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Abstract

Currently, studies connected with Computational Fluid Dynamic (CFD) techniques focus on
assessing hemodynamic of blood flow in vessels in different conditions e.g. after stent-
graft’'s placement. The paper propose a novel method of standardization of results obtained
from calculations of stent-grafts' “pushing forces” (cumulative WSS—Wall Shear Stress),
and describes its usefulness in diagnostic process. AngioCT data from 27 patients were
used to reconstruct 3D geometries of stent-grafts which next were used to create respective
reference cylinders. We made an assumption that both the side surface and the height of a
stent-graft and a reference cylinder were equal. The proposed algorithm in conjunction with
a stent-graft “pushing forces” on an implant wall, allowed us to determine which spatial con-
figuration of a stent-graft predispose to the higher risk of its migration. For stent-grafts close
to cylindrical shape (shape factor ¢ close to 1) WSS value was about 267Pa, while for stent-
grafts different from cylindrical shape (¢ close to 2) WSS value was about 635Pa. It was
also noticed that deformation in the stent-graft’s bifurcation part impaired blood flow hemo-
dynamic. Concluding the proposed algorithm of standardization proved its usefulness in
estimating the WSS values that may be useful in diagnostic process. Angular bends or tor-
tuosity in bifurcations of an aortic implant should be considered in further studies of estima-
tion of the risk of implantation failure.

Introduction

First surgical operations with the use of endovascular prostheses to treat aneurysms were made
in the 90th of the twentieth century [1-4]. An endovascular prosthesis implantation is pro-
ceeded by an estimation of the size and spatial configuration of an aneurysm, as well as selec-
tion of a proper type of a stent-graft [5]. Depending on their construction the endovascular
prostheses are divided into one-module or multi-modules. In the case of one-module configu-
ration a stent-graft is inserted as one part into the diseased section of the aorta and then
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expanded. The multi-modules configuration, like in bifurcations, allows placing elements of
endovascular implants partially and then to combine them to create one section [6]. Therefore,
treatment of Abdominal Aortic Aneurysm (AAA) with endovascular prostheses, especially
multi-model configurations, might be associated with an occurrence of complications such as
endoleaks in endovascular prostheses, angular bends, migration of prostheses, or appearance
of thrombus [7-10].

The use of numerical methods in solving problems related to blood flow in vessels is widely
described in the literature [11-15]. Currently, many studies connected with Computational
Fluid Dynamic (CFD) techniques focus on assessing hemodynamic of blood flow in vessels after
stent-graft’s placement [16], and on a spatial configuration of endovascular implants [17, 18].
However, there are limited premises which enable to modify the stent-grafts’ construction in
order to improve its durability and stability [19]. Also systemic conditions make a comparison
of homogeneous groups of operated patients a complicated task. Hence, it seems promising to
use computer simulations with further verification in clinical observations. However even then
the comparison of gathered results and their implementation to other patients is difficult [19].

Therefore, the aim of this study was to use CFD techniques to estimate how stent-graft’s
geometry impact the Wall Shear Stress (WSS) value after stent-grafting. We proposed a novel
algorithm for standardization of prostheses “pushing forces” (cumulative WSS) and an new
attempt to assess its justness and usefulness in the clinical practice.

Material and Methods
Study groups

AngioCT data (GE Light-Speed 64 VCT; GE Healthcare, Fairfield, CT, USA) were collected
from 27 patients aged 55-78 years who underwent treatment in the Barlicki Hospital No. 2 in
Lodz (Poland) between 2007-2012. All participants gave written informed consent to the
study. The collected data were from three different types of bifurcated stent-grafts: 16 patients
were implanted with Zenith made by COOK (Cook Medical, USA), 8 patients were implanted
with Endurant made by Medtronic (Medtronic, USA) and 3 patients were implanted with
Excluder made by Gore (Gore, USA). The study was approved by the Local Ethic Committee
on Medical University of Lodz (RNN/126/07/KE).

Preparation of 3D geometries

AngioCT data were collected after intravenous contrast injection and were used to reconstruct
three-dimensional geometries of bifurcated stent-grafts implanted in the abdominal aortic
aneurysm section from the level of the crown of the implant below the iliac branches. A
3DDoctor software (Able Software Corp., Lexington, MA, USA) was used to reconstruct 3D
geometries (Fig 1).

Computer simulations

First, the pre-processor GAMBIT 2.2.30 software (ANSYS Inc., Canonsburg, PA, USA) was
used to generate and discretize geometries of a stent-graft. Each of the analyzed geometry was
described by a numerical grid composed of 200,000 to 450,000 tetrahedral elements. Numerical
calculations of blood flow in the analyzed domains were carried out with the use of ANSYS
FLUENT.12.1 software (ANSYS, USA) [20] and restricted by three boundary conditions, veloc-
ity-inlet (¥ (x,y,z)), at the outlets from the domain the boundary condition p = const was used
and rigid wall (fluid-solid interface, the boundary condition v = 0 was used). Following John-
ston et al. blood was treated as non-Newtonian liquid [21]. Blood density had a set value which
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Fig 1. An example for reconstructed spatial configuration of analyzed stent-grafts.

doi:10.1371/journal.pone.0153332.g001

enabled us to treat it as incompressible liquid (p = const) hence, continuity and Navier-Stokes
equations were formulated as (Eq 1) and (Eq 2) [22].

V-u=0 (1)

0
p~<a—?+u~Vu)FVp+u~Au (2)

In our study we used the Quemada’s equation to prepare 3D model of blood flow as it was
previously described [20] (Eq 3). Reynolds number range was between 1,400 <+ 1,500.

K - Htc

n=1,- 1—7 (3)

where:
np—plasma viscosity, [Pa s]
K—inner viscosity of erythrocyte (Eq 4), [-]
Htc—hematocrit, [-]
where:

[

K= " (4)

[

where:
k0, koo—parameters which describes blood character, [-]
y—shear rate value, [s-1]
yc—critical shear rate value, [s-1]
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Fig 2. Reference blood velocity profile from USG-Doppler used as a inlet boundary condition for analyzed stent-grafts.

doi:10.1371/journal.pone.0153332.g002

To set the inlet conditions at the inlet of analyzed calculation domains we used the following
steps. First, we recorded 27 USG-Doppler (GE Vivid 7, GE Healthcare, USA) examinations
from 27 patients. Next, we analyzed the blood velocity profiles (a single flow velocity as a func-
tion of time for each patient) paying special attention to the shape of it, especially the appear-
ance of maximum and minimum peaks. We excluded velocity profiles that where too sharp or
too flat because that could cause false results giving us extremely high or low (even close to
zero) WSS values. Afterwards, we were left with one velocity profile (Fig 2) that meet our
expectations and we used it as the "reference blood velocity profile". Hence, were able to com-
pare hemodynamic parameters for all analyzed stent-grafts with the same initial conditions.
Furthermore, we set the same initial conditions for all analyzed cases because we investigated
the risk of migration by calculating WSS forces acting on stent-graft's wall.

During CFD calculations the total WSS value from the implant’s surface for each of ana-
lyzed cases was calculated and acquired. In order to standardize the results of the WSS values
each shape of a stent-graft was compared to the corresponding reference cylinder, chosen as an
ideal geometry with the lowest possible drag coefficient. On the basis of implants geometries,
reference cylinders dimensions were calculated. Each cylinder height was assumed to be equal
to the related implant height, while cylinder diameter was calculated from stent-graft’s side sur-
face (Eq 5) (Fig 3).

Ay
-d

Ay=n-d h—d= (5)

S

where:

Ap—real side surface of a stent-graft, [m?];

d—diameter of a reference cylinder, [m];

h—height of a reference cylinder and analyzed stent-graft, [m].

Different spatial configuration of analyzed stent-grafts indicated different reference cylinder
dimensions. Each stent-graft volume was calculated with the use of the reconstructed 3D
geometry, while volume of the reference cylinder (Eq 6) was calculated from the basic cylinder
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Fig 3. A scheme of reference cylinder for each stent-graft calculation procedure.

doi:10.1371/journal.pone.0153332.g003

<

dimensions (the height and the diameter) and the stent-graft’s side surface.

2
n-d
= —

v 4 Y m-h

Vv

where:

V,,—volume of a reference cylinder, [m3];

d—diameter of a reference cylinder, [m];

h—height of a reference cylinder and analyzed stent-graft, [m].

Apr—real side surface of a stent-graft, [m?];

Finally, we estimated shape factor ¢ (Eq 7) for different spatial configuration of the stent-
grafts’ as a relation of the reference cylinder volume determined from the stent-graft’s side sur-
face to the real stent-graft’s volume.

(P:VW (7)

where:

¢—shape factor, [-];

V,,—volume of reference cylinder, [m’];

Vcrp—real volume of a stent-graft, [m?].

Analysis of shape factors (Eq 7) enabled estimation of differences in blood hemodynamic
between optimal configuration of a stent-graft (cylinder shape) for each of the analyzed cases.
With this assumption and CFD technique we were able to determine the relation between spa-
tial configurations of the implants and the WSS values during whole cardiac cycle. Instanta-
neous values of WSS were calculated (frequency = 0.01 sec) as an integral of local shear force
values over implant surface in each cardiac cycle interval (Eq 8). Geometries of stent-grafts'
closer in diameters to cylindrical tubes indicated higher WSS value.

WSS(t) = / FdA (8)

A

where:
WSS—shear stress on stent-graft wall, [Pa];
F—force acting on a side surface of a stent-graft, [N];
A—side surface of a stent-graft, [m?].
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The total WSS value in whole cardiac cycle, representing total drag force acting on stent-
graft’s wall, was calculated as time integral of the instantaneous WSS values (Eq 9).

WSStoty (WSS ) ) T WSS(£) =) WSS(t)At (9)

where:
WSS tot—shear stress on stent-graft wall, [Pa];
At—time step, [s]
n—number of time steps, [-]

Statistical analysis

Statistical analysis was performed using GraphPad Prism Version 5.01 (GraphPad Software;

San Diego, California, USA). Values were presented as mean+SEM. Correlations were evalu-
ated with the Spearman rank correlation test or Pearson test. Data were considered as signifi-
cantly different when p<0.05 unless otherwise noted.

Results
Wall shear stress values

Analysis of 27 geometries of aortic implants enabled estimation of the influence of spatial con-
figuration and blood hemodynamic on WSS values. Table 1 presents dimensions shape factors
and the WSS values of the analyzed stent-grafts. It was noticed that an increase in the shape
factor caused an increase in the WSS values.

Fig 4 presents a relation between the WSS values in a function of stent-graft’s shape factor
. (positive correlation, Spearman r = 0.39). Average value of shape factor for analyzed stent-
grafts was ¢ = 1.59 and the average WSS was about 400 + 28 Pa. For the cases where a shape of
a stent-graft was close to a shape of its reference cylindrical tube an average WSS value was
about 267 + 28 Pa (¢ = 1.15). However when a shape of a stent-graft was lower to a shape of its
reference cylindrical tube higher values of WSS (about 635 + 28 Pa for ¢ = 2.00) were observed.

Shape factor

Fig 5 presents spatial configurations (shape factors) for all stent-grafts. It was noticed that three
geometries markedly differed from a regression’s line (marked in red colour circles in Fig 5). In
order to determine why these points outlined we compared them with other stent-grafts with
similar shape factor (marked in violet colour circles in Fig 5). We noticed that for the stent-
graft with shape factor ¢ = 1.37 the WSS value was about 699 Pa. According to Fig 5 the WSS
value should not exceed 400 Pa for stent grafts with similar shape factor.

The two other stent-grafts standing-off the regression line (Fig 5) had shape factor about ¢
=1.57 and ¢ = 1.81 and the WSS values about 824 Pa and 720 Pa, respectively. Further analysis
indicated that those stent-grafts outliers had angular bends and tortuosity in the bifurcation
part (Fig 5). Angular bands were calculated as a 180° equal to straight branch and 0° as a
entirely bend branch. The highest value of angular bend for the cases on the regression line was
about 135°, while for the cases standing-off the regression line was about 87°. Moreover, an
average tortuosity (calculated as a relation of distance between parallel planes—inlet/outlet in
the iliac part of a stent-graft to distance calculated in axis of iliac part of a stent-graft) for cases
standing-off the regression line was about 0.65. Also, for the stent-grafts on the regression line
tortuosity was about 0.85 (Table 2).
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Table 1. The shape factors and WSS values for the analyzed stent-grafts.

No.
P_1
P_2
P_3
P_4
P_5
P_6
P_7
P_8
P9
P_10
P_11
P_12
P_13
P_14
P_15
P_16
P_17
P_18
P_19
P_20
P_21
P_22
P_23
P_24
P_25
P_26
P_27

Length of supplying distance (length of a stent-graft) [m] Side surface of a stent-graft [m?] Shape factor [-] WSS [Pa]
0.25 0.0245 1.66 407.48
0.25 0.0254 1.91 393.26
0.15 0.0119 1.31 435.65
0.15 0.0114 1.57 546.76
0.49 0.0538 1.81 720.10
0.17 0.0171 1.41 268.03
0.17 0.0179 1.70 314.56
0.303 0.0306 1.49 337.19
0.303 0.0323 1.81 406.34
0.283 0.0254 1.56 314.87
0.283 0.0193 1.66 353.15
0.194 0.0188 1.66 590.97
0.194 0.0199 2.00 635.79
0.17 0.0130 1.60 352.86
0.17 0.0140 1.74 389.79
0.202 0.0224 1.53 345.93
0.202 0.0238 1.93 414.38
0.166 0.0162 1.38 310.92
0.166 0.0162 1.56 364.27
0.21 0.0190 1.16 267.34
0.21 0.0181 1.34 391.64
0.2 0.0199 1.42 446.28
0.2 0.0216 1.92 515.68
0.145 0.0128 1.30 348.95
0.145 0.0135 1.67 403.66
0.21 0.0120 1.37 698.60
0.21 0.0117 1.57 824.22

doi:10.1371/journal.pone.0153332.1001

Hence, our analysis showed that deformation in bifurcation part of a stent-graft may addi-
tionally disturb blood hemodynamic which lead to an increase in the WSS values and, as a
result higher risk of stent-graft migration.

Discussion

The paper presents a novel approach to standardize the results of computer simulations basing
on spatial configuration of aortic stent-grafts. We focused on the analysis of the relation
between the shape factor and the WSS value on the wall of prosthesis to propose it as a tool for
prediction of implant’s migration risk. We proposed an algorithm of standardization useful in
estimating how stent-graft’s spatial configuration may disturb blood hemodynamic leading to
an increase in WSS values.

However, we are aware that WSS is not the only factor which might induce implant’s migra-
tion risk. Clinical observations showed that stent-grafts implanted in aneurysms with short
neck, wide sack and widened iliac arteries are more prone to migration contrary to the stent-
grafts that are anchored in long neck and normal iliac arteries [23, 24]. Moreover, there is a sig-
nificant influence of stent-graft’s construction. For instance stent-grafts that are not leaning on
the bifurcation of aorta and the ones that are composed of several elements are more prone to
migration [25, 26].
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Fig 4. The WSS values in a function of shape factor ¢ for analyzed stent-grafts. Correlation was
calculated with Spearman non-parametric test.

doi:10.1371/journal.pone.0153332.g004

The last decade is characterized by a dynamic development of endovascular techniques used
in AAA therapy. Nowadays, stent-grafts are a known method of aneurysm therapy and its con-
struction is still improving [27, 28]. It is difficult, however, to obtain relevant arguments with-
out putting patients at risk of innovations [29]. There are no reliable premises which would
enable to modify the stent-grafts’ construction in order to improve, both durability and stabil-
ity (long term observations are here necessary) [28]. The number of independent systemic con-
ditions which have an effect on patient’s survival, implant patency and which hinder inference
backed up by statistical evidence, induce a complicated task to obtain a homogeneous group
for investigations [27, 29]. Hence, there is a necessity to formulate hypotheses on the basis of
computer simulations and their subsequent verification in clinical conditions [30].

In our study we used CFD techniques to analyse different clinical cases to present a link
between spatial configuration of the stent-grafts and WSS. We also analyzed the impact of the
inlet and outlet diameters of the stent-graft and their orientation in space. It was observed that
when stent-grafts were more twisted, the relevant forces were higher and the risk of implant’s
migration increased. We believe it is a novel approach as previous works were focused on the
analysis of implant diameters [31]. Also, supporting our study there are reports on the analysis
of the impact of the angle of the iliac part of the stent-grafts [32].

A comparison of different implant geometries enabled us to estimate the effect of changes in
flow conditions on the value of stresses formed in the region of proximal fixation. It was
recently described that changes in flow conditions influence stent-graft’s stable location [24,
33, 34]. The bends of stent-graft arms, especially with their segment-like structure, may cause
flow disturbances which contribute to the implant clotting and an increased resistance on the
stent-graft level [24]. Raben et al. noticed that wider bifurcation angles increases area of low
flow and recirculation [35], while Yu and Kwon observed that stent-graft’s design parameters
such as porosity, pore density, number of strands, and strut angle have also significant influ-
ence on blood hemodynamic. They also observed that an ideal stent-graft should have lower
porosity, higher pore density, and higher strut angle [36]. Similarly, Stiehm et al. observed that
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PLOS ONE | DOI:10.1371/journal.pone.0153332  April 13,2016

9/12



@’PLOS ‘ ONE

Shape Factor and Spatial Configuration of Stent-Grafts

Table 2. Geometrical parameters (angular bends and tortuosity) for the selected stent-grafts. A_—angular bend in left branch of a stent-graft, Ap—
angular bend in the right branch of a stent-graft, T,—tortuosity of a left branch of a stent-graft, Tr—tortuosity of a right branch of a stent-graft.

Parameters P_26
AL [°] 142.4
Ar [°] 170.2
A/Ar 0.84
T 0.49
Tr 0.72
TU/TR 0.68

doi:10.1371/journal.pone.0153332.1002

P_21 P_27 P_19 P_5 P9
Angular bend
153.5 140.1 152.9 87.42 134.54
156.1 169.1 157.9 125.01 143.62
0.98 0.83 0.97 0.70 0.94
Tortuosity
0.86 0.65 0.82 0.58 0.77
0.92 0.70 0.83 0.73 0.90
0.93 0.93 0.99 0.79 0.86

the stent-graft’s strut thickness is one of the most significant design parameter, and an increase
in thickness indicates deceleration of blood flow and recirculation zones [37].

This issue is however complicated and further analysis requires ascertaining how WSS is
formed in cases of aneurysms with angulations of the neck and iliac arteries, which may reduce
flow and cause turbulence. It will be also important to examine cases where implants have a
non-symmetrical bifurcation. Moreover, it may be necessary to determine to what extent
changes in flow in the arms or bottlenecks below the implant, can affect stability of the stent-
graft fixation. Therefore, preparation of precise recommendations for correct location of the
stent-graft or arterioplasty below the implant would be an advantage of computer simulations.

Conclusion

The proposed algorithm of standardization proved its justness and usefulness in estimating the
WSS values. Comparison of the stent-grafts’ geometries with reference cylinders, generated on
their basis, allowed the analysis of the implants’ spatial configuration. For stent-grafts close to
cylindrical shape (shape factor ¢ close to 1) WSS value was about 267 Pa, while for stent-grafts
differ from cylindrical shape (shape factor close to 2) WSS value was about 635 Pa. It was
noticed that deformation of the stent-graft’s bifurcation part may impair blood flow hemody-
namic which led to increase in the WSS values. Furthermore, an appearance of angular bends
or tortuosity in stent-grafts may additionally complicate the estimation of pushing force and
should be taken into account in further studies to estimate the risk of implantation failure.
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