence, five GMM components are used to represent the time-series
data (𝑝 ≤ .001). Instead of using the time-series data for a particular
country, GMM is fitted on the data with five components and mean-
covariance pairs; a vector with ten elements is then created. Following
creation of the vector, it is updated by ordering the components ac-
cording to their mean values. In Eq. (2), the vector of the 𝑖th country
denoted by 𝑣𝑖 is shown. In this equation, 𝜇𝑖𝑗 and 𝜎𝑖𝑗 represent the mean
and covariance of 𝑗th component of 𝑖th country, respectively.

𝑣𝑖 = {𝜇𝑖1, 𝜎𝑖1, 𝜇𝑖2, 𝜎𝑖2, 𝜇𝑖3, 𝜎𝑖3, 𝜇𝑖4, 𝜎𝑖4, 𝜇𝑖5, 𝜎𝑖5} (2)

In the remaining sections, the term ‘GMM representation’ will de-
scribe this vector. Fig. 1 shows Germany’s time-series data and Gaussian
components when GMM is fitted to the data:

3.3. Forecasting using similarity-based estimation

Before moving on to the training process, it is necessary to extract
GMM representations from each country based on the different cutoff
dates to learn which countries’ history shows a similar time interval to
the forecasted country. After examining the countries’ data, it was de-
cided that the time difference between countries can be two months at
most. For this reason, five different replicas of the time-series data were
extracted for each country, and each replica goes back 14 days from the
previous replica. GMM representations are then created for each of the
replicas. The GMM representations obtained for each country formed
the dataset for the rest of the processes. For 182 countries with five
different GMM representations, 910 GMM representations are obtained
for the dataset. The dataset grows incrementally, and past days are not
4

recalculated for upcoming days. Since the recorded data is used as a
lookup table, the system effectively adapts to the new data. Fig. 2 shows
the process in detail.

For 182 countries with five replicas, the structure of the created
dataset 𝐷 is given in Eq. (3):

𝐷 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇111 𝜎111 … 𝜇11𝑘 𝜎11𝑘
𝜇121 𝜎121 … 𝜇12𝑘 𝜎12𝑘
⋮ ⋮ ⋮ ⋮ ⋮

𝜇𝑖(𝑗−1)1 𝜎𝑖(𝑗−1)1 … 𝜇𝑖(𝑗−1)𝑘 𝜎𝑖(𝑗−1)𝑘
𝜇𝑖𝑗1 𝜎𝑖𝑗1 … 𝜇𝑖𝑗𝑘 𝜎𝑖𝑗𝑘

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3)

where 𝑖 represents the country index (𝑖 ∈ [1, 182]), 𝑗 represents replica
index (𝑗 ∈ [1, 5]), and 𝑘 represents the GMM component index (𝑘 ∈
[1, 5]), respectively. For instance, (𝜇123, 𝜎123) represents properties of
third GMM component of the second replica of the first country. The
last row of the matrix includes the GMM components of the 5th replica
of the 182nd country.

The ten most similar samples with regards to each country are found
in the normalized version of the created 𝐷. These samples can be
different replicas of any country or different replicas of different coun-
tries. Euclidean distance, Jensen–Shannon distance (Lin, 1991), and
Wasserstein distance (Vaserstein, 1969) measures are used to calculate
the similarity, and their results are compared in terms of prediction
errors.

The Jensen–Shannon distance between two distributions 𝑝 and 𝑞
is defined as:

𝐷𝐽𝑆 (𝑝 ∥ 𝑞) =
√

1
2
𝐷𝐾𝐿(𝑝‖

𝑝 + 𝑞
2

) + 1
2
𝐷𝐾𝐿(𝑞‖

𝑝 + 𝑞
2

) (4)

The Kullback–Leibler Divergence 𝐷𝐾𝐿 is defined as:

𝐷𝐾𝐿(𝑝 ∥ 𝑞) =
∑

𝑝(𝑥) log
𝑝(𝑥) (5)
𝑥 𝑞(𝑥)
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Fig. 1. Normalized smoothed number of daily new cases per million for Germany, between March 1, 2020–December 14, 2021 and fitted Gaussian components.
Fig. 2. Dataset creation by replicating original time-series data with an M-day shifted cutoff date.
Kullback–Leibler divergence is not symmetric and does not satisfy
triangular inequality. Therefore, Jensen–Shannon distance is preferred
to determine similar countries.

Wasserstein distance measures how much cost is required to trans-
form one distribution to another, and this is formulated as:

𝐷𝑊 (𝑝, 𝑞) = inf
𝜋∈

∏

(𝑝,𝑞)∫R𝑥R
|𝑥 − 𝑦|𝑑𝜋(𝑥, 𝑦) (6)

When the COVID-19 plot for each country is examined, it can be
said that some countries have visually similar plots; however, they
have dealt with the pandemic in a slower manner than others. The fact
that similar samples have different lengths also demonstrates this. The
velocity ratio should also be considered when forecasting the future
of the forecasted country. Therefore, while forecasting the future of
countries, the near future of each similar sample is interpolated (Akima,
1974) to coincide with the next 14 days length of the forecasted country
using the velocity ratio between the forecasted country and similar
samples. Let 𝑟 be the velocity ratio between the forecasted country and
a similar sample,

𝑟 =
|𝑥𝑖|
|𝑦𝑖|

(7)

where 𝑥𝑖 is the time-series data of the forecasted country and 𝑦𝑖 is the
corresponding time-series data of a similar sample. The value 𝑙 gives
us the vector length obtained from a similar sample’s corresponding
5

future.

𝑙 = 14 ∗ 𝑟 (8)

By interpolating the first 𝑙 days of the sample after the cutoff date,
a vector of length 14 which will be an element of the final forecast
vector, is then obtained.

To demonstrate, using the dataset 𝐷, with GMM components, the
time series of country B with a shift amount of 28 days is found to be
similar to the target country A. In other words, country B has a similar
plot at the (𝑁 − 28)th day to the plot of country A at the 𝑁th day (see
Fig. 3, 𝑀 = 𝑁 − 28). To put it more simply, country B experiences the
pandemic 𝑟 = 𝑁

𝑁−28 times more quickly than country A. The velocity
ratio 𝑟 is used for ‘‘stretching’’ the data of country B. Upon stretching,
interpolation is needed to ‘‘soften’’ the stretched data to prevent gaps
among values. Later, since the forecasted number of days is 14, the
first 14 values of the interpolated data of country B, starting from the
(𝑁 − 27)th day, are used while forecasting the future of country A.

Collecting interpolated future elements from the ten most similar
samples, a set of vectors of length 14 is obtained. The behavior of
these vectors shows how the forecasted country’s estimated future will
behave; however, their values do not match the number of daily new
cases of the corresponding country. For this reason, as a last step in the
process, these vectors are scaled to match the end of the time-series
data of the country with the beginning of the forecasted element. The
equally weighted mean of these forecast elements forms the estimated
14-day results of the forecasted country.
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Fig. 3. Process of obtaining a forecast element by interpolating the corresponding part of the future of the sampled country.
𝑀

To illustrate, the first value of the interpolated data (the value at
𝑁 −27)th day of country B) is not equal to the last value (the value at

th day) of country A. Therefore, the scale factor 𝑠 should be applied to
he values of the interpolated data; Algorithm 1 shows the calculation
nd application of the scale factor 𝑠:

Algorithm 1: Scaling the forecast elements.
procedure SCALE(𝑥, 𝑦, 𝑁)
x ← time-series data of the target country
N ← length(x)
y ← the forecast values of length 14 after interpolation

𝑥𝑁 ← 𝑥[𝑁]
𝑦0 ← 𝑦[0]
𝑠 ← 𝑥𝑁∕𝑦0
for 𝑖 ← 0 to 14 do

y[𝑖] ← y[𝑖] * 𝑠
end for

end procedure

Finally, after scaling, the average of forecast vectors from the ten
ost similar samples is taken to provide the estimated future vector

or the target country. Eq. (9) shows the calculation of the estimated
uture:

𝑖 =

∑10
𝑗=1 𝑒𝑗𝑖
10

(9)

where 𝑓𝑖 is 𝑖th day of the estimated future, for 𝑖 ∈ [1, 14], and 𝑒𝑗𝑖 is the
𝑖th day of the 𝑗th forecast element

4. Experimental results

4.1. Overview

The EM algorithm and interpolation operations are implemented
using Python’s scikit-learn API. First, in this section – for a specific
country – the closest samples and their time-series data are displayed to
show the similarities. Next, the forecast data and the actual, confirmed,
smoothed daily case numbers per million for some selected countries
are visualized. Next, the forecast data and the actual, confirmed, and
smoothed daily case numbers per million for several selected countries
are visually presented. Finally, MAE, RMSE, MAPE, and the ACF1 score
are listed to measure the performance of the created model. For all
results, the used and presented COVID-19 data start on March 1, 2020,
and end on December 15, 2021. The ACF1 is the autocorrelation of
errors at lag 1. Other error functions are as follows:

𝑀𝐴𝐸 = 1
𝑛
∑

|

|

𝑥𝑖 − 𝑦𝑖|| (10)
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𝑛 𝑖=1
𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (11)

𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑥𝑖 − 𝑦𝑖
𝑥𝑖

|

|

|

|

(12)

4.2. Trend similarity score

MAE, RMSE, and MAPE are more efficient than other metrics for
observation of the exact difference between actual data and forecast
results. However, while estimating how COVID-19 will continue, accu-
rate trend estimation is more important than the net difference. For this
reason, it is more meaningful for us to fit linear lines on real data and
estimation results and look at their cosine similarity. At this point, a
new error metric, the TSS, is presented and Eq. (13) shows how it is
calculated:

𝑇𝑆𝑆 =
𝑇1 ⋅ 𝑇2

‖𝑇1‖ × ‖𝑇2‖
(13)

where 𝑇1 and 𝑇2 are the lines fitted on normalized actual and predicted
data using linear regression. In Fig. 4, the estimations and errors for two
different countries, the United Kingdom and Sweden are shown:

MAE and TSS error values for the UK’s forecast are given in Fig. 4(a);
and Sweden’s can be found in Fig. 4(b). Although the MAE error for the
UK is much higher than for Sweden, the TSS error value is much lower
than Sweden’s as the forecast trend is quite similar to the actual trend.
One of the crucial reasons for this is that daily new cases per million
values of countries are in very different ranges, and this problem can be
solved using the MAPE error. Nevertheless, when TSS is compared with
MAPE, it may result in a numerical amount different from the actual
values; the comparison may also not display real performance in cases
where the trend is correctly estimated.

4.3. Results

Two different experiments were conducted to measure model per-
formance. The first experiment compares the model with an ARIMA
model trained using the same dataset. The models’ performances that
make 14-day forecasts are measured with MAE and TSS errors. The
second experiment compares the SGSE with four models submitted
to the European COVID-19 Forecast Hub. In this organization, the
submitted models provide weekly forecasts. Daily forecasts produced
by the SGSE were aggregated, and 4-week forecasts were used in the
evaluation.

In the first experiment, forecasts are made for the 14 days following
December 1, 2021, for 20 selected countries on different continents.

The created prediction data covers the dates between December 1
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Fig. 4. MAE and TSS errors for the United Kingdom and Sweden using the SGSE with Wasserstein distance.
Fig. 5. Visualization of Canada’s time-series data and the three most similar samples found using the GMM representation of Canada using Euclidean distance.
and December 14. For instance, in Fig. 5, the GMM representations
of Canada and the top three samples most similar to Canada are
visualized.

Table 3 lists all of the ten most similar samples to Canada’s data.
Each row represents a similar country and the shift offset days from
the prediction day.

Table 3 shows that the GMM representation of the UK’s time series
data up to 56 days before is the most similar representation to the
GMM representation of Canada’s time-series data on the predicted day,
meaning that the UK has dealt with the pandemic in a faster way
than Canada. Therefore, the UK’s pandemic experience can give insight
about how the pandemic will continue in Canada.

Later, the UK’s time-series data between 56 days before the predic-
tion day and the prediction day itself is scaled taking into account the
magnitude of the time-series data of Canada and used while calculating
its country-specific forecast values. Since ten most similar samples have
been chosen, 10 scaled future plots are obtained. In the end, the mean
of the scaled future plots is taken to provide the final forecast values
for Canada.
7

Table 3
Top 10 samples most resembling Canada’s GMM
representation.

Country Offset

United Kingdom 56 days
Netherlands 56 days
United Kingdom 42 days
Cape Verde 14 days
Libya 70 days
Colombia 42 days
Netherlands 42 days
United Kingdom 70 days
Netherlands 70 days
Colombia 56 days

In Fig. 6, the estimation results of eight countries from different
continents are visualized. The results indicate that the SGSE model is
more accurate at forecasting the future than ARIMA’s baseline model.
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Fig. 6. Actual/forecast number of cases for eight countries from different continents using Euclidean distance to find similar countries.
A decision-maker can thus take more consistent precautions using the
SGSE model; there are two main reasons for this:

• The ARIMA model only considers the values observed until the
moment and, therefore, fails to forecast with respect to real-life
scenarios. It is useful, though, when there are no steep curves, and
the trend is likely to be stable. The parameters should be selected
wisely for each country. For instance, Japan’s ARIMA forecast
values keep decreasing since the plot until November 29th and
8

has a negative slope. However, ARIMA failed to forecast Japan’s
future because there was a new wave around December 19th.

• The SGSE model forecast values are closer to real-life scenarios
and more easily explainable since the SGSE model leverages
the past pandemic experience of other countries. Even if the
trend changes, the SGSE can quickly adapt to a new trend since
countries experience the pandemic at different speeds; in other
words, the observation time of steep waves is different. If the
trend changes, there is at least one country that has faced a similar
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Fig. 7. Visual comparison of the SGSE with four different models from The European COVID-19 Forecast Hub on four European countries.
trend before, and that country’s experience can give insight into
the predicted country’s future.

When the SGSE is compared with various models provided by the
European COVID-19 Forecast Hub, it can also be observed that the
SGSE model forecast values are closer to the actual values compared to
the other models. In Fig. 7, this is shown for four European countries:
Germany, Poland, Belgium, and the UK. The SGSE provides more con-
sistent forecasts than other models, especially for Germany, Belgium,
and Poland. As mentioned before, for Fig. 6, the SGSE easily adapts to
trend changes, and the shape of the plot in the future is more similar
compared to the other models.

While leveraging other countries’ pandemic experience, the SGSE
makes magnitude adjustments while forecasting the future of the pre-
dicted country. This is an important feature of the SGSE since the plots
seem irrelevant between the countries due to population differences.
With magnitude adjustments on the plots, the SGSE can therefore find
similarities and provide forecast values that overlap with the actual
values in the plot.

The experiment results were obtained for the 20 countries In Ta-
ble 4, the MAE, RMSE, MAPE, TSS, and ACF1 results for all 20 countries
are listed. Table 4 contains error results of three distance methods.
As seen in the table, an average of 10.75, 6.44, 5.65 MAE, 12.80,
8.16, 7.53 RMSE, and 0.13, 0.17, 0.14 MAPE errors are obtained with
Euclidean, Wasserstein, and Jensen–Shannon distances for the dataset.
In addition, average TSS values of 0.94, 0.90, and 0.93 for the new
distance method were obtained, respectively.

In Fig. 6, forecast values that resulting from the SGSE and ARIMA
models are compared visually by looking at the trend changes on the
plots. In Table 5, the comparison is also made using MAE and TSS
metrics. TSS metric results show that the SGSE is more successful
in capturing trend changes in the data than the ARIMA model. Fur-
thermore, MAE error results indicate that the SGSE produces fewer
9

errors while providing forecasts for the future of the predicted country
compared to the ARIMA model.

When the results are observed, this situation seems to be the case for
all results obtained using Euclidian, Wasserstein, and Jensen–Shannon
distance metrics.

In the second experiment, the weekly case numbers of seven Euro-
pean countries were estimated for four weeks starting from December
20th. The predictions were compared with those of four different
models from the European COVID-19 Forecast Hub. Table 6 lists the
results of these comparisons in relation to MAE and TSS errors.

4.4. Discussion

Considering the incorrect prediction’s large divergence, comparing
the results using the median of the loss or similarities instead of raw
averages is preferable. The medians of the TSS for these distances are
0.947, 0.903, and 0.927. The Jensen–Shannon distance is more suc-
cessful on MAE and RMSE scores, whereas Euclidean distance provides
better results for MAPE and trend similarity. Wasserstein distance lies
between MAE and RMSE, with a lower score for MAPE and trend
similarity. As reported in Table 5, the proposed method, with any
distance metrics, outperforms the ARIMA method, which only possesses
a 0.642 TSS and 11.721 MAE cost.

Table 4 shows that the MAPE results of 13 countries are less
than 0.1, which indicates that the distribution for these countries was
predicted quite accurately (Lewis, 1982). In addition, the MAPE results
for 18 of the countries are less than 0.2. Trend predictions for almost
all of the test sets (𝑝 < 0.01) were made. Another score that shows
how accurately the SGSE can predict trends is the TSS: for 19 of the
countries, it is higher than 0.9.

When the forecast visualizations are examined, it can be observed
that the waves in the plateau, uptrend, and downtrend were success-
fully estimated. On the other hand, erroneous estimations can be made
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Table 4
Presentation of 14 days forecast errors of 20 countries from different continents.

Country Euclidean distance Wasserstein distance Jensen–Shannon distance

MAE RMSE MAPE TSS ACF1 MAE RMSE MAPE TSS ACF1 MAE RMSE MAPE TSS ACF1

Albania 28.756 30.357 0.262 0.692 0.697 23.275 25.289 0.214 0.441 0.701 19.327 20.444 0.176 0.963 0.297

Angola 0.127 0.166 0.216 0.907 0.900 0.095 0.127 0.159 0.946 0.880 0.151 0.189 0.259 0.899 0.900

Argentina 1.655 2.930 0.035 0.997 0.064 5.331 6.863 0.106 0.934 0.788 2.517 3.657 0.053 1.000 0.164

Belgium 208.256 221.561 0.152 0.999 0.549 320.492 413.680 0.250 −0.947 0.926 553.759 642.768 0.412 −0.971 0.771

Bosnia and H. 34.380 40.090 0.202 −0.133 0.926 10.527 12.069 0.061 0.904 0.877 6.127 7.207 0.035 0.987 0.587

Colombia 3.011 4.240 0.076 0.949 0.835 3.513 5.680 0.095 0.901 0.941 4.130 6.186 0.110 0.872 0.906

Ecuador 4.378 8.002 0.126 0.869 0.398 4.445 7.977 0.132 0.856 0.435 5.185 9.148 0.150 0.640 0.516

Ethiopia 0.153 0.172 0.138 0.957 0.904 0.218 0.240 0.196 0.928 0.944 0.033 0.045 0.029 0.998 0.530

France 56.475 76.216 0.083 0.998 0.613 129.416 143.594 0.194 0.923 0.935 39.874 50.884 0.060 0.999 0.758

Germany 70.757 87.232 0.115 −0.664 0.798 57.927 71.518 0.093 0.938 0.442 105.832 125.317 0.171 −0.844 0.858

Japan 0.078 0.095 0.089 1.000 0.872 0.017 0.022 0.019 1.000 0.353 0.149 0.167 0.172 1.000 0.916

Kenya 0.245 0.414 0.132 0.945 0.903 0.437 0.643 0.246 0.808 0.956 0.518 0.686 0.311 0.811 0.966

Malaysia 14.815 17.293 0.099 0.949 0.812 6.301 7.557 0.042 0.991 0.777 4.117 5.038 0.027 0.983 0.839

New Zealand 2.454 3.043 0.122 0.993 0.818 6.583 8.340 0.337 −0.601 0.946 1.925 2.474 0.096 0.998 0.683

Paraguay 6.701 8.430 0.826 0.684 0.941 2.165 2.698 0.267 0.976 0.696 6.505 7.858 0.791 0.759 0.915

Poland 87.262 98.092 0.143 0.695 0.837 85.607 98.764 0.140 0.702 0.761 22.342 28.268 0.036 0.971 0.507

Romania 15.639 17.174 0.258 0.966 0.586 17.576 19.696 0.295 0.895 0.795 20.207 21.994 0.336 0.875 0.843

Sweden 16.638 21.395 0.076 0.987 0.702 49.060 59.707 0.221 −0.327 0.964 21.093 25.388 0.096 0.956 0.844

United Kingdom 70.063 78.434 0.100 0.700 0.938 44.330 48.448 0.063 0.963 0.924 94.298 108.542 0.133 −0.212 0.981

Venezuela 4.156 4.582 0.221 0.897 0.621 3.999 4.432 0.213 0.900 0.631 4.156 4.582 0.221 0.897 0.620

Median 10.758 12.802 0.129 0.947 0.815 6.442 8.159 0.176 0.903 0.836 5.656 7.532 0.142 0.927 0.805
Table 5
SGSE vs ARIMA in terms of forecast errors of 20 countries from different continents.

Country SGSE - Euclidean distance SGSE - Wasserstein distance SGSE - Jensen–Shannon distance ARIMA

MAE TSS MAE TSS MAE TSS MAE TSS

Albania 28.756 0.692 23.275 0.441 19.327 0.963 52.839 0.864
Angola 0.127 0.907 0.095 0.946 0.151 0.899 0.373 0.612
Argentina 1.655 0.997 5.331 0.934 2.517 1.000 7.271 0.979
Belgium 208.256 0.999 320.492 −0.947 553.759 −0.971 465.389 −0.960
Bosnia and H. 34.380 −0.133 10.527 0.904 6.127 0.987 21.009 0.068
Colombia 3.011 0.949 3.513 0.901 4.130 0.872 5.950 0.885
Ecuador 4.378 0.869 4.445 0.856 5.185 0.640 5.855 0.320
Ethiopia 0.153 0.957 0.218 0.928 0.033 0.998 0.205 0.869
France 56.475 0.998 129.416 0.923 39.874 0.999 151.523 0.528
Germany 70.757 −0.664 57.927 0.938 105.832 −0.844 131.936 −0.885
Japan 0.078 1.000 0.017 1.000 0.149 1.000 0.426 0.996
Kenya 0.245 0.945 0.437 0.808 0.518 0.811 0.677 0.681
Malaysia 14.815 0.949 6.301 0.991 4.117 0.983 15.382 0.882
New Zealand 2.454 0.993 6.583 −0.601 1.925 0.998 3.678 1.000
Paraguay 6.701 0.684 2.165 0.976 6.505 0.759 8.060 0.672
Poland 87.262 0.695 85.607 0.702 22.342 0.971 33.940 −0.025
Romania 15.639 0.966 17.576 0.895 20.207 0.875 24.129 0.928
Sweden 16.638 0.987 49.060 −0.327 21.093 0.956 33.541 0.382
United Kingdom 70.063 0.700 44.330 0.963 94.298 −0.212 105.080 −0.460
Venezuela 4.156 0.897 3.999 0.900 4.156 0.897 6.570 0.074

Median 10.758 0.947 6.442 0.903 5.656 0.927 11.721 0.642
Table 6
Performance comparisons of the SGSE model with four different models from the European COVID-19 Forecast Hub.

Belgium Romania France Poland United Kingdom Sweden Germany

MAE TSS MAE TSS MAE TSS MAE TSS MAE TSS MAE TSS MAE TSS

epiforecasts-EpiNow2 5733.4 0.015 783.7 0.942 10446.2 −0.035 451.8 0.987 5640.8 −0.200 3048.2 0.671 1036.7 0.878
IEM_Health-CovidProject 3799.9 0.334 746.7 0.943 8227.3 0.749 1533.7 0.991 2042.0 0.840 2797.2 0.732 837.2 0.954
EuroCOVIDhub-ensemble 4829.9 0.128 760.0 0.942 10139.3 0.207 452.9 0.984 3976.6 0.247 3180.4 0.647 1084.4 0.901
MUNI-VAR 6165.0 0.032 601.7 0.957 14003.3 −0.312 1364.1 0.957 6169.7 0.426 4301.6 0.400 1778.1 0.848
SGSE (Wasserstein) 3362.3 0.529 694.8 0.948 10154.9 0.576 238.7 1.000 2506.7 0.990 3985.1 0.541 1976.2 0.962
SGSE (Jensen–Shannon) 3545.0 0.435 679.8 0.950 9980.9 0.581 660.1 0.991 5687.7 0.839 3139.6 0.672 676.2 0.990
SGSE (Euclidean) 4022.4 0.270 685.6 0.949 10154.9 0.576 260.8 1.000 5584.9 0.892 3751.9 0.546 643.8 0.974
while estimating the rapid uptrend faced in Sweden and Ecuador. When
results from Colombia and Malaysia were considered, the MAE and
RMSE errors were found to be relatively high. When the time-series
10
plots of these countries are examined, it can bee seen that there is a
difference between the actual daily new cases and predictions during
the 14 days. However, when we look at the forecast trend for these
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two countries, it overlaps exactly with the actual trend. Although the
ARIMA model makes accurate predictions in most countries in the first
one or two days, its deviation increases gradually afterward. Bosnia
and Herzegovina and New Zealand were in a downtrend during the
forecasted period. While the ARIMA model correctly predicted the de-
cline in New Zealand, it predicted a plateau in Bosnia and Herzegovina.
The SGSE, on the other hand, accurately forecasted that the number of
COVID-19 cases would decrease in both countries. While the ARIMA
model in Japan predicted a trend in the opposite direction, the SGSE
predicted the trends accurately. ARIMA predicted a plateau for France,
while the SGSE predicted a successful uptrend.

The SGSE outperformed four different models submitted to the
European COVID-19 Forecast Hub. It has the highest TSS and lowest
MAE error values for four out of seven European countries. It also
showed the 2nd and 3rd most accurate performances in countries for
which it did not have the best forecast. In Germany, the number of
cases first decreased and then increased during the forecasted period.
All compared models forecasted downtrends, while the SGSE forecasted
uptrends. While Belgium had an increasing trend during this period, all
models predicted a slight decrease. However, the closest prediction to
the actual trend came from the SGSE. For Poland and the UK, the SGSE’s
estimates are similar to the actual trend.

5. Conclusions

This study proposes a novel method that predicts the smoothed
daily new cases per million of COVID-19. GMM representations derived
from time-series data of the countries were used. A dataset was created
with the representations extracted from the cutoff data of the countries
according to different cutoff dates. Using different distance metrics
with country representations helps in finding the most similar examples
for each country. These examples constitute the histories of other
countries. As a result, the SGSE model determines which countries’
past COVID-19 data most closely resembles a given country’s data.
The future of the country observed is predicted from the average
of similar samples. The model was tested on 20 different countries,
and the results are provided with three different similarity metrics.
In addition, the forecasts of eight different countries are visualized.
It can be observed that countries that start to apply more stringent
precautionary measures may experience a downward trend faster than
similar samples. The results show that the SGSE model successfully
predicts uptrends, downtrends, and plateaus based on trend similarity
scores compared to the baseline method. However, the SGSE does not
work as well when there is a rapid uptrend in a country, as seen in
Sweden’s case. To make a fair comparison between COVID-19 forecast
models, one must initiate forecasts on the same countries during the
same periods. For this reason, the SGSE model is compared with four
models from The European COVID-19 Forecast Hub. It outperformed
these four models on the data prediction of seven European countries.
The SGSE gave better predictions for Belgium, Poland, the UK, and
Germany. Furthermore, it had the second and third best prediction
scores for Romania, France, and Sweden.

It is also important to note that the SGSE model is a generic
approach that can be applied not only for COVID-19 but also to any
dataset containing time-series data produced by different classes or
clusters with the same context.
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