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The influence of laser scribing 
on magnetic domain formation 
in grain oriented electrical steel 
visualized by directional neutron 
dark-field imaging
P. Rauscher1, B. Betz2, J. Hauptmann1, A. Wetzig1, E. Beyer1,3 & C. Grünzweig2

The performance and degree of efficiency of transformers are directly determined by the bulk 
magnetic properties of grain oriented electrical steel laminations. The core losses can be improved 
by post manufacturing methods, so-called domain refinement techniques. All these methods induce 
mechanical or thermal stress that refines the domain structure. The most commonly used technique is 
laser scribing due to the no-contact nature and the ease of integration in existing production systems. 
Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing 
on the bulk and supplementary domain structure. In particular, we investigate the domain formation 
during magnetization of samples depending on laser treatment parameters such as laser energy and 
line distances. The directional dark-field imaging findings were quantitatively interpreted in the context 
with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the 
dark-field images to distinguish between different domain structures alignment and their relation to the 
laser scribing process.

Transformers made an important prerequisite for the use of electric energy and for technical industrial devel-
opment of the last century. The losses in European Union for distribution transformers are estimated at about 
33 TW · h/year1. The basic structure of the power transformer with components core, winding and insulation 
structure has not changed since that time. The transformer cores are made of stacked grain oriented (GO) elec-
trical steel laminations. The losses in the GO laminations consist essentially of hysteresis and classic eddy current 
and anomalous eddy current losses. To reduce the classic eddy current losses the thickness of the GO laminations 
is reduced from 0.35 mm down to 0.18 mm however reaching a limit due to the fabrication process.

Concerning the other loss components, the laser scribing of GO electrical steel laminations is one method to 
increase the efficiency of power and distribution transformers. The theoretical approach is the reduction of the 
anomalous eddy current loss driven by demands for the efficient usage of energy. Thus manufacturing processes, 
like laser scribing, have been continually improved over the last decades2.

It is known that the laser irradiation induces residual stress that refines the domain structure, which influ-
ences the global magnetic properties3–6. Nevertheless, the fundamental influence to the bulk domain behavior 
is still not fully understood due to the lack of observation techniques. Surface domains can be observed using 
surface-sensitive magneto-optical Kerr effect (MOKE) or magnetic powder pattern, in which ferromagnetic par-
ticle from a colloidal suspension interact with the stray fields of the sample. Both methods are well established, 
but deliver only information of the surface domain structure6.

Neutron grating interferometry (nGI) is one approach to visualize bulk magnetic structures spatially 
resolved in the neutron dark-field image (DFI)7–10. This method has been used to investigate GO steel11–15 as 
well as non-grain oriented steel grades16, which demonstrates the general possibility to investigate bulk magnetic 
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behavior of silicon steel sheet without any preparation (removing of the isolating coating layer) that has be shown 
recently influencing the domain structure13. In the following we present the observation of bulk and supplemen-
tary domain structures and the refinement of them of an untreated and differently laser treated high-permeability 
GO electrical steel laminations.

Samples and experimental techniques
Differently laser treated samples. For the experiment, four representative samples in the Epstein geom-
etry of 300 mm ×  30 mm ×  0.27 mm high-permeability GO electrical steel (M110–27P according to DIN EN 
10107) with an isolation layer consisting of a forsterite (Mg2SiO4) and phosphate layer were used. The samples 
were annealed after cutting into Epstein strips at 800 °C for 2 hours in a nitrogen atmosphere in order to perform 
stress-relief annealing.

The laser treatment was performed with the Laser Magnetic Domain Refinement (LMDR) test system 
installed and developed at the Fraunhofer IWS Dresden for industrial related material investigations of contin-
uous moving material17. The LMDR test system was equipped with a continuous wave multi-mode fiber laser 
having a maximum output power of 4000 W. The laser spot on the surface of the steel sheets was elliptically shaped 
due to the optical configuration of the LMDR test system. The semi minor axis RX was aligned along rolling 
direction (RD). The semi major axis RY was aligned along the scanning speed, perpendicular to the RD. Lateral 
spot velocities of up to 300 m/s can be applied with the LMDR test system in order to simulate industrial related 
material treatments.

For the investigation of the influence of the laser scribing parameters such as laser energy and line distance 
one untreated (sample 1) and three representatively laser treated samples (sample A, B, C) were selected. The dif-
ferent laser treatment parameters as well as their influence on the magnetic properties are summarized in Table 1. 
The samples were magnetically characterized measuring B-H curves before and after the laser scribing process in 
order to evaluate the change of the magnetic properties such as core loss reduction and change of polarization as 
shown in Table 1. For these measurements a 250 mm ×  30 mm single sheet tester (SST) and a measurement device 
(MPG 200) from Brockhaus were used. An increase of the laser energy by a factor of 4 results in visible laser lines 
and thereby a damage of the surface coating as can be seen for the samples B and C.

Even if the objective target of the laser treatment is the core loss reduction, one sample (sample C) with higher 
core losses after laser scribing was selected beside of two samples were the core loss was reduced (sample A, B). 
The absolute changes of the core losses and the maximum polarization are illustrated in Fig. 1 for all three laser 
treated samples (A, B, C). The black rectangle shows the values before the laser treatment, the red circles shows 
the values after laser treatment. The arrow indicates the changes of the magnetic values due to laser scribing 
process using different treatment parameters. It can be clearly seen that the core losses are reduced for sample A 
(from 1.03 W/kg to 0.87 W/kg) and B (form 1.04 W/kg to 0.93 W/kg) but increased for sample C (form 1.01 W/kg  
to 1.19 W/kg).

The best results in terms of the core loss reduction as well as for the damage of the isolation layer are obtained 
for the treatment parameters used for sample A. However, the treatment parameters can be adapted by additional 
changing the line distance. A short line distance (sample C, dL =  2 mm) leads to a deterioration of the core losses 
whereas an increase of the lines spacing (sample B, dL =  10 mm) results in a core loss reduction. The B-H curves 
before and after the laser treatment, as show in Fig. 2, illustrate the magnetization behavior dependent on the laser 
treatment parameters. The highest shearing of the magnetic curve after laser treatment was observed for sample 
C with reduced magnetic properties. It can be seen that the coercive field strength is for sample C higher than for 
samples A and B due to the fact the B-H curve is wider at B =  0 T.

From Table 1 and Fig. 1 we can clearly see that the laser treatment of the GO laminations has an impact of the 
hysteretic behavior of the sample in the global B-H measurement. The physical nature of the differences in the 
B-H curve is given by changing the underlying magnetic domain formation during the laser treatment. However, 
the bulk and supplementary domain structure remain hidden in the global measurements. In the following we 
present how neutron grating interferometry providing the dark-field image delivers information about the change 
of the domain structure after the laser treatment. In particular we interpret and correlate these findings with the 
global B-H measurement results.

Neutron grating interferometry. The nGI experiments were performed at the Swiss Spallation Neutron 
Source (SINQ) at the Paul Scherrer Institut. The nGI setup consists of three gratings18, as schematically shown 
in Fig. 3. The use of the source grating G0 acting as a periodic line source, followed by the phase grating G1 at 
a distance l =  5,23 m, and the analyzer grating G2 at the Talbot distance dT =  19,4 mm behind G1, allows for the 
spatially resolved detection of the samples scattering properties13. The interaction of the magnetic moment of 

Sample

Laser energy Line distance Core loss reduction Change of Polarization

Coating DamagemJ mm W/kg %

A 51 4 15,7% − 0,4% no damage, invisible lines

B 204 10 10,6% − 0,0% damage, lines visible

C 204 2 − 17,0% − 1,2% damage, lines visible

Table 1.  Three different laser treated samples A, B and C regarding laser energy and laser line distance. 
Global measurements provide the relative core loss reduction (measured at 50 Hz, 1.7 T) and change of 
polarization (measured at 50 Hz, 800 A/m). The coating damage for the three samples is provided.
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a neutron with the magnetic induction of ferromagnetic domains results in a local scattering of the incoming 
neutron beam, which is visualized in the corresponding DFI. Further details about the contrast formation can be 
found in refs 7, 8. The DFIs were recorded by a conventional scintillator (50 μ m thick 6LiF/ZnS) based detection 
system using a digital camera [Andor NEO sCMOS, 2160 ×  2560 pixels, pixel size: 6.5 μ m] placed behind G2. The 
effective spatial resolution in our measurements is 70 μ m and is determined by intrinsic blurring of the scintilla-
tion screen19 and penumbra blurring caused by the sample to detector distance of 3 cm.

In the experiments the samples have been magnetized in a magnetic frame. The DFI images have been taken 
stepwise by increasing the magnetic field strength (DC magnetization) after demagnetization. The magnetization 
coils of the magnetic frame are supplied with currents up to 4 A using a power supply [KEPCO BOP100-4ML]. In 
order to distinguish between different alignments of the magnetic structures, the orientation of the sample with 
respect to the gratings could be varied by the angle ω . The ω  =  0° orientation was defined when the magnetic field 
orientation is parallel to the grating lines, as can be seen in Fig. 3. A rotation of the magnetic frame of 90° around 
the beam axis of the neutrons leads to an orientation of the sample that is horizontal to the grating lines, which is 
defined as ω  =  90° orientation. The magnetic field strength rotates with the rotation of the magnetic frame so that 
the magnetization vector is in both cases (ω  =  0° and ω  =  90°) parallel to the rolling direction of the lamination. 
The orientation dependency of the nGI setup was reported in ref. 7 for a small iron silicide single-crystal disk. 
Here we are using this dependency to observe the bulk magnetic domain structure in GO lamination (y direction 
for ω  =  0°) and the supplementary domain structures in the laser lines (x direction for ω  =  90°). As the laser lines 
are lying perpendicular to the magnetization direction we choose the two orientation of ω  =  0° and ω  =  90° to 
perform the direction dependent DFI experiments.

Results and Discussion
Directional dark-field images of the different laser treated samples. Figure 4 summarizes the DFI 
images for untreated and laser treated samples after demagnetization (H =  0 A/m) in ω  =  0° and ω  =  90° orienta-
tion taking advantage of the orientation dependent character of the DFI in context with domain wall formation. 
For the ω  =  90° the sample was rotated clockwise by 90°. In the ω  =  0° orientation (images in the top row) vertical 
black lines become visible, which are the volume domain walls spatially resolved. The smaller volume domain 

Figure 1. Absolute changes of the magnetic properties of for three different laser treated samples (A,B,C) 
before and after the laser treatment. 

Figure 2. B-H curve measured at 1.7 T and 50 Hz (a) before laser treatment (left) after laser treatment 
(right) for the samples A, B and C. 
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wall spacing of the laser treated samples A, B, C in comparison to the untreated sample 1 can be explained by 
the refinement of the basic domains due to laser scribing. The dark areas in the DFIs for the ω  =  0° orientation 
are grains with a certain misorientation to the RD and hence forming supplementary surface domains14. These 
domains are below the detection limit and are therefore detected as darker areas.

The DFI images of the ω  =  90° orientation show a significant difference in comparison to the untreated sam-
ple for the magnetic field strength of H =  0 A/m. In the ω  =  90° orientation (images in the bottom row) the laser 
affected areas become visible as black vertical lines perpendicular to the RD. Thus we can observe the laser lines 
directly by the created domain structure. A more detailed investigation of the supplementary domains can be 
found in literature20 where scanning electron microscopy was used to observe the detailed domain structure 
without removing the isolation coating layer. The volume domain walls lying perpendicular to the grating lines 
and visible in DFIs for ω  =  0° do not contribute to the DFI signal in the ω  =  90° orientation. The pronounced 
vertical feature in the DFIs in the ω  =  90° orientation are solely due to the supplementary domains formed in the 
laser lines. Hence we can obtain information about the orientation of the domain walls even if they are below the 
detector resolution. The applied line distances was increased from dL =  2 mm (sample C) to dL =  4 mm (sample A) 

Figure 3. Schematic of the nGI setup with source grating G0, the phase grating G1 and the analyzer grating 
G2 and the magnetic sample environment to magnetize the laser treated GO steel lamination. The sample 
including magnetic field can be rotated around an axis perpendicular to the lamination around the angle ω  to 
record the directional dark-field images.

Figure 4. DFI images of the bulk and supplementary domain structures for the ω  =  0° and ω  =  90° (clockwise) 
orientation of the untreated sample 1 and the different laser treated samples (A–C). The data were taken without 
applied field (H =  0 A/m) after demagnetization. The laser lines and their distance of the treated samples A,B,C 
are clearly visible in the ω  =  90° orientation as vertical black lines.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:38307 | DOI: 10.1038/srep38307

and dL =  10 mm (sample B), which can be observed in the corresponding DFIs. The dramatically changes of the 
observed bulk magnetic domains are associated with the Goss texture ({011} 〈 100〉 ) and the preferred alignment 
of the domains along the RD. The domain structure in ω  =  90° orientation being not visible can be explained by 
the fact that the magnetic domains of GO electrical steel are almost aligned in the RD. Domains with slight mis-
orientation will be aligned parallel to the magnetic field strength during magnetization. A contribution of the DFI 
signal is not expected for the ω  =  90° orientation because the occurring magnetic scattering is towards a direction, 
where the nGI is insensitive for the direction of the domain walls. Back in the DFIs in the ω  =  0° the laser lines are 
only visible in the misoriented grains when they cross these areas and become visible as bright horizontal lines. 
In the following we use the direction dependent character of the DFI to visualize the domain structures of the 
non-treaded and different laser treated samples during magnetization.

Domain formation during magnetization of the untreated sample. The DFI images at different 
magnetic fields for the untreated samples (sample 1) are illustrated for the ω  =  0° orientation in Fig. 5. The bulk 
magnetic domains are visible spatially resolved as black vertical lines parallel to the RD representing the vol-
ume domain walls. The first image (H =  0 A/m) was taken after demagnetization. Afterwards the magnetic field 
strength was increased stepwise until H =  800 A/m. The domain structure resolved as vertical lines vanishes while 
increasing the magnetic field strength until no volume domain structures are visible at about H =  450 A/m. The 
most significant changes of the domain walls was found between H =  12 A/m and H =  48 A/m. At higher mag-
netic fields of H =  90 A/m and H =  150 A/m vertical lines are weakly visible in the DFI images. Areas with a 
reduced DFI signal were observed for all applied magnetic field strength, illustrated as slightly darker regions 
as can be seen in the upper left or upper right corner of the DFI images in Fig. 5. These areas show only a minor 
reaction on the applied magnetic field. These regions are identified to misoriented grains exhibiting supplemen-
tary domain structures.

The general interpretation of the DFI signal in relation to the magnetic domain structure was discussed in refs 
7–15. The spatially resolved magnetic structures illustrated as black vertical lines parallel to the RD can be attrib-
uted to domain walls of 180° basic domains. In agreement with the theoretical consideration for the behavior of 
the magnetic domains, it can be stated the amount of the domains walls decrease while increasing the magnetic 
field strength, which can be observed in the DFI images in Fig. 5.

In case of the orientation ω  =  90° the DFI images for different magnetic field strength are illustrated for sample 
1 in Fig. 6. The domain walls, which are visible for the ω  =  0° orientation, could not be observed during magnet-
ization of the ω  =  90° orientation due to the direction dependent nature of the DFI. Contrasts in the DFI images, 
like in the lower left-hand corner, are caused by misoriented grains. The same structure was observed in the lower 
right-hand corner for the ω  =  0° orientation (see Fig. 5). The DFI images of the untreated GO electrical steel in 
ω  =  0° and ω  =  90° orientation has shown that the alignment of the sample with respect to the grating lines has to 
be considered during magnetization and can be used to differentiate between 0° and 90° orientations of bulk and 
supplementary domains.

Domain formation during magnetization of laser treated samples. The laser treated samples have 
been similarly investigated at the different magnetic fields as the untreated in Fig. 6. Representatively for laser 
treated samples we choose sample B to illustrate the domain wall formation during magnetization. The direc-
tional DFI results for sample B are shown in Fig. 7 for the ω  =  0° orientation and in Fig. 8 for ω  =  90° orienta-
tion. The corresponding directional DFI data for sample A and C can be found in the supplementary material 

Figure 5. Directional DFIs of the untreated sample 1 at different magnetic field strengths for the 
orientation of ω = 0°. (magnetic field parallel to grating lines of the nGI setup).
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(Fig. S1-S4). For the orientation ω  =  0°, domain structures are spatially resolved as black vertical lines similar to 
the untreated samples 1, while the black vertical lines themselves are again the volume domain walls. It is clearly 
visible that the laser scribing leads to a refinement of the volume domains. Hence, after demagnetization the 
quantity of the volume domain walls increases at H =  12 A/m. Afterwards, the domain walls vanish until no walls 
are visible at about H =  450 A/m. Regions where the magnetic structure cannot be spatially resolved are darker, 
as can be seen for example at the middle upper position in Fig. 7. The distances of the domain walls of the basic 
domains are in general smaller in comparison to the untreated sample, which is expected due to the refining of 
the basic domains after laser scribing.

If the sample is rotated 90° clockwise around the beam axis, the observed DFI signal changes significantly as 
shown in Fig. 8. The previously observed domain walls of the 180° basic domains cannot be found in the DFI 
images due to the parallel orientation of the magnetic domain walls to the grating lines of the nGI setup similar to 
the untreated sample. However, now the domains walls related to the laser affected zone become visible. They are 
visualized as black lines pointing in the direction perpendicular to the RD. Note, this are not the basic domains. 
The laser lines appear visible as supplementary domains are formed within the laser line with a 90° orientation 
perpendicular to volume domains and to the RD. This “created” supplementary domain structure vanishes by 
increasing the magnetic field strength. Interesting, at about 150 A/m, the supplementary domains related to the 

Figure 6. Directional DFIs of the untreated sample 1 at different magnetic field strengths for the 
orientation of ω = 90°. (magnetic field perpendicular to grating lines of the nGI setup).

Figure 7. Directional DFIs of the laser treated sample B at different magnetic field strengths for the 
orientation of ω = 0° (magnetic field parallel to grating lines of the nGI setup). 
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laser lines cannot be observed in the DFI images in case of sample B. Darker regions in the DFI images, like in 
the middle right position, are slightly influenced by magnetic field strength and still visible at higher magnetic 
field strengths.

In the following we will correlate the direction dependent domain formation as observed locally in the DFI 
with global B-H measurements.

Interpretation and correlation of the directional DFI signal to global magnetic measurements.  
An existing approach to correlate the DFI signal to global magnetic measurements was given for non-grain ori-
ented (NGO) electrical steel16. However, it must be considered that NGO steel distinguishes itself considerably 
from GO electrical steel by a number of facts, like the grain size and orientation. This results in a different magnet-
ization process and domain structure. The influence of the orientation of the sample to the grating lines of the nGI 
setup has to be considered and can be exploited in our case for the domain formation in GO laminations. The DFI 
images of the untreated sample have shown that almost most significant information’s of the magnetic structures 
are given for a ω  =  0° orientation where the RD and the magnetic field are parallel to the grating lines in compar-
ison to the laser treated samples. For the quantitative assessment of the directional DFI signals in relation to the 
laser treatment parameter under consideration of the measured B-H curve two new different approaches are used.

For the following comparison between the global B-H and the local DFI results a global or average DFI signal 
was defined in order to quantify the nGI measurement dependent on the magnetic field strength as follows

= ⋅ ∬DFI
x y

DFI x y dxdy1 1 ( , )
(1)

global

with x defined as direction perpendicular to RD and y defined as direction in RD. The average global DFI signal 
is used to quantify the general magnetic behavior during the magnetization process. With mathematical descrip-
tion of the global DFI signal in relation to magnetic flux in Eq. 1 we are able to quantitatively evaluate the relative 
change depending on the laser treatment parameters and the magnetic field strength. Beside the global descrip-
tion of the DFI signal an additional a local DFI signal was defined in order to quantify the general magnetic 
behavior of the domain structure inside the laser affected area and given by the equation
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applied for the DFI images in ω  =  90° orientation. Hereby we can describe the influence of the laser irradiation on 
the magnetic structure even if the magnetic domains cannot be spatially resolved.

The global DFIglobal signal as function of the applied magnetic field strengths is plotted for the laser treated sam-
ples A,B,C in ω  =  0° orientation in Fig. 9. The red marked area in the diagram indicates the area that is used for the 
calculation. After demagnetization a global DFIglobal signal of about 0.6 was measured for the laser treated samples. 
For the first applied magnetic field strength (H =  12 A/m) a reduced DFIglobal signal was observed for all sample. 
This can also be observed in the DFI images, in which the amount of the spatially resolved domain walls is slightly 
increased. Afterwards, the DFIglobal signal increases for all laser treated samples. It is noticeable that the samples 
(sample A, B) with reduced core losses after laser scribing have steeper gradients in comparison to the sample  
(sample C) with deteriorated magnetic properties. The maximum DFIglobal signal of 0.8 was obtained for sample 
A and B at a magnetic field strength of H =  400 A/m. In contrast, sample C reaches the maximum DFI signal at 

Figure 8. Directional DFIs of the laser treated sample B at different magnetic field strengths for the 
orientation of ω = 90° (magnetic field perpendicular to grating lines of the nGI setup). 
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about H =  800 A/M. The different DFIglobal curves of each sample indicate a different magnetization process that 
can be correlated to the B-H curve after laser scribing as seen in Fig. 2. A higher magnetic shearing of the B-H 
curve results in a smaller increase of the DFIglobal signal while increasing the magnetic field strength. The general 
behavior of the global DFI signal is in good agreement with the theoretical understanding of domain wall forma-
tion during magnetization, where an increase of the magnetic field strength leads to a reduced amount of domain 
walls and therewith an increase of the DFIglobal signal.

The global average DFIglobal signal as function of the applied magnetic field strength for the ω  =  90° orienta-
tion are shown for all three laser treated samples A,B,C in Fig. 10. Almost no change of the global DFIglobal signal 
(DFIglobal ≈  0.85) was observed while increasing the magnetic field strength for the samples A and B that have 
be improved by laser scribing. Sample C with deteriorated core losses due to the laser process shows a different 
behavior. The global DFIglobal signal after demagnetization (H =  0 A/m) is lower (DFIglobal ≈  0.7) than the DFIglobal 
signals for sample A and B and increase slightly while increasing the magnetic field strength until a maximum of 
about 0.84 at H =  1200 A/m. However, the absolute DFIglobal values of sample C are below the DFIglobal values of 
sample A and B for all applied magnetic field strengths. This means that even if the laser lines in the DFI images in 
ω  =  90° orientation vanishes for all samples at the same magnetic field strength of about H =  150 A/m, the amount 
of domains structures seems to be higher for samples C in comparison to sample A and B due to the reduced DFI 
signal (see Fig. 10).

The local DFIline signal in ω  =  90° orientation, which has been used to evaluate the domain structure inside 
the laser trace, is illustrated in Fig. 11. In contrast to the global average DFI signal in Fig. 10 only the red marked 
areas are considered for the calculation. The DFIline signal of the laser line increased during magnetization pro-
cess, which means that the domains wall density inside that area is reduced while increasing the magnetic field 
strength. It is noticeable, that the DFIline signal after demagnetization is different dependent on the used laser 
energy, which is defined as laser power multiplied with dwell time. Sample A, which has been laser scribed 
with energy of 51 mJ, has a significant higher DFI value (DFIline ≈  0.72) after demagnetization than the samples  
B (DFIline ≈  0.56) and C (DFIline ≈  0.56), which have been laser treated with 204 mJ. After demagnetization a 
slightly reduced local DFIline signal was measured for the first applied magnetic field strengths. Afterwards, the 
DFIline values increases while increasing the magnetic field strength until the maximum of about 0.85 is reached 

Figure 9. Global DFI signal of laser treated samples (A, B, C) measured for ω = 0° orientation with 
increasing magnetic field strength (area marked by red indicates the boundaries for the calculation). 

Figure 10. Global average DFI signal of laser treated samples (A, B, C) measured in ω = 90° orientation 
with increasing magnetic field strength (area marked by red indicates the area used for the calculation). 
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for all samples. Under consideration of the treatment parameters, it can be stated that the samples treated with 
the same energy (sample B and C) of 204 mJ have almost the same DFIline signals after demagnetization, but show 
a different behavior during the magnetization process. Sample B, where the core losses have been reduced, has a 
steeper gradient than sample C, with an increase of the core losses after the laser treatment. For higher magnetic 
field strengths at about H =  400 A/m, the DFIline values of sample A and B are comparable. It is assumed that the 
different DFIline curves between samples B and C can be attributed to the different magnetization behavior as a 
result of the changed line distance, which has been reduced from 10 mm to 2 mm. The modification of the line 
distance results in different B-H curves and core losses, which are fundamentally related to the domain structure. 
The reduced local DFI signal as shown in Fig. 10 in dependence of the applied laser energy is in agreement with 
the effect discussed in ref. 21 where the width of the closure domains increase while increasing the local stress.

Conclusion
The bulk magnetic domain behavior of four GO electrical steel sheets was investigated by neutron grating inter-
ferometry. The DFI signal was analyzed directionally with respect to the global magnetic measurements of one 
untreated and three representative laser scribed samples using different line distances of 2,4,10 mm and energies 
of 51 mJ and 204 mJ. We showed that the samples have to be investigated under ω  =  0° and ω  =  90° orientation to 
account for the contribution to the DFI signal of both the basic volume and supplementary domain structures. 
We were able to visualize the laser induced changes of the domain structure, especially around the laser affected 
area. Additionally, the DFI signal was discussed and quantitatively evaluated with respect to the different treat-
ment parameters. We provide a novel evaluation approach in order to interpret the local DFI signal findings in 
correlation to the global magnetic measurements. Especially the local DFIline signal for the ω  =  90° orientation of 
the laser line shows a dependency to the used treatment parameters. In addition, the influence of laser irradiation 
on laser treated samples with invisible lines could be proven by the DFI images taken under 90 ° orientations. Our 
results show that the first quantitative approach to locally characterize the influence of laser scribed GO lamina-
tions by correlating of the DFI signal with respect to the magnetic properties is possible. Further investigations 
are needed to correlate the DFI signal with the magnetic induction values as obtained in a B-H measurement.
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