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Abstract

Stolonization insyllidannelids is auniquemodeof reproductionamonganimals.Duringthebreedingseason,a structure resemblingthe

adult but containing only gametes, called stolon, is formed generally at the posterior end of the animal. When stolons mature, they

detach fromtheadult andgametesare released into thewatercolumn.Theprocess is synchronizedwithineachspecies,and ithasbeen

reportedtobeunderenvironmentalandendogenouscontrol,probablyviaendocrine regulation.To furtherunderstandreproduction in

syllids and to elucidate the molecular toolkit underlying stolonization, we generated Illumina RNA-seq data from different tissues of

reproductive and nonreproductive individuals of Syllis magdalena and characterized gene expression during the stolonization process.

Several genes involved in gametogenesis (ovochymase, vitellogenin, testis-specific serine/threonine-kinase), immune response (com-

plement receptor 2), neuronal development (tyrosine-protein kinase Src42A), cell proliferation (alpha-1D adrenergic receptor), and

steroid metabolism (hydroxysteroid dehydrogenase 2) were found differentially expressed in the different tissues and conditions ana-

lyzed. Inaddition,ourfindings suggest that severalneurohormones, suchasmethyl farnesoate,dopamine,andserotonin,might trigger

stolon formation, the correct maturation of gametes and the detachment of stolons when gametogenesis ends. The process seems to

be under circadian control, as indicated by the expression patterns of r-opsins. Overall, our results shed light into the genes that

orchestrate the onset of gamete formationand improveourunderstandingof howsomehormones, previously reported to be involved

in reproduction and metamorphosis processes in other invertebrates, seem to also regulate reproduction via stolonization.
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Introduction

Annelids in the family Syllidae have a remarkable reproductive

strategy, which has attracted the attention of many biologists

(e.g., Nygren 1999 and references herein). Syllids exhibit

epitoky, which largely implies morphological changes

associated with reproduction (Malaquin 1893), and can be

further divided into a variety of reproductive modes. In all

epitokous modes, there are two states: the sexually immature

worm, called an “atoke,” and the sexually mature worm, or

“epitoke. after ” Among the epitokous types of reproduction,
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one of the most common is epigamy, which is not exclusive to

syllids, where the entire atoke transforms into the epitoke,

developing swimming chaetae, enlarging its eyes and under-

going changes in musculature (Wissocq 1970; Daly 1975;

Garwood 1991). One of the most extreme types of epitokous

reproduction is squizogamy or stolonization, where only a

part of the individual transforms into an epitokal sexual stage,

either by generating new segments or by differentiating pre-

existing ones (Franke 1999). When the breeding season

approaches, the syllid atoke (or stock) starts to develop a pe-

culiar structure at the end of its body, that resembles the adult

and is known as the stolon (Agassiz 1863) (fig. 1). The stolons

possess several features similar to the stock, such as eyes and

antennae, but are filled with gametes (figs. 1 and 2A–E), as

their brief existence is exclusively devoted to mating, followed

by death (Franke 1999). The stock produces and transfers the

gametes to the stolon, which is released from the stock when

mature (with developed eyes and antennae) (figs. 1 and 2E),

and swims to the surface to spawn (Potts 1911; Mesnil and

Caullery 1919). The pelagic stolon releases gametes into the

water column, via the nephridiopores in the case of sperm,

and through rupture of the body wall for the eggs (Okada

1937; Durchon 1951, 1952, 1959; Wissocq 1966, 1970;

Schroeder and Hermans 1975; Franke 1980). Finally, before

or after stolon detachment (depending on the species), the

stock regenerates the lost final segments (e.g., Marion and

Bobretsky 1875; Michel 1898; Okada 1929) (figs. 1 and 2F).

The molecular toolkit involved in annelid reproduction is

still far from being understood, although studies in several

annelid species have shed some light into the matter. For

instance, genes involved in pheromone production that are

essential for mate recognition and spawning, such as Temptin

and Attractin, and those involved in gametogenesis or fertil-

ization, such as Fertilin or Acrosin, have been identified in

Spirobranchus (Pomatoceros) lamarckii, Hormogaster samni-

tica and H. elisae (e.g., Kang et al. 2002; Rivera et al. 2005;

Takahashi et al. 2009; Novo et al. 2013). It is also well-known

that the germline specification in the marine annelids Alitta

virens, Platynereis dumerilii, Capitella teleta, or Hermodice car-

unculata involves the expression of several genes including

vasa, nanos, and piwi during embryogenesis, and that vitello-

genin (Vtg) is required for yolk formation in the oocyte (Hafer

et al. 1992; Rebscher et al. 2007; Dill and Seaver 2008;

Thamm and Seaver 2008; Giani et al. 2011; Mehr et al.

2015; Schenk et al. 2016). Interestingly, a recent study has

reported the potential involvement of the sesquiterpenoid

methyl farnesoate (MF), the brain neurohormone that directly

regulates Vtg in yolk production of P. dumerilii females, there-

fore influencing the correct development of oocytes (Schenk

et al. 2016). Particularly, a decrease in MF levels in the brain of

P. dumerilii during reproduction allowed oocyte maturation

but suppressed normal somatic functions and caudal regen-

erative capacities (Schenk et al. 2016). In crustaceans, MF has

been showed to play essential roles in development and

reproduction (Xie et al. 2016), similar to the role of juvenile

hormone (JH) in insects (Riddiford 1994; Wyatt and Davey

1996). Other hormones have also been proposed to play es-

sential roles in annelid reproduction, such as the prostomium

(i.e., first preoral segment of the animal) hormone 8, 11, 14-

eicosatrienoic acid, which seems to be responsible for sperm

maturation and spawning in Arenicola marina males (Bentley

1985; Bentley et al. 1990; Pacey and Bentley 1992).

Similarly, it has been proposed that the stolonization pro-

cess in syllids is under hormonal control, following endoge-

nous circadian and circalunar rhythms influenced by

exogenous factors, including annual photoperiod, tempera-

ture, or moon cycles (Franke 1986a, 1999). It has been hy-

pothesized that during the summer time, with long days and

high temperatures, a stolonization-promoting hormone pro-

duced in the prostomium is secreted to control a second

stolonization-suppressing hormone produced in the proven-

tricle (i.e., specialized structure of the digestive tract), allowing

the initiation of stolonization (Franke 1999). In contrast, dur-

ing winter, when days are short and temperatures low at high

latitudes, the proventricle is not controlled by the prosto-

mium, and the proventricular stolonization-suppressing hor-

mone then inhibits stolonization (e.g., Abeloos 1950;

Durchon 1952, 1959; Durchon and Wissocq 1964; Franke

1980, 1981, 1983a, 1983b, 1985, 1999; Heacox 1980;

Heacox and Schroeder 1982; Franke and Pfannenstiel 1984;

Verger-Bocquet 1984). Hormonal factors have also been sug-

gested to drive the sexual differentiation of the stolon (Franke

1980; Heacox and Schroeder 1982), in particular the female

stolon, given that it seems that male stolon differentiation

occurs autonomously, whereas female stolon differentiation

may depend on hormone release by male stolons (Franke

1999). However, no candidate hormone has been proposed

to control reproduction and regeneration processes in syllids,

although it seems clear that there might be several involved,

not only in the brain, but also in the proventricle (e.g.,

Schroeder and Hermans 1975; Franke 1999; Weidhase

et al. 2016).

In summary, although molecular mechanisms underlying

reproduction are relatively well studied in a few annelids (e.g.,

Kang et al. 2002; Thamm and Seaver 2008; Giani et al. 2011;

Novo et al. 2013; Schenk et al. 2016), the molecular toolkit

involved in the stolonization process of syllids has not been

examined yet. Thus, our aim in the present study is to provide

a first glimpse into the gene expression patterns occurring

during the stolonization process in the syllid species Syllis mag-

dalena. To achieve this goal, we have pursued four main

objectives: 1) to characterize molecularly and morphologically

the stolonization process in the target species; 2) to provide a

detailed description of the genes potentially involved in the

triggering of stolonization and the formation/releasing of sto-

lons and gametes, through differential gene expression anal-

yses of reproductive and nonreproductive individuals in

different tissues; 3) to understand the evolution of selected
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candidate genes with major roles in the reproductive pro-

cesses of the phylum Annelida; and 4) to investigate if the

molecular signal that determines when to divert resources

from somatic functions to reproduction is the same across

annelids (i.e., synthesis of MF).

Results and Discussion

General Morphology and Ultrastructure of the Stolons
in S. magdalena

The stolons of S. magdalena were dicerous, with two pairs

of red eyes and one pair of antennae formed at the be-

ginning of the stolonization process (figs. 2A–E and 3A,

3B), similar to the process observed in Syllis amica (see

Wissocq 1970) but different to the late formation of

head structures in Syllis gracilis (see Pettibone 1963) or

Syllis hyalina (see Malaquin 1893). Natatory capillary

chaetae were not developed during the stages in which

the stolon was attached to the stock. Before stolon de-

tachment, the stock completely regenerated the final part

of the body that was transformed during the stolon for-

mation (fig. 2F). Female stolons were purple, completely

full of oocytes arranged around the through-gut (figs. 2A,

2C, 2E, 3A and B). Male stolons were white, completely

full of spermatogonia, and also arranged around the gut

(fig. 2B and D).

The epithelium of the female and male stolons was colum-

nar, comprised by large epithelial cells (>10mm in maximum

length) with basal non-nucleolated nuclei, and large globular

glandular cells with electrondense material (fig. 3C). In both

stolons, below the epithelia, there was a thick layer of muscle

fibers, then the germinative epithelium, and finally the diges-

tive epithelium (fig. 3C–F). The muscle fibers of both female

and male stolons presented the regular morphology of muscle

fibers of the adults, with a double striation and 25–35 myo-

filaments and clusters of mitochondria near the tips (fig. 3C

and E). We did not observe the “stolonal” muscle fibers de-

scribed in S. amica with the mitochondria toward the middle

of the fiber (Wissocq 1967) while attached to the stock. It is

possible that the reorganization of the muscle fibers takes

place later in the stolonization process, but it is improbable,

given that it occurs during head formation in the stolon of

S. amica (see Wissocq 1967), a process that we observed in

S. magdalena.

In the female germinative epithelium, large yolky

oocytes (50 mm approximately) were surrounded by non-

nucleolated nurse cells (fig. 3D). Oocytes were connected

by microvillar processes (fig. 3D). The male germinative

epithelium only contained two large sacs of spermatogo-

nia in the specimens collected (fig. 3E and F).

Spermatogonia (ca. 1 mm in diameter) were densely

packed and possessed a non-nucleolated nucleus with

FIG. 1.—Syllinae schizogamous reproductive cycle (stolonization) using light microscope pictures of Syllis magdalena.
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chromatin condensation processes (fig. 3E and F). The di-

gestive epithelium was comprised of large (>10 mm in

maximum length) convoluted multiflagellated cells

(fig. 3F). We did not observe digestive material in the lu-

men of the stolon gut (fig. 3F). There were no differences

in the developmental stage of gametes between the an-

terior and posterior parts of stolons (see also differential

expression results).

General Characterization of the De Novo Transcriptomes

Out of the 32 libraries generated, we assembled the REFSOM

transcriptome (reference transcriptome for somatic parts of

reproductive and non-reproductive individuals) using only so-

matic tissues of nonreproductive (NON-REPRO) and reproduc-

tive (REPRO) specimens (23 RNA-seq libraries in total). For the

REFTOTREPRO assembly (reference transcriptome for the all

FIG. 2.—Light microscopy pictures of Syllis magdalena stolonizing female (A) and male (B). Confocal micrographs of S. magdalena stolonizing female (C),

male (D), female stolon (E), and male stolons (F). Arrows in (A)–(D) pointing to the eyes of stolons (e). Arrows in (E) pointing to antennae (a). Arrow in (F)

pointing to the regeneration of the final segments in the stock (rfs).
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FIG. 3.—Light and electron microscopy pictures of the anterior part of the female and male stolons of Syllis magdalena. (A, B) Location of antennae (a)

and the two pairs of eyes (e) in the female stolon. (C) Transmission electron micrographs of the epithelium of the female stolon showing the muscle fibers

(mf), granular cells (gc), and epithelial cells (ec). (D) Developing oocytes showing nucleolate (nu) nucleus (n), ooplasm filled with yolk platelets, and microvilli

(m) contacting close oocytes. Note the muscle fibers (mf), nurse cells (nc), and the digestive epithelium (dc) surrounding the germinal epithelium. (E–F)

Germinal epithelium (ge) in the male stolon. The stolonal epithelium is comprised by a layer of epithelial cells (ec) with interspersed granular cells (gc), and a

layer of muscle fibers (mf); spermatogonia develop in the germinal epithelium (gc) below. The digestive cells (dc) lay below the germinal epithelium.
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the parts in reproductive individuals), we used 18 RNA-seq

libraries of both somatic and reproductive tissues of reproduc-

tive (REPRO) specimens (further details in Material and

Methods). Assembly statistics for both reference transcrip-

tomes are summarized in supplementary file S1,

Supplementary Material online alongside read mapping results

for each tissue and specimen, but overall they represent well

assembled transcriptomes with N50 values over 750 in both

cases (supplementary file S1, Supplementary Material online).

The coverage of our assemblies is similar or slightly higher than

those in other studies on marine invertebrates (e.g., Meyer

et al. 2009; Riesgo et al. 2012; P�erez-Portela et al. 2016).

A summary of the assessment of both transcriptomes as-

semblies and their annotation completeness (Sim~ao et al.

2015) is shown in supplementary file S3, Supplementary

Material online. Out of the 978 metazoan single copy ortho-

logs, our REFSOM assembly is 97% complete (950 com-

plete BUSCOs, 267 single-copy BUSCOs, and 683

complete duplicated BUSCOs), while 2.7% of BUSCOs

are fragmented (26 BUSCOs) and only 0.2% are missing

(2 BUSCOs). On the other hand, our REFTOTREPRO as-

sembly is 94% complete (918 complete BUSCOs, 316

single-copy BUSCOs and 316 complete duplicated

BUSCOs), while 5.6% of BUSCOs are fragmented (55

BUSCOs) and 0.5% are missing (5 BUSCOs). In compar-

ison to other annelid transcriptomes, which found

around 80% of complete BUSCOs in Pygospio elegans

(Heikkinen et al. 2017) and Urechis unicinctus (Park et al.

2018), and approximately 60% in Sabellaria alveolata

and Phragmatopoma caudata (Buffet et al. 2018), the

completeness of our transcriptomes was exceptionally

high (supplementary file S3, Supplementary Material

online).

An overview of the assigned GO terms for each tran-

scriptome [including three different categories: cellular

component (CC), biological process (BP), and molecular

function (MF)] and GO enrichment analyses using

Fisher’s tests are shown in supplementary file S2A,

Supplementary Material online. The GO enrichment

results for the comparisons of both transcriptomes

showed 36 GO terms overrepresented in REFSOM re-

lated to cellular organization and regulation, metabolism

and binding, among others (supplementary fig. S2B,

Supplementary Material online). In contrast, only eight

categories appeared enriched in REFTOTREPRO, mainly

related to signaling activity (supplementary fig. S2C,

Supplementary Material online). Interestingly, one of

these enriched categories is the activity of G-protein cou-

pled receptors, which bind light-sensitive compounds,

pheromones, hormones, neurotransmitters and other

ligands involved in secretory processes or cell develop-

ment, among other functions (e.g., Li et al. 1999; Iversen

et al. 2002; Hauser et al. 2006; Asahara et al. 2013). The

results of several of these G-protein coupled receptor

expression levels on the different tissues and conditions

analyzed are discussed below.

Differential Gene Expression Analyses

Pairwise Comparisons of Somatic Tissues (Anterior Part,
Proventricle, Final Segments) between REPRO and NON-
REPRO Individuals (REFSOM Transcriptome)

We detected 792 differentially expressed genes in the com-

parison between REPRO and NON-REPRO somatic tissues,

494 of them being upregulated in REPRO (178 in females

and 316 in males) and 298 in NON-REPRO (fig. 4; supplemen-

tary files S4, S5A, and S6, Supplementary Material online). Of

these 792 genes, only 292 (�37%) had a BLAST hit and,

therefore only the putative annotations for those genes (sup-

plementary file S6, Supplementary Material online) are dis-

cussed below. Among the pairwise comparisons of REPRO

and NON-REPRO tissues, the final segment tissues are the

ones that showed more differentially expressed genes

(fig. 4C), with 223 differentially expressed in the comparison

of female final segments and NON-REPRO final segments

(152 upregulated in female) and 460 differentially expressed

genes in the comparison of male final segments and NON-

REPRO final segments (304 of those upregulated in male). The

pairwise comparisons of anterior part and proventricle be-

tween reproductive and nonreproductive individuals showed

low numbers of differentially expressed genes (fig. 4A and B).

Among them, the highest number of differentially expressed

genes was found in the proventricle, with 7 differentially

expressed genes upregulated in both females and males

when compared with nonreproductive, and 20 and 36 differ-

entially expressed genes upregulated in the proventricle of

nonreproductive individuals (fig. 4B).

In the anterior part and the proventricle of females, the

genes upregulated (supplementary file S6, Supplementary

Material online) were related mostly to immune processes

(complement receptor 2) or food processing (trefoil factor 2,

cubilin, serine protease 27 and chitinase). Similarly, in the male

anterior part and proventricle (supplementary file S6,

Supplementary Material online), most genes were involved

in nutrient transport (sugar transporter STL1 and glycogen

phosphorylase), as well as development of the nervous system

(tyrosine-protein kinase Src42A).

Several genes related to gametogenesis were found differ-

entially expressed in the final segments of female and male

REPRO individuals compared with NONREPRO (supplementary

file S6, Supplementary Material online), including vitellogenin

(Vtg) and ovochymase (OVCH) in females, and testis-specific

serine/threonine-kinase (TSSK) in males, which indicates an

important role of the final segments during the gametogen-

esis process in both stolonizing females and males.

Vitellogenin has been already reported to be involved in an-

nelid gametogenesis, specifically as a yolk precursor (e.g.,

Hafer et al. 1992), but OVCH, an ovary-specific gene involved
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FIG. 4.—Heatmaps of differentially expressed genes (annotated and not annotated genes) from pairwise comparisons of somatic tissues between

reproductive (both female and male) and nonreproductive individuals. Anterior part tissue comparisons (A), proventricle comparisons (B), and final segments

comparisons (C). Different colors indicate relative expression levels based on raw read counts (see color key and histogram on each). Similarity in expression

patterns between genes and individuals is represented by clustering. A, anterior part; P, proventricle; F, final segments.
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in egg development of several animals (e.g., Lindsay and

Hedrick 1995; Gao and Zhang 2009; Mino and Sawada

2016), is here reported for the first time in annelids.

The same occurs for TSSK, whose expression, confined almost

exclusively to testes, has largely been studied in several mam-

mals (Hao et al. 2004), but never in annelids. Remarkably, two

hormone receptors for relaxin and follistatin were found dif-

ferentially expressed in the final segments of reproductive

females (supplementary file S6, Supplementary Material on-

line). The insulin-related peptide relaxin is important for the

growth and remodeling of reproductive tissues during mam-

mal pregnancy (e.g., Gunnersen et al.1995; Hsu et al. 2002)

and is active in the ovary and during embryogenesis of zebra-

fish (e.g., Donizetti et al. 2008, 2010; Wilson et al. 2009).

Relaxin activity has also been reported in invertebrates, includ-

ing in the tunicate Ciona intestinalis (e.g., Ivell and Anand-Ivell

2005; Olinski et al. 2006), and in the starfish Asterina pecti-

nifera (Mita 2013; Mita et al. 2014), where it takes part in

oocyte release from the ovary, but this is the first time that it is

described in annelids. Likewise, follistatin, reported as a

follicle-stimulating hormone, with several additional regula-

tory functions both in reproductive and nonreproductive tis-

sues (Phillips and de Kretser 1998), has been already found in

the transcriptome of other annelids such as C. teleta and

S. lamarckii (Kenny et al. 2015), but without a particular as-

sociation with any biological process. In our case, it seems that

both relaxin and follistatin are important during oocyte devel-

opment in S. magdalena, as they are expressed in tissues

where oogenesis is taking place before oocytes are trans-

ferred into the stolon (see also Results and Discussion).

Pairwise Comparisons of Somatic (Anterior Part,
Proventricle, Final Segments) between REPRO Females and
Males (REFTOTREPRO Transcriptome)

We detected 234 genes differentially expressed in the com-

parison between female and male somatic tissues, 85 of them

being upregulated in female (0 in anterior part, 27 in proven-

tricle, 58 in final segments) and 149 in males (only in final

segments) (see details in fig. 5A and B; supplementary file S7,

Supplementary Material online). Of these 234 genes, only 84

(�35%) of transcripts were annotated (supplementary file S7,

Supplementary Material online). No differential expression

was found in the comparisons of the female and male anterior

parts, and in the proventricle comparisons, we only found

differentially expressed genes in the females (fig. 5A;

supplementary file S7, Supplementary Material online; see

Results and Discussion). Similar to the previous comparisons

(see above), the somatic tissue sample that showed more

differentially expressed genes was the final segments, with

149 genes upregulated in males and 58 in females (fig. 5B;

supplementary file S7, Supplementary Material online).

As in the previous comparisons (see section above), several

gametogenesis-related genes, such as vitellogenin,

ovochymase (OVOCH) in females, and TSSK in males, were

differentially expressed in F (fig. 5B; supplementary file S7,

Supplementary Material online). In addition, we also found

NOTCH differentially expressed in F of REPRO males (fig. 5B;

supplementary file S7, Supplementary Material online). This

gene has been reported to have a role in segment formation

and adult regeneration in annelids (e.g., Thamm and Seaver

2008), and therefore may also be involved in segment forma-

tion of stolons and pygidium regeneration of S. magdalena

(fig. 2F). However, the NOTCH pathway has been also

reported to be essential for the correct development of game-

tes in Drosophila melanogaster and mammals (Xu et al. 1992;

Hayashi et al. 2001; Murta et al. 2014), and therefore it could

also be playing such role during spermatogenesis in S.

magdalena.

Two different transcripts of ovochymase were differentially

expressed in final segments (OVOCH1) and proventricle

(OVOCH2) female tissues (fig. 5A; supplementary file S7,

Supplementary Material online). Ovochymases are involved

in the oogenesis in other invertebrates, where they help avoid

self-fertilization and are localized in the vitelline coat of

oocytes (Mino and Sawada 2016). In the ascidian

Halocynthia roretzi, ovochymase has a signal peptide, three

trypsin-like serine protease domains and six CUB domains

(Mino and Sawada 2016). We found 3 ovochymases (two

DE, OVOCH1 and OVOCH2, and one non-DE, OVOCH3) in

S. magdalena, none of them containing a signal peptide and

all containing significantly fewer trypsin-like serine protease

and CUB domains (supplementary file S8, Supplementary

Material online). The trypsin-like serine protease domain is

not exclusive to ovochymases, because it also occurs in chy-

motrypsins (supplementary file S8, Supplementary Material

online), which are digestive enzymes. Given the digestive

function of the proventricle in syllids, OVOCH1 and

OVOCH2 may be performing different functions in S. magda-

lena F and P tissues, respectively. Our molecular phylogeny of

ovochymases and chymotrypsins in animals confirmed that

OVOCH1 and OVOCH3 are homologs of other animal ovo-

chymases, whereas OVOCH2 (the one differentially expressed

in the proventricle) is, in fact, homolog of mollusk chymotryp-

sin (supplementary file S8, Supplementary Material online).

OVOCH1 in S. magdalena could be assisting in the maturation

of the oocyte, creating an envelope that could further prevent

self-fertilization during gamete release in the water column.

Pairwise Comparisons of Stolons between REPRO Females
and Males (REFTOTREPRO Transcriptome)

We detected 1,150 differentially expressed genes in the com-

parison between reproductive tissues of female and male

individuals, 872 upregulated in female stolons and 278 in

male stolons (fig. 5C; supplementary file S7, Supplementary

Material online). This comparison showed the largest differ-

ences, with�75% of genes upregulated in females (872) and
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�25% in males (278) (fig. 5C; supplementary file S7,

Supplementary Material online). In addition, we also com-

pared the anterior and posterior halves of stolons, finding

only seven genes upregulated in the anterior half (fig. 5D;

supplementary file S7, Supplementary Material online), most

of them related to eye (rhabdomeric opsin, retinal-binding

protein) or brain (TRPC channel protein) functioning.

Among the most upregulated Biological Process categories

in female stolons, we found Nicotinamide metabolism (fig. 6).

Cells need to accommodate the bioenergetic demands during

oogenesis, nicotinate and nicotinamide are essential for

organisms as the precursors for generation of the coenzymes

NADþ and NADPþ, which are fundamental in redox reac-

tions and carry electrons from one reaction to another, being

FIG. 5.—Heatmaps based on differentially expressed genes (annotated and not annotated genes) from pairwise comparisons of somatic tissues between

females and males (A, B) and reproductive tissues (stolons) (C, D). Proventricle comparisons (A), final segments comparisons (B), female and male stolons

comparisons (C), and anterior and posterior parts of stolons (female and male together) (D). Different colors indicate relative expression levels based on raw

read counts (see color key and histogram on each). Similarity in expression patterns between genes and individuals is represented by clustering. A, anterior

part; P, proventricle; F, final segments; AS, anterior half of stolon; FS, posterior part of stolon.
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the pillars of many metabolic pathways. The gene nicotin-

amide mononucleotide adenylyltransferase 1-like, which cat-

alyzes the formation of NADþ, was upregulated in the female

stolon when compared with the male stolon (supplementary

file S7, Supplementary Material online). Other metabolic path-

ways upregulated in the female stolons include both fructose

and carbohydrate metabolism, illustrating the high energetic

requirements of oogenesis (fig. 6). In male stolons, the major

upregulated process related to the high energetic demands of

spermatogenesis is Purine metabolism, a pathway required

for nucleotide biosynthesis (fig. 6). Interestingly, the MAPK

cascade (included in the category “Styrene catabolism”),

which is central to cell proliferation, is upregulated in female

stolons (fig. 6). Similarly, the gene alpha-1D adrenergic recep-

tor-like, which also regulates cell proliferation is upregulated

in female stolons.

As in the case of final segments (see section above), Vtg

and OVOCH in females, and TSSK and NOTCH in males, were

also differentially expressed in stolons of females and males

(fig. 5C; supplementary file S7, Supplementary Material on-

line). These results indicate an important role of the stolons in

the maturation of gametes, in contrast to what has been

FIG. 6.—Gene ontology treemaps for annotated differentially expressed genes in female stolons versus male stolons. The GO terms downregulated in

female stolons are upregulated accordingly in male stolons.
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traditionally suggested, where the stolons are thought to be

only a place to keep and later spread the gametes. However,

no genes related to gamete maturation were found differen-

tially expressed in the comparison between the anterior and

posterior halves of stolons, which suggest that there is no

sequential anteroposterior maturation of gametes within

the stolons (fig. 5D; supplementary file S7, Supplementary

Material online), in agreement with our results from the mor-

phological and ultrastructural study.

Relaxin was also found differentially expressed in female

stolons, reinforcing the hypothesis of its implication in annelid

oogenesis and its potential role in the release of oocytes into

the water column, as it has been suggested for relaxin in A.

pectinifera (Mita et al. 2014). Other genes involved in game-

togenesis of annelids (e.g., Rebscher et al. 2007; Dill and

Seaver 2008; Novo et al. 2013) were also found differentially

expressed in female stolons (supplementary file S7,

Supplementary Material online), including the member of

the DEAD-box helicase protein family, vasa. We found two

paralogs of the gene vasa (the DE vasa1 and the non-DE

vasa2) among our transcripts, in contrast to what is found

in other annelids that only present one (see supplementary

file S9, Supplementary Material online). While vasa 2 grouped

with all vasa orthologs obtained in annelids, vasa 1 branched

out from the annelids and appeared basal to other vasa ortho-

logs from metazoans (supplementary file S9, Supplementary

Material online), being more similar to ATP-dependent RNA

helicase vasa-like proteins in arthropods than to vasa proteins

of annelids when blasted. These results may suggest that dif-

ferent paralogs may be performing different functions in S.

magdalena (supplementary file S9, Supplementary Material

online). While vasa2 could be playing a role in the female

germline determination localized in the oocytes of S. magda-

lena, vasa1 could be participating in the maintenance of toti-

potency of the stem cells (Juliano and Wessel 2010), although

ATP-dependent RNA helicase vasa-like proteins are also

known to be involved in oogenesis. Interestingly, we also

found the category Steroid biosynthesis upregulated in female

stolons (fig. 6). In addition, our study shows the upregulation

of the gene hydroxysteroid dehydrogenase 2 isoform X2, that

could potentially mediate steroid hormone metabolism (Seckl

and Walker 2001), and suggests hormonal control over the

final stages of stolonization in S. magdalena.

In male stolons, most of the upregulated genes were in-

volved in the construction of the flagellar apparatus (Inaba

2011), including dyneins, cilia- and the flagella-associated pro-

teins, ropporin, radial spoke 3, and kinesins). This is unsurpris-

ing, given the presence of sperm in these tissues, but is an

excellent positive control.

Hormonal Control of Stolonization

Because MF was discovered to be produced by mandibular

organs of numerous crustaceans, this form of the insect JH (JH

III), has been commonly considered as the crustacean equiv-

alent of insect JH (Laufer and Biggers 2001; Miyakawa et al.

2013). Comparably to JH in insects, MF regulates many

aspects of crustacean physiology, including reproduction

(Xie et al. 2016). In this context, MF is more actively synthe-

tized by females during vitellogenesis, and higher levels of MF

are associated with large reproductive systems and aggressive

mating behavior in males of the spider crab Libinia emarginata

(Laufer et al. 1992). In the annelid C. teleta, exogenous

extracts of MF were found to affect larval metamorphosis

and settlement (Laufer and Biggers 2001), and MF has been

recently demonstrated to be directly involved in P. dumerilii

regeneration and female sexual maturation (Schenk et al.

2016). This latter study not only showed that the decrease

of MF levels in the brain induces reproduction and suppresses

regenerative capacities in P. dumerilii, but it also reported an

ortholog of the MF receptor of arthropods (bHLH-PAS-do-

main-containing transcription factor methoprene-tolerant re-

ceptor, MTr) in the eleocytes (coelomic cells that synthesize

yolk via production of Vtg protein), demonstrating that this

hormone is not restricted to arthropods, as it was assumed

(Schenk et al. 2016). Because detection of MF is not possible

in RNAseq data, in order to assess whether S. magadalena

could use a similar molecular signal to determine when to

divert resources from somatic functions to reproduction, we

investigated if S. magdalena also possessed an ortholog of

MTr, identified as the arthropod and lophotrochozoan sesqui-

terpenoid receptor (e.g., Konopova and Jindra 2007;

Miyakawa et al. 2013; Jindra et al. 2015; Schenk et al.

2016). In our de novo transcriptomes, we identified two tran-

scripts encoding bHLH-PAS-domain-containing transcription

factor that showed strong similarity to P. dumerilii MTr. In

fact, our molecular phylogeny of MTr revealed that the S.

magdalena ortholog is closely related to MTr orthologs of P.

dumerilii and C. teleta (fig. 7A). In agreement with Schenk

et al. (2016), our results also confirmed that annelid MTr is

clearly an ortholog of insects and crustaceans MTrs (fig. 7A).

These findings allow us to suggest that MF may be one of the

hormones responsible for syllid stolonization. If the MF is in-

volved in syllid reproduction, we would expect to find differ-

ences in the levels of expression of MF receptors (MTr) among

the stolonizing and nonstolonizing syllid samples (higher in

the latter), similar to what has been reported during oocyte

maturation and male reproductive behavior in crustaceans

and other annelids (e.g., Laufer et al. 1992; Schenk et al.

2016). Surprisingly, higher expression levels (albeit not statis-

tically significant) of MTr were found only in anterior and

posterior tissues of female, therefore REPRO individuals

(fig. 7B), but not in the NON-REPRO specimens as it was pos-

tulated by Schenk et al. (2016). In addition, we also found

high expression levels (albeit not statistically significant) of the

Farnesoid nuclear X receptor (FXr) (Forman et al. 1995) in the

anterior tissue of females and in the anterior and the proven-

tricle of males (fig. 7B; supplementary file S10, Supplementary
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FIG. 7.—(A) Phylogenetic reconstruction of the protein alignment for methoprene-tolerant receptor (MTr) found in our samples. (B) Heatmap showing

the relative levels of expression in the different tissues and conditions analyzed of the transcripts that putatively may be involved in the synthesis of the

neurohormone methyl farnesoate (MF): MTr, Farnesol oxidase/dehydrogenase (SDR11), Farnesal dehydrogenases (ALDHE3), the differentially expressed

transcript Farnesyl pyrophosphate synthase (FPPS) and putative methyl transferase (Mtase). Different colors indicate relative expression levels based on raw

read counts (see color key and histogram on each). (C) Phylogenetic reconstruction of the differentially expressed MTases in the female stolon. (D) Synthesis

pathway of MF and JH in arthropods. A, anterior part; P, proventricle; F, final segments; AS, anterior half of stolon; FS, posterior part of stolon.
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Material online). Thus, in contrast to what was found in

P. dumerilii but similar to what has been reported for arthro-

pods, an increase in MF (or a similar putative sesquiterpenoid)

may be necessary to initiate the reproductive process in stolo-

nizing syllids (fig. 7B) (Laufer et al. 1992; G€ade et al. 1997;

Wyatt 1997; Hansen et al. 2014). The fact that the differences

between conditions are not statistically significant can be

explained because the NON-REPRO specimens were collected

only one week before the beginning of the stolonization pro-

cess, and therefore they might have already entered the initial

stages of reproduction without visible morphological

changes. On the other hand, as in the case of A. marina

(e.g., Pacey and Bentley 1992), it is also possible that a non-

identified hormone, sesquiterpenoid or otherwise, is orches-

trating the important metamorphic changes that occur during

syllid stolon development, similarly to what MF and JHs do in

arthropods (e.g., Hui et al. 2010; Maruzzo et al. 2012; Wen

et al. 2015). However, the presence of sesquiterpenoids is

further suggested by other DE gene results, as discussed fur-

ther below.

Interestingly, other neurotransmitter receptors were found

to be upregulated in the posterior end of NON-REPRO speci-

mens: dopamine receptor (DAr), belonging to the large family

of G-protein coupled receptors, was downregulated in the

final segments of females, and serotonin transporter (SERT

or 5-HTT), which terminates the action of serotonin, was

downregulated in the final segments of males (supplementary

file S7, Supplementary Material online; fig. 8A). Our molecular

phylogeny corroborates that these proteins are orthologs of

the C. teleta DAr type 2 (DAr2; fig. 8B) and C. teleta and

Helobdella robusta SERT genes (fig. 8B). Dopamine (DA)

and Serotonin (SER) are biogenic amines that act as a neuro-

transmitters and hormones, regulating an array of important

physiological functions both in vertebrates and invertebrates

(e.g., Winberg et al. 1997; Neckameyer, 1998a; Gingrich

et al. 2000; Wicker-Thomas and Hamann 2008; Dufour

et al. 2010; Giang et al. 2011). In D. melanogaster DA and

SER control a wide range of behavioral processes such as cir-

cadian rhythms, sleep, mating behavior, learning or aggres-

sion (e.g., Nichols 2007; Giang et al. 2011), and also stimulate

fertility and female receptivity (Neckameyer 1998b; Marican

et al. 2004). In C. elegans, male mating behavior and egg

deposition are also induced by DA and SER (Sulston et al.

1975; Weinshenker et al. 1995; Dempsey et al. 2005). In ad-

dition, both hormones have been reported to be involved in

larval metamorphosis in cnidarians, molluscs, and echino-

derms (Couper and Leise 1996; McCauley 1997; Matsuura

et al. 2009). In annelids, dopaminergic and serotonergic sys-

tems have been found in several species (Grothe et al. 1987;

Dietzel and Gottmann 1988; Schlawny et al. 1991; Spörhase-

Eichmann et al. 1998; Krajniak and Klohr 1999; Zaccardi et al.

2004; Lawrence and Soame 2009; Helm et al. 2014;

Rimskaya-Korsakova et al. 2016; Bauknecht and J�ekely

2017; Veraszt�o et al. 2017). However, the participation of

DA and SER in annelid reproduction has only been demon-

strated in a handful of studies. Although it was thought that

DA played an important role in sexual differentiation in

Ophryotrocha puerilis (Grothe and Pfannenstiel 1986;

Grothe et al. 1987; Pfannenstiel and Spiehl 1987), it was later

demonstrated that the catecholaminergic system of this spe-

cies was involved in mechano- and/or chemoreception

(Schlawny et al. 1991). In contrast, both SER and DA in ner-

eids seem to have a positive effect on oocyte development,

the first by directly inducing their maturation and the second

by switching off the action of the JH (Lawrence and Soame

2009). Similarly, in the decapod Penaeus merguiensis SER

induces ovarian maturation through MF production

(Makkapan et al. 2011). In this sense, increased levels of

both hormones, as indicated by the upregulation of their

receptors and/or transporters (DAr and SERt) just before

the beginning of stolonization (NON-REPRO individuals),

could be the stimulus required to initiate oocyte and

sperm development during syllid stolonization, with a de-

crease in the levels afterwards during the course of game-

togenesis. In addition to this suggested putative direct

role in gametogenesis per se, DA could also be the puta-

tive hormone in the brain and/or proventricle inducing the

production of MF (or other sesquiterpenoid) to regulate

stolonization in S. magdalena, as found for DA and the JH

of nereids and decapods (Lawrence and Soame 2009;

Makkapan et al. 2011). Our results thus indicate a possible

role of several hormonal factors in the sexual differentia-

tion of stolons, in agreement with previous studies

(Franke 1980; Heacox and Schroeder 1982).

In addition, if DA and SER were the neurohormones regu-

lating stolonization in syllids, our results do not support the

traditional view in which male stolons differentiate autono-

mously and female stolons differentiate upon hormone release

by the male stolon (Franke 1999). We found upregulation of

the receptors of these two neurohormones in both female and

male individuals at the beginning of stolonization. DA and SER

have been reported to be under the influence of photoperiodic

and circadian rhythms, which are essential for synchronizing

several processes in animals (Andretic and Hirsh 2000; Doyle

et al. 2002; Lawrence and Soame 2009). Therefore, we sug-

gest that that both female and male stolon differentiation are

triggered by environmental cues regulating the production of

DA and SER. As in other annelids, the main external signals

that may be controlling the synchronicity of the reproductive

period in syllids are light and seawater temperature (e.g.,

Franke 1986b). In the Adriatic Sea, the breeding season of

Syllis prolifera is restricted from late March to early October,

when the temperature ranges from 14 to 19 �C, and there are

around 12–13 h of light per day (Franke 1986b). Similar results

were observed in S. magdalena, which seems to breed during

the southern hemisphere summer (see sampling methods)

with a mean seawater temperature around 15 �C and around

13h of light per day.
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FIG. 8.—Phylogenetic reconstruction (A) and heatmap of relative levels of expression in all the tissues and conditions (B) of the genes dopamine receptor

(DAr) and serotonin transporter (SERT). Different colors indicate relative expression levels based on raw read counts (see color key and histogram on each). A,

anterior part; P, proventricle; F, final segments; AS, anterior half of stolon; FS, posterior part of stolon.
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FIG. 9.—Phylogenetic reconstruction of the protein alignment for the different opsin genes (rhabdomeric and ciliary) found in our samples (A) and levels

of expression of all of them in the different tissues and conditions analyzed (B). Rhabdomeric opsin 5 appeared differentially expressed in the anterior part of

stolons. A, anterior part; P, proventricle; F, final segments; AS, anterior half of stolon; FS, posterior part of stolon. Different colors indicate relative expression

levels based on raw read counts (see color key and histogram on each).
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FIG. 10.—Proposed multihormonal model for stolonization control. During the breeding season, DA and SER levels increase in response to external

stimuli triggering gamete production in the final segments (up-regulation of DAr and SERt) (A). Once stolonization has begun, a variety of other hormones

and proteins are produced for the correct development and maturation of gametes (up-regulation of Vtg, OVOCH Relaxin, Follistatin, and TSSK) (B). Finally,

when gametes are completely mature and also as a response to external stimuli (up regulation of r-opsins), MF or a similar hormone (up-regulation of FPP and

Mtransf) is produced to allow stolon release (C). Dashed lines represent hypothesized involvement of molecules, whereas solid lines represent molecule

expression results observed in our study.
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In addition to steroid hormone control, we found some

differentially expressed genes in the female stolons, poten-

tially involved in the production of pheromones (specifically

the sesquiterpenoid MF; see section above): Farnesyl pyro-

phosphate synthase (FPPS) and several methyl transferases

(MTases) (fig. 7B and C; supplementary file S7,

Supplementary Material online), which could synthetize ses-

quiterpenoids similar to MF and JHIII in arthropods (e.g., Tobe

and Bendena 1999; Hui et al. 2010). Specifically, FPPS is re-

quired at the beginning of the process to catalyze the reac-

tion, generating Farnesyl Diphosphate, the raw material for

sesquiterpenoid production, which is then transformed into

Farnesol (through Farnesol phosphatase, FP), then Farnesal

(via the Farnesol oxidase/dehydrogenase, SDR11), later into

FA (through Farnesal dehydrogenases, ALDHE3), and, in the

canonical pathway, finally into MF in crustaceans (through

Farnesoic acid methyl transferase, FAMeT), or into JH in insects

(through an epoxidase, FAMeT and Juvenile hormone acid O-

methyltransferase, JHAMT) (e.g., Hui et al. 2010) (fig. 7D).

Following Schenk et al. (2016) and given our results (in-

cluding those for methoprene-tolerant receptor, and

Farnesoid X receptor, above), a similar pathway seems to oc-

cur in annelids, with the synthesis of some form of sesquiter-

penoid regulating reproduction, as occurs in arthropods (Xie

et al. 2016). In fact, our phylogenetic results confirmed that

the differentially expressed transcripts annotated as FPPS and

of a variety MTases (fig. 7C; supplementary file S10,

Supplementary Material online) are orthologs, and thus the

beginning and end of the synthesis cascade, and the likely

bottleneck, are differentially expressed. In addition, orthologs

of FPP, SDR11, and ALDHE3 of spiralians were clearly found in

our samples (supplementary file S10, Supplementary Material

online), although these are not differentially expressed them-

selves. These differentially expressed MTases are of a variety of

annotations, with some possessing homologs across the

Bilateria. None possess clear homology to known arthropod

FAMeT or JHAMT sequences. However, all could potentially

be performing a similar role in vivo, and one apparent Spiralia

novelty is present, which we posit as an excellent candidate

for future functional investigation.

However, despite this persuasive circumstantial evidence,

we still cannot confirm that the final product of this biosyn-

thetic pathway in S. magdalena is MF or another sesquiterpe-

noid, until functional analyses are performed to test this

hypothesis. Besides the putative involvement of sesquiterpe-

noids in the beginning of syllid stolonization, which is rein-

forced by the high expression of SDR11 and ALDH3 in somatic

tissues of both male and female individuals (fig. 7B), it seems

that in our case it may also affect later stages, because FPPS

and MTases are differentially expressed in female stolons (sup-

plementary file S7, Supplementary Material online). Thus, the

increase of MF levels could also be regulating the vitellogenin

levels necessary for yolk formation, as it commonly occurs

with JH in arthropods (Laufer et al. 1992; G€ade et al. 1997;

Wyatt 1997; Hansen et al. 2014). In fact, the overexpression

of this hormone in stolons could be the triggering signal for

the stolon release from the stock. We did not find any enzyme

necessary to synthetize hormones or neuropeptides differen-

tially expressed in the male stolons, which might indicate that

the synchronicity in the release of female and male stolons

might be directly controlled by the female via the production

of MF, as it has been also reported during spawning in A.

marina (Hardege and Bentley 1997).

In addition, as discussed above, MF production has been

shown to be influenced by external stimuli (e.g., Shin et al.

2012; Girish et al. 2015; Toyota et al. 2015), which could

trigger the stolonization process simultaneously in syllid spe-

cies according to the traditional hypothesis (e.g., Franke

1999). One of these external stimulus is ambient light varia-

tion, which is detected via photosensitive pigments such as

opsin proteins and represents a common mechanism mediat-

ing the synchronization of gamete release or spawning in a

variety of marine invertebrates (Kaniewska et al. 2015; Siebert

and Juliano 2017). We have identified several opsin homologs

in S. magdalena, including a rhabdomeric opsin previously

characterized in other annelids (e.g., Arendt et al. 2004;

Randel et al. 2013; Gühmann et al. 2015), that was found

differentially expressed in the anterior part of stolons (supple-

mentary file S7, Supplementary Material online), but not in

the anterior part of the stock. Our molecular phylogeny in-

cluding all opsins found in S. magdalena (fig. 9A) revealed

that the differentially expressed rhabdomeric opsin (r-opsin

5) and two other nondifferentially expressed opsins (r-opsin

3 and 4) are homologs of the P. dumerilii opsin found in larval

eyes (Arendt et al. 2002). Differences on expression levels

among tissues and conditions were observed in the different

opsins found in our samples (fig. 9B), which suggest several

roles of opsins at different stages of syllids development, as it

has been already stablished in other marine annelids (e.g.,

Arendt et al. 2004). Specifically, the upregulation of r-opsin

5 in the anterior part of the stolons, where the stolon eyes are

located (figs. 2A, 2B and 3A, 3B) suggests that this opsin copy

in particular might be responsible for detecting the light

changes that would trigger MF production, and the subse-

quent synchronous stolon release and spawning in S. magda-

lena. A similar mechanism has been recently demonstrated in

the hydrozoan jellyfish Clytia hemisphaerica, in which spawn-

ing is mediated by oocyte maturation-inducing neuropeptide

hormones, whose release is triggered as a response to blue–

cyan light detected by a gonad photosensory opsin (Artigas

et al 2018).

Conclusions

Using Illumina RNA-seq data, we provide the first transcrip-

tomic characterization of the reproductive process in a species

of the family Syllidae. Here, we performed a series of pairwise

comparisons of gene expression patterns in different tissues
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and conditions that allowed us to identify the molecular

mechanisms underlying the stolonization process of S. mag-

dalena. We found an array of differentially expressed genes

involved in immune response, neuronal development, game-

togenesis, cell proliferation, and steroid metabolism playing

different roles in the reproductive process of S. magdalena.

Among the most striking results of our study was the contin-

uous gamete maturation occurring in both the final segments

and the stolons and the hormonal regulation of the reproduc-

tion. Thus, following previous hypotheses proposed for other

annelids, including syllids (e.g., Franke and Pfannenstiel 1984;

Pacey and Bentley 1992; Franke 1999; Lawrence and Soame

2009; Schenk et al. 2016), we suggest a multihormonal

model for the control of syllid stolonization, influenced by

environmental signals affecting the anterior part (prosto-

mium) and proventricle of the animal, as it was traditionally

hypothesized (e.g., Franke 1999), but also influencing the

posterior end of the animals (and thus, the gonads)

(fig. 10). When the breeding season approaches, both DA

and SER levels increase triggered by photoperiod and circa-

dian rhythms (Andretic and Hirsh 2000; Lawrence and Soame

2009) and they directly influence the gonads of

prereproductive individuals (upregulation of DAr/SERt in final

segments of NON-REPRO), initiating gamete production

(fig. 10A and B). The increase of DA and SER could also pos-

itively regulate the production of the putative brain and/or

proventricle hormones (such as MF or similar), as in several

other invertebrates (Couper and Leise 1996; McCauley 1997;

Matsuura et al. 2009) regulating the gamete production (and

the metamorphosis to produce stolons), as observed in crus-

taceans and insects (e.g., Shin et al. 2012; Girish et al. 2015;

Toyota et al. 2015). At this point, a variety of other hormones

and proteins, such as Vtg, OVCH, relaxin, follistatin, and TSSK,

play their role in the correct development of gametes

(fig. 10B) until maturation is completed. During gamete and

stolon maturation, high levels of MF may be required for yolk

formation (upregulation in female stolon of Vtg, FPPS, and

MTases), and the presence of MF could additionally trigger

stolon release from the stock as a response to external stimuli

(as indicated by the upregulation of photosensitive r-opsins)

(fig. 10C). We also suggest that the synchronicity of the stolon

and gamete release may not only be mediated by exogenous

factors such as light and water temperature, but also by

chemical cues provided by the female stolons, as demon-

strated in other annelids (Hardege and Bentley 1997).

Overall, our results illuminate the process of stolonization in

syllids, improving our understanding of how some putative

hormones and gametogenesis-related genes regulate the re-

production in stolonizing syllids. However, the transcriptomic

approach adopted here does not allow us to locate the spe-

cific expression of these genes, and further functional studies

are needed to provide a more complete overview of the ex-

pression patterns and the proper functioning of specific path-

ways during reproduction in S. magdalena. In addition, RNAi

or CRISPR/Cas9 experiments to inhibit the expression of G-

protein coupled receptors and other hormones and neuro-

peptides would provide promising routes to understand their

role during stolonization in syllids, allowing us to elucidate

once and for all how these annelids delegate sex to their

stolons.

Materials and Methods

Sample Collection and Preservation

Eight individuals of S. magdalena were collected in intertidal

algal turfs of Ulva rigida and Perumytilus purpuratus beds, in

Las Cruces, Central Chile (33�3000600S, 71�3705500W) in

January 2014. Four specimens were collected during full

moon, two of which were developing female stolons and

the other two male stolons (REPRO specimens); the other

four specimens were sampled before the full moon and

were not engaged in reproduction (NON-REPRO specimens).

All samples were immediately fixed in RNAlater and stored at -

80 �C until RNA extraction. Two additional male and female

stolons were preserved complete in 2.5% glutaraldehyde in

0.4 M PBS for electron and confocal microscopy.

Confocal and Transmission Electron Microscopy

Whole specimens preserved in 2.5% glutaraldehyde were

mounted in slides to obtain images of autofluorescent tissues

during stolonization with a Nikon Eclipse upright with A1–Si

confocal microscope at the Image Analysis Center (IAC) of the

Natural History Museum of London. No stain was applied, but

images were obtained in DAPI 488, 555, and 647 channels,

under gentle laser excitation. For transmission electron mi-

croscopy (TEM), specimens fixed in 2.5% glutaraldehyde

were later postfixed in 1% osmium tetroxide and rinsed twice

in PBS before dehydration with an increasing series of acetone

(from 50% to 100%). Samples were further embedded in

epoxy resin, serially sectioned with an ULTRACUT ultramicro-

tome at 64 nm, poststained with uranyl acetate and lead cit-

rate, and observed with a JEOL JEM1010 microscope at the

Serveis Cient�ıfico-Tècnics (SCT) at the Universitat de Barcelona

and at the Servicio Interdepartamental de Investigaci�on (SIDI)

of the Universidad Aut�onoma de Madrid.

RNA Extraction

Our biological replicates (same biologic samples taken from

different specimens, n¼ 8, 4 REPRO—two males and two

females—and four NON-REPRO) were as follows: three so-

matic parts were chosen for RNA extraction from all speci-

mens: anterior part (A ¼ prostomium þ first two segments),

proventricle (P ¼ all segments containing the proventricle),

and final part (F ¼ pygidium þ two final segments). In addi-

tion, we sequenced the stolons (S) from specimens engaged

in stolonization (REPRO): both the anterior (AS) and posterior
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half parts (FS). Each tissue sample was transferred to a micro-

centrifuge tube containing 500ll of TRIzol (Invitrogen), and

ground with a RNase-free plastic pestle to break down the

tissue, and isolate RNA and DNA. Then, another 500ll of

TRIzol and 10ll of glycogen were added. After 10 min incu-

bating the mixture at room temperature (RT), 100ll of the

RNA-isolating reagent bromochloropropane was mixed in by

vortexing. After 10 min incubation at RT, samples were cen-

trifuged at 16,000 relative centrifugal force (rcf) units for

15 min at 4 �C to separate the solution into three layers.

The upper aqueous layer, which contained total RNA, was

recovered and mixed with 500 ml of isopropanol, and incu-

bated at –20 �C overnight. Afterwards, the sample was cen-

trifuged at 16,000 rcf for 15 min at 4 �C, and the supernatant

was removed. Total RNA precipitation was performed by

washing the remaining pellet twice by adding 1 ml of 75%

ethanol and centrifuging it at 16,000 rcf at 4 �C for 5 min. The

dried pellet was eluted in 100ll of RNA Storage solution

(Invitrogen). mRNA purification was performed with a

Dynabeads mRNA Purification Kit (Invitrogen), following man-

ufacturer’s instructions. After incubation of total RNA at 65 �C

for 5 min, the samples were incubated for 30 min with 200 ml

of magnetic beads in a rocker and washed twice with wash-

ing buffer.

Thirteen microliters of 10 mM Tris–HCl were added to the

eluate and the mixture was incubated at 80 �C for 2 min. The

supernatant was immediately transferred to a 0.5 ml micro-

centrifuge tube and stored at �80 �C. Quality of mRNA was

measured with a pico RNA assay in the Agilent 2100

BioAnalyzer (Agilent Technologies). Quantity was measured

with an RNA assay in a Qubit fluorometer (Life Technologies).

Further details about RNA prep protocols can be found in

Fern�andez et al. (2014).

cDNA Library Construction and Next-Generation
Sequencing

cDNA libraries were constructed from extracted mRNA in the

Apollo 324 automated system using the PrepX mRNA

8 Protocol Kit (IntegenX) set to 200 base pairs (bp) and

stranded mRNA, under the Library Prep Illumina setting. A

polymerase chain reaction (PCR) was run to amplify cDNA

libraries, using the KAPA Library Amplification Kit. PCR was

run as follows: Denaturation (45 s at 98 �C), cycling (15 s at

98 �C, 30 s at 60 �C, and 15 s at 72 �C, for 16 cycles), and

final extension (1 min at 72 �C). During the PCR process, the

samples were marked with a different index to allow pooling

for sequencing. cDNA library quality and size were measured

through a dsDNA high sensitivity (HS) assay in an Agilent 2100

BioAnalyzer (Agilent Technologies). A quantitative real-time

PCR (qPCR) was run to measure cDNA library concentration

using the KAPA Library Quantification Kit. qPCR settings were

as follows: Initial denaturation (5 min at 95 �C for 1 cycle),

then denaturation (30 s at 95 �C) and annealing/extension/

data acquisition (45 s at 60 �C) combined for 35 cycles. The

libraries were then run on the Illumina HiSeq 2500 sequencing

platform, with output of paired-end reads of 150 bp by the

FAS Center for Systems Biology at Harvard University.

Sequence Processing and De Novo Assembly

Demultiplexed Illumina HiSeq 2500 sequencing data sets of

the 30 tissue samples, in FASTQ format, were retrieved; the

quality of the raw reads was assessed and visualized using

FASTQC v. 0.11.5 (www.bioinformatics.babraham.ac.uk).

Adapter sequences and bases with low-quality phred scores

(<30) were trimmed off, and a length filter was applied

retaining sequences of >25 bases using TRIMGALORE v.

0.4.2 (www.bioinformatics.babraham.ac.uk).

Two de novo transcriptome assemblies for S. magdalena

were constructed with the software Trinity to streamline fur-

ther differential gene expression analyses (Grabherr et al.

2011; Haas et al. 2013): A reference transcriptome

(REFSOM assembly) containing reads from only the somatic

parts (anterior part, proventricle, final segments) of each in-

dividual of both REPRO and NON-REPRO specimens (23 librar-

ies), and a reference transcriptome including the 5 different

parts (anterior part, proventricle, final segments, anterior half

part of stolon, and posterior half of stolon) of each individual

(13 libraries) for only the reproductive specimens

(REFTOTREPRO assembly). We did not obtain enough RNA

from two of the female tissue samples, proventricle of speci-

men 0 and anterior part of stolon of specimen 1, to build a

library, and therefore conditions “proventricle” and “anterior

half of stolon” were represented by a single library in females.

Given the large number of raw reads obtained in our study

(>500 million reads), we assembled two different reference

transcriptomes, because assembling a single reference tran-

scriptome with the available computational resources would

have proved computationally impossible. Raw reads have

been deposited in the Sequence Read Archive (BioProject ID

PRJNA434571; SRA accession: SRP133371).

For further quantitative assessment of the assembly and

annotation completeness we applied the software tool

BUSCO (Benchmarking Universal Single-Copy Orthologs;

Sim~ao et al. 2015), with default settings using the metazoan

database (metazoan_odb9, dated February 13, 2016). This

method is based on evolutionarily informed expectations of

gene content and is broadly used as a benchmark for testing

completeness of genomes and transcriptomes.

Transcriptome Characterization: Blast and Annotation

Annotation of transcriptome contigs or transcripts (containing

all isoforms) for both de novo assemblies were done sepa-

rately using BlastX against a selection of nonredundant (nr)

database from NCBI containing only proteins from Metazoa,

with an expected value (E-value) cutoff of 1e�5 (Altschul
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et al.1997). BLAST results of the two de novo assemblies were

used to retrieve Gene Ontology (GO) terms with BLAST2GO

4.0.2 (Conesa et al. 2005) under the three different catego-

ries: CC, BP, and MF. In addition, GO enrichment analyses

using Fisher’s test were done in BLAST2GO, to assess which

GO terms were significantly overrepresented in pairwise com-

parisons between both REFSOM and REFTOTREPRO transcrip-

tomes. The P-value for the reciprocal comparisons was

adjusted to a 0.05 false discovery rate (FDR) (Benjamini and

Hochberg 1995). The Galaxy web-based platform (http://use-

galaxy.org) was used to align the RSEM results of each sample

with BlastX results for the de novo assemblies for display.

Estimation of Expression Levels

In order to obtain expression levels, as read counts, of genes

(with all isoforms collapsed) for each tissue type of S. magda-

lena specimens in both reproductive and nonreproductive

conditions, trimmed paired reads after trimming were

mapped against the reference transcriptome, using

BOWTIE2 v. 2.2.1 (Langmead and Salzberg 2012), as imple-

mented in Trinity (Grabherr et al. 2011). The software RSEM v.

1.2.11 (Li and Dewey 2011) was used to generate a table

containing read counts.

Differential Gene Expression Analyses

Differential gene expression analyses were computed in pair-

wise comparisons of different tissues and conditions using the

R package DESeq2, which allows analyses to be performed

with low numbers of replicates (Anders and Huber 2010).

Before analyzing differential gene expression, read counts

were normalized by estimating a scaling factor for each tran-

script in DESeq2 (Dillies et al. 2013). The significance value for

multiple comparisons was FDR adjusted to 0.01 (Benjamini

and Hochberg 1995). Visualization of the significant out-

comes of genes differentially expressed (upregulated and

downregulated) between the tissues and conditions was

obtained with a heatmap performed with the “GPLOTS”

package of R (http://www.r-project.org/). Using the GO anno-

tation results for the “reference” transcriptome, we obtained

the GO terms associated with the differentially expressed iso-

forms in both pairwise comparisons, which were then imple-

mented together with their P-value (adjusted) associated in

REVIGO web server (Supek et al. 2011), and graphically rep-

resented with the “TREEMAP” function in R. Size of the rec-

tangles was adjusted to reflect the P-value using the

abs_log_pvalue option in REVIGO.

Phylogenetic Analyses

The evolutionary history of specific genes that could poten-

tially be involved in the stolonization process was also assessed

through phylogenetic inference. The translated amino acid

sequences of these genes were aligned with ortholog of the

same genes in other metazoans obtained from GenBank us-

ing MUSCLE ver. 3.6 (Edgar 2004). The G-protein coupled

receptors DAr2 and SERT were analyzed together. Both

vasa and PL10 are DEAD-box helicases and were analyzed

together. Other genes were examined in their individual

gene families. We selected the best-fit model of amino acid

substitution (LGþ CþG, WAG, as indicated in Figure

legends) with ProtTest ver. 2.4 (Abascal et al. 2005) under

the Akaike Information Criterion (Posada and Buckley 2004)

and later fed into the software for phylogenetic reconstruc-

tion. Maximum likelihood analyses of all the genes were con-

ducted in RAxML ver. 7.2.7 (Stamatakis 2006) with 500

independent searches and 1000 bootstrap replicates

(Stamatakis et al. 2008).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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