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LHRH-conjugated Drugs as 
targeted therapeutic Agents for 
the Specific Targeting and Localized 
Treatment of Triple Negative Breast 
cancer
J. D. obayemi1,2, A. A. Salifu1, S. C. Eluu3, V. O. Uzonwanne1, S. M. Jusu4, C. C. Nwazojie4, 
c. e. onyekanne4, O. Ojelabi5, L. payne6, C. M. Moore6, J. A. King6,7 & W. o. Soboyejo1,2 ✉

Bulk chemotherapy and drug release strategies for cancer treatment have been associated with lack of 
specificity and high drug concentrations that often result in toxic side effects. This work presents the 
results of an experimental study of cancer drugs (prodigiosin or paclitaxel) conjugated to Luteinizing 
Hormone-Releasing Hormone (LHRH) for the specific targeting and treatment of triple negative breast 
cancer (TNBC). Injections of LHRH-conjugated drugs (LHRH-prodigiosin or LHRH-paclitaxel) into 
groups of 4-week-old athymic female nude mice (induced with subcutaneous triple negative xenograft 
breast tumors) were found to specifically target, eliminate or shrink tumors at early, mid and late stages 
without any apparent cytotoxicity, as revealed by in vivo toxicity and ex vivo histopathological tests. 
Our results show that overexpressed LHRH receptors serve as binding sites on the breast cancer cells/
tumor and the LHRH-conjugated drugs inhibited the growth of breast cells/tumor in in vitro and in vivo 
experiments. The inhibitions are attributed to the respective adhesive interactions between LHRH 
molecular recognition units on the prodigiosin (PGS) and paclitaxel (PTX) drugs and overexpressed 
LHRH receptors on the breast cancer cells and tumors. The implications of the results are discussed for 
the development of ligand-conjugated drugs for the specific targeting and treatment of TNBC.

Breast cancer is the most commonly diagnosed cancer and the second most frequent cause of death in women1. 
In general, breast tumors are intrinsically heterogeneous in nature, making them difficult to detect and treat2. 
Approximately, 75–80% of breast cancers are hormone receptor-positive2,3. Also, these overexpressed receptors 
are usually estrogen and/or progesterone receptors2,3. However, Triple Negative Breast Cancer (TNBC) (which 
represents approximately 10–17% of all breast cancers) does not express estrogen receptors (ER), or progesterone 
receptors (PR), or the human epidermal growth factor receptor 2 gene (HER2)4–8. In addition, TNBCs also exhibit 
distinctive clinical features7,8 and are more common in younger patients6 and African American/African women9.

TNBC is an aggressive and immunopathology subtype of breast cancer that usually does not respond to drugs 
that target ER, PR and HER26. Furthermore, since the most common and conventional breast cancer diagnosis 
and treatment techniques tend to focus and target ER, PR and HER2, it is often difficult to detect10 and treat11 
TNBCs with conventional targeted hormonal therapy and chemotherapy. The challenges associated with TNBCs 
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result in relatively poor prognoses, accentuated side effects, aggressive tumor growth, and limited targeted thera-
pies11. Other common therapeutic approaches, such as bulk chemotherapy and radiation therapy, lack specificity 
and are associated with severe side effects12.

Recent efforts indicate that breast cancer cells can exhibit or acquire intrinsic resistance to chemotherapeutic 
drugs13. Such drug resistance is often associated with complicated tumor microenvironments13. Furthermore, 
in the case of bulk chemotherapy, only very small fractions of the drugs reach the tumor sites of interest14. This 
results in side effects15 that are associated with drug interactions with non-tumor-bearing healthy tissue and 
organs. In most cases, targeted cancer drug delivery systems can attach specifically to antibodies, peptides and 
hormonal receptors that have been developed for the treatment of tumors that overexpress these receptors16–20. 
Typical examples include: HER2, PR and ER receptors3. However, TNBC presents challenges since it is not well 
targeted by conventional cancer drugs. There is, therefore, a need to develop chemotherapeutic drugs for the 
effective targeting and treatment of TNBC.

Prior work has shown that LHRH receptors are expressed in over 50% of human breast cancer specimens 
obtained from a non-selected patient cohort characterized by TNBC21,22 as well as in MDA-MB-231 cell lines11,20. 
Dharap et al.23 have also reported that LHRH receptors are overexpressed in human breast cancer, ovarian cancer, 
as well as prostate cancer cells that are below the detection limits of PCR in normal human organs (lung, liver, 
kidneys, spleen, muscle, heart, thymus). In another study, LHRH was conjugated to a lytic peptide, hecate, and a 
15-amino acid segment of the β-chain of chorionic gonadotropin24 and the resulting drug-conjugates were used 
to treat human prostate xenografts in nude mice24. Although, significant work has been carried to explore the 
overexpression of LHRH receptors in many types of cancer11,12,15,20–22,25, some studies have shown that the bind-
ing affinity of the receptor in prostate and in other tumor-based tissues might be lower than those found in the 
pituitary26–31. In our work, we only focus on targeting triple negative breast cancer cells that have been shown to 
overexpressed LHRH receptors11,12,15,20,21,24.

Other efforts have explored cytotoxic analogs of various peptides containing doxorubicin with AEZS-108 
(also known as AN-152) that consist of doxorubicin linked to the LHRH agonist, [D-Lys6] LHRH21,32. A pilot 
study33 has also used immunohistochemistry, RT-PCR, and Western blot analysis to reveal that LHRH receptors 
are expressed on TNBC tissues. However, to the best of our knowledge, there have been no prior efforts to con-
jugate bacterially synthesized prodigiosin cancer drug (a secondary metabolite and tripyrrole red pigment) to 
LHRH (molecular recognition unit) that can improve drug specificity in the targeting of TNBC.

In this paper, LHRH-conjugated prodigiosin and LHRH-conjugated paclitaxel were studied as model cancer 
drugs. These were synthesized by conjugating [D-Lys6]LHRH to prodigiosin and paclitaxel at the epsilon (ε) 
amino side chain of the D-Lys6 moiety at position 6 of the [D-Lys6]LH-RH (pyroGlu–His–Trp–Ser–Tyr–d-Lys–
Leu–Arg–Pro–Gly–NH2). The conjugation was successfully accomplished without the loss of the drugs’ abili-
ties to bind to LHRH receptors34. The structures produced by the conjugation reactions are characterized using 
Fourier Transform Infra-Red (FTIR) spectroscopy and Liquid Chromatography–Mass Spectrometry (LC-MS). 
The effects of the LHRH-conjugated prodigiosin and paclitaxel drugs (on cancer cells/tissue) are then elucidated 
under in vitro (experiments with MDA-MB-231 TNBC cell line) and in vivo conditions (using an athymic nude 
mouse model induced with TNBC xenograft tumors). The conjugated LHRH-prodigiosin and LHRH-paclitaxel 
are shown to specifically target and eliminate or shrink TNBC xenograft tumors at early, mid and late stages of 
breast tumor progression. The implications of the results are then discussed for the specific targeting and localized 
treatment of TNBC.

Results and Discussion
Drug conjugation and characterization. Prodigiosin (PGS) which is also known as 4-methoxy-5-[(Z)-
(5-methyl-4-pentyl-2H-pyrrol-2-ylidene)methyl]-1H,1′H-2,2′-bipyrrole contains a C-6 methoxy substituent in 
the 4-methoxy-2,20-bipyrrolyl ring. The purity of the prodigiosin that was synthesized for conjugation to LHRH 
was characterized to be 92.5%35,36. The presence of the hydrophilic linker (NHS) creates sites for reactions with 
the methoxy group that is present in the prodigiosin molecule37. The methoxy group (–OCH3) on the PGS also 
has a high electron density and exhibit a tendency to attack the nucleophilic center of the carbonyl group that is 
present in the NHS linker.

With the presence of EDC, the high electron density attacks the PGS linkages, causing the electrostatic cleav-
age of the proton from the N–H group, thus linking the LHRH. The reaction with the secondary amine (NH) 
creates stable amide linkages that do not easily break down. Thus, in the presence of the LHRH molecules, NHS 
ester crosslinks or couples to the ε-amines to the lysine side chains, and to the α-amines in the N-terminals.

In the case of paclitaxel (PTX), the native lysine ε-amines groups of the LHRH-peptide were targeted for the 
drug coupling (See Eqs. 1 and 2).

− ′ − + → − ′ −OH PTX Succinic Anhydride PTX O PTX O OCCH CH CO H PTXSCT2 2 ( ) (1)2 2 2 2 2

− + → → − − −LHRH NH PTXSCT NHS EEDG
DMF

LHRH NH PTX PTX LHRH/ ( ) (2)2

The targeting moieties were attached to PTX via the 2-hydroxyl group (on one of its side chains) in the pres-
ence of heterobifunctional linkers. The major function of these linkers is to hold the segment of the drug and 
LHRH peptide together sufficiently enough for the ligands to be attached specifically to the target receptors on 
the cancer cells/tumor38.

The LHRH-conjugation to prodigiosin was confirmed using a combination of FTIR (Fig. 1a,b) and LC-MS 
spectra (Fig. 2a,b). The FTIR spectral analysis of LHRH peptide revealed the presence of characteristic amine 
bands of –NH (~1545 cm−1), which disappear after conjugation to PGS and PTX. The spectra from Fig. 1 clearly 
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shows the formation of the amide bond. The increased intensity of the C=O band (Amide/peptide bond) at 
1648 for LHRH-conjugated PGS confirm the bonding and conjugation of PGS to LHRH (Fig. 1a). In both cases 
(Fig. 1a,b), the LHRH-conjugated drugs exhibited typical amide (covalent or peptide) bond signatures at around 
1648 cm−1 and 1641 cm−1 for PGSLHRH and PTXLHRH, respectively.

Finally, the LC-MS spectra exhibited a molecular ion (m/z) peak of pigment that corresponds to the 
mass-to-charge ratio of PGS-LHRH and PTX-LHRH with their respective molecular weights. In general, the 
LC-MS results are evidence that LHRH-conjugated PGS and LHRH-conjugated PTX were formed during the 
conjugation process.

LHRH Receptors staining, siRNA knockdown, RT-qPCR quantification, In vitro cell viability and 
drug uptake. Results in Fig. 3a,b show expression of LHRH receptors (green stain) on non-tumorigenic 
epithelial breast cell line (MCF 10 A) compared to those of triple negative breast cancer cells (MDA MB 231) via 
immunofluorescence staining. Results showed that evidence of LHRH receptors on TNBC.

In a similar fashion, LHRH receptors are seen to be overexpressed on unblocked LHRH antibody receptors 
stained TNBC tissue. In the case of blocked LHRH TNBC cells, the receptor expression obtain from fluorescence 
confocal microscope was very low (Fig. 3c) as compared to those that were unblocked (Fig. 3d). In both cases 
(Fig. 3a-d), we quantify the percentage fluorescence LHRH receptors as shown in Fig. 3e. These results provide 
evidence of expression of LHRH receptors on TNBC. Furthermore, results from our knock down experiment 
using two sets of siRNA show that we knocked down the LHRH receptor in MDA-MB-231 cells and observed 
a ~70% and 90% reduction of LHRH receptor transcript levels (Fig. 3f). Clearly, knockdown of LHRH receptor 
significantly reduces the enhanced delivery of PGS and PTX achieved by LHRH peptide conjugation.

Figure 4a compares the viability of untreated breast cancer cells with those treated with drugs after 18, 24, 48 
and 72 h of post-treatment. For all of the durations and concentrations considered, the cell viability was slightly 
lower for PGS-LHRH than for PTX-LHRH only at day 72. Among the cells exposed to 5 µM of LHRH, PGS, PTX, 
PGS-LHRH, PTX-LHRH drugs or DMSO control, the conjugated drugs (PGS-LHRH and PTX-LHRH) had a 
greater effect on cell growth, as shown by the lower percentage of alamar blue reduction values. A similar trend 
was also explored when cells were exposed to increasing drug concentration. Consequently, by isolating the effect 
of DMSO alone (DMSO is the solvent used to dissolve the drugs), it was observed that there was no significant 
effect of DMSO on cell viability, when compared to that of LHRH-conjugated drugs. Therefore, the assay revealed 

Figure 1. FTIR spectra showing: (a) LHRH-conjugated PGS drug and (b) LHRH-conjugated PTX drug.
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that LHRH-conjugated PGS or LHRH-conjugated PTX were more specific than PGS, PTX or LHRH in their 
targeting of breast cancer cells.

The results presented in Fig. 4b show clearly that LHRH-conjugated PGS was more effective in inhibiting 
the growth of MDA-MB-231 cells than the LHRH-conjugated PTX. This is because increased inhibition also 
implies higher cytotoxicity due to drug-treatment. Therefore, at cellular level, both the LHRH conjugated PGS 
LHRH-conjugated PTX exhibited higher levels of inhibition than those of PGS, PTX or LHRH alone. This implies 
that, due to the specificity of PGS-LHRH or PTX-LHRH, it creates more cytotoxicity to triple negative breast 
cancer cells than LHRH, PTX or PGS alone. This makes the PGS-LHRH or PTX-LHRH more active in reducing 
TNBC cell viability than LHRH, PTX or PGS.

In the presence of the siRNA as shown in Fig. 4c, the cell viability, expressed as the percentage alamar blue 
reduction, decreased after 24, 48 and 72 hours in a similar fashion of treatment with 5 µM PGS, PTX, PGS-LHRH 
and PTX-LHRH. Clearly, at times 24, 48 and 72 hours, there were no significant differences in cell viability 
between PGS and LHRH-conjugated PGS when the cells were treated with the siRNAs. Similar observations were 
made between PTX and LHRH-conjugated PTX when the cells were treated with the siRNAs. Consequently, the 
unconjugated and LHRH-conjugated drugs exhibited similar anti-proliferative effects on the cells due to the sup-
pression of LHRH receptor-mediated drug entry into the cells. Without cell treatment with siRNA, the results in 
Fig. 4(a) showed that the LHRH-conjugated drugs significantly reduced cell viability than the unconjugated drugs 
due to the specific targeting of the cells. This result is attributed to the specific interactions between the LHRH and 
the LHRH receptors in the absence of the knock down, and the reduced access of the conjugated or conjugated 
drugs after the knock down of the cell LHRH receptors by the siRNA.

Furthermore, from the confocal fluorescence images of drug-interacted cells (Fig. 5), it is clear that treat-
ment with the drugs result in the degradation, disorganization and depolymerization of the actin filaments and 
vinculin structures. The drugs also disrupted the cancer cell membranes and cytoskeletal actin structures. These 

Figure 2. LC-MS spectra of (a) PGS-LHRH drug and (b) PTX-LHRH drug.
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disruption and disintegration give rise to apoptosis and cell death39–42. This phenomenon was more evident in 
LHRH conjugated drugs (PGS-LHRH and PTX-LHRH) than unconjugated drugs (PGS and PTX). In general, 
the current results show that the conjugation of the cancer drugs to the LHRH peptide increases the selectivity, 
effectiveness, and uptake of anticancer drugs to TNBC, due to the presence of overexpressed LHRH receptors on 
the surfaces of the TNBC20,43,44.

In vivo tumor development, shrinkage and elimination. The mean tumor volumes observed in the 
mice before treatment on day 14, day 21 and day 28 were ~67 ± 11 mm3, 98 ± 29 mm3 and 230 ± 18 mm3, respec-
tively. In the case of the day-14 treatment group, the tumors were completely eliminated from the mice two weeks 
after the injection of 10 mg/kg of LHRH-conjugated PGS or LHRH-conjugated PTX into each mouse (one dose 
per week) (Figs. 6a and 7a). In contrast, the unconjugated PGS and PTX drugs resulted in some tumor shrinkage 
and final tumor sizes of ~ 29.42 mm3 (PGS) and 49.1 mm3 (PTX), respectively (Fig. 7a).

In the case of the 21-day group treatment, significant tumor shrinkage was observed after about two weeks 
(one per week) of administration of 10 mg/kg of LHRH-conjugated PGS and LHRH-conjugated PTX to 

Figure 3. Confocal fluorescence images showing the expression of LHRH receptors (green stains) of (a) non-
tumorigenic epithelial breast cell line (MCF 10 A) (b) Triple negative breast cancer cells (MDA-MB 231) (c) 
Blocked LHRH antibody receptors on triple negative breast tissue (d) Stained LHRH triple negative breast tissue 
at 40 x magnification (e) Quantified fluorescence LHRH receptors in cells and tissue of TNBC. (f) Detection of 
LHRH-R knockdown by RT-qPCR.
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each mouse, when compared to the tumor shrinkage associated with PGS and PTX. The resulting tumor vol-
umes observed after treatment with the PGS-LHRH and PTX-LHRH were 3.93 mm3 and 7.76 mm3, respec-
tively (Figs. 6b and 7b). These are much smaller than the tumor volumes of mice that were treated with the 
non-conjugated PGS and PTX, which resulted in tumor volumes of 90.11 mm3 and 86.83 mm3, respectively. This 
implies that, for the 21-day treatment group, there was ~ 95.6% decrease in the xenograft tumor volume after the 
administration of LHRH-conjugated PGS, compared to that associated with unconjugated PGS. Similarly, a 91% 
decrease in xenograft tumor volume was observed when PTX-LHRH was used instead of PTX (Fig. 7b).

Finally, in the case of the 28-day treatment group, significant tumor shrinkage was also observed in the xen-
ograft tumors (49.9 mm3 and 29.4 mm3 for PGS-LHRH and PTX-LHRH, respectively), during the two weeks of 
drug administration. However, in the case of the mice treated with unconjugated PGS and PTX drugs, the result-
ing average tumor volumes were 300.3 mm3 and 299.2 mm3, respectively (Figs. 6c and 7c).

Figure 4. (a) Percentage alamar blue reduction for breast cancer breast cells (b) Percentage cell growth 
inhibition (c) Percentage alamar blue reduction for knocked down LHRH receptors of breast cancer cells 
(104 cells/well) co-incubated with 5 µM of DMSO, LHRH, paclitaxel, prodigiosin, LHRH-conjugated PTX and 
LHRH-conjugated PGS drugs for the period of 72 h. The data presented are the average of three independent 
experiments. (in both cases n  =  3, p  <  0.05).
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The percentage reduction in xenograft tumor volume for LHRH-conjugated PGS and LHRH-conjugated PTX 
was 83.4% and 90.2%, respectively, as compared to the unconjugated PGS and PTX drugs (Figs. 6c and 7c). The 
above results show clearly that, in each of the treatment groups (14-day, 21-day and 28-day), LHRH-conjugated 
PGS and LHRH-conjugated PTX were more effective in shrinking or eliminating the tumors than PGS and PTX 
alone.

Ex vivo adhesion of cancer drugs to breast tumors and immunofluorescence staining. The 
adhesion forces/interaction between the LHRH-conjugated drugs and different stages of breast tumors are pre-
sented in Fig. 8a. The results show that the pull-off forces increase with the stages of the breast tumors. The 
pull-off forces obtained via atomic force microscopy also revealed that the adhesion forces between the unconju-
gated PGS or unconjugated PTX and the breast tumors were relatively low in the early, mid and late stages of the 
tumors (21 ± 4.9 nN, 29 ± 2.9 nN, 26 ± 2.6 nN; and 14 ± 3.2 nN, 22 ± 4.3 nN, 34 ± 6.2 nN, respectively). In the 
case of LHRH-conjugated PGS and LHRH-conjugated PTX (See Fig. 8a), higher average adhesion forces were 
obtained for the early, mid and late stage tumors (51.1 ± 2.7 nN, 86 ± 8.6 nN, 101 ± 10 nN; and 51 ± 9.9 nN, 72 
± 3.6 nN, 81 ± 14 nN, respectively). The immunofluorescence staining (Fig. 8b–d) also revealed that the densities 
of LHRH receptors increased from the early, the mid and late stages of the breast tumors.

The above results suggest that the highest therapeutic activity was associated with the LHRH-conjugated PGS 
or LHRH-conjugated PGS PTX (Fig. 7a–c). The improved therapeutic effects of the LHRH-conjugated drugs are 
also associated with the increased adhesion of LHRH-conjugated drugs to the LHRH-receptors that were overex-
pressed on the surfaces of breast cancer cells/tissues. The presence of these receptors creates binding sites for the 
specific targeting of TNBC (Fig. 8b–d).

In general, the average adhesion forces between the LHRH-conjugated PGS (51.1 ± 2.7 nN) and the early 
stage breast tumor were nearly three times that of the unconjugated PGS (21 ± 4.9 nN). In mid stage breast tum-
ors, the average adhesion force between LHRH-conjugated PGS and the mid-stage tumor (86 ± 8.6 nN) is about 
three times than that for PGS alone (29 ± 2.9 nN), while for the late stage tumor (Fig. 8a), the adhesion force of 
LHRH-conjugated PGS to the tumor (101 ± 10 nN) was four-fold the value to the PGS drug (26 ± 2.6 nN). This 
trend is similar to that obtained for LHRH-conjugated PTX and unconjugated PTX.

Thus, the increase in adhesion force is attributed to increased incidence of LHRH receptors on the surfaces of 
the breast tumors. The increase in the adhesion forces of the LHRH-conjugated drugs to breast tumors has been 
shown from prior molecular dynamic simulations38 to be attributed to the effects of hydrogen bonding and Van 
der Waals interaction between the LHRH-conjugated drugs and the TNBC tissue/cells receptors. Despite the 
increased in adhesion between receptors and conjugated drugs, it is very crucial to note that the conjugation of 
small molecules to GnRH (LHRH) may affect/block their permeability through the membrane. This process of 
internalization might result in changes in pH and vesicle localization (not equal to cytoplasmic release and the 
interaction between the small drug and intracellular tissue)45,46.

Toxicity and histopathology results. The body weights of the tumor-bearing mice associated with the 
therapeutic period are presented in Fig. 9a. There were no significant changes in body weight associated with any 
of the dosing groups tested. Furthermore, there were no observable physiological changes, changes in mortality, 
or changes in the body weight after the administration of the drugs, compared to the control mice. Also, the body 
weights measured during the therapeutic period clearly correspond to the body weight ranges of same aged nor-
mal mice in all of the tested groups, including the control mice. Again, all of the mice appeared to be healthy with 
normal eyes, fur and skin conditions, during the entire study.

Histopathological examinations of tumor tissues revealed that tumor cells from the PGS-LHRH or 
PTX-LHRH treated mice exhibited disorder and varying cell size. They also appeared to be more mitotic. The 

Figure 5. Confocal fluorescence images showing cellular uptake and cytotoxicity comparison of MDA-MB-231 
cells 6 hours after their incubation with 30 μM of PGS, PGS-LHRH, PTX or PTX-LHRH (arrows indicate 
the structural changes in the nuclei structure (blue), actin cytoskeleton structure (red) and vinculin structure 
(green).
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optical microscopy images presented in Fig. 9b show the structure of the tumor tissue extracted from the xeno-
graft breast models after treatment with LHRH-conjugated and unconjugated drugs. The stained images revealed 
evidence of increased angiogenesis as a result of fibrous necrosis in the tumor tissue47.

Treatment with LHRH-conjugated PGS/PTX resulted in higher levels of necrosis in the tumors when com-
pared to those treated with the unconjugated PGS or PTX drugs (Fig. 9b). There were no significant histological 
or pathological changes in the liver, lungs, and kidneys of the mice that were treated with LHRH-conjugated PGS 
or LHRH-conjugated PTX or unconjugated PGS or PTX (See Fig. 9b). Hence, the features observed in the organs 
of targeted drug treated mice organs were comparable to those of the control mice organs.

In mice treated with LHRH-conjugated PTX or LHRH-conjugated PGS, there was no evidence of liver 
cell hyaline degeneration and necrosis, and no pulmonary edema or hyperplasia. There was also no evidence 
of renal hyperplasia, and the glomerular volume of the kidneys was normal. Furthermore, no chemotherapeu-
tic drug-induced histological changes and tumor metastasis were observed in the LHRH-conjugated PTX or 
LHRH-conjugated PGS treated mice. Hence, the observed elimination and shrinkage of tumors (associated with 

Figure 6. Representative tumor images of induced subcutaneous triple negative breast xenografts tumor treated 
with two IV injections of PGS-LHRH, PTX-LHRH, PGS, PTX and DMSO for (a) Day-14 (b) Day -21 and (c) 
Day – 28 treatment groups, respectively.
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effective targeting of the breast xenograft tumors by the PGS-LHRH and PTX-LHRH drugs) did not induce any 
degeneration in the primary organs.

Figure 10 presents TEM images of the drug treated tumors obtained from the 21-day and 28-day treatment 
groups. The TEM images revealed evidence of greater structural changes in the cancer cells/tissues injected with 
PGS-LHRH or PTX-LHRH than in those injected with PGS or PTX. The circled and pointed structures observed 
are changes in the structure of the membranes and nuclei are attributed to the effects of the drugs on the tumor 
tissue. The structural changes in the breast cancer tissues are attributed to due to drug effects on the breast can-
cer tissues. These include shrinkage and the disorganization of the nuclei (nuclear fragmentation) and the cell 
membranes that are revealed in the images of the breast cancer tissues that were obtained from animals that were 
treated with the conjugated drugs (PGSLHRH, PTXLHRH).

Figure 7. Anti-tumor activity and tumor shrinkages of induced subcutaneous xenografts tumor on female 
athymic nude mice treated with two IV injections of PGS-LHRH, PTX-LHRH, PGS, PTX and DMSO for (a) 
14-day study (b) 21-day study (c) 28-day study (n = 3, *p < 0.05 vs. control).

https://doi.org/10.1038/s41598-020-64979-1


1 0Scientific RepoRtS |         (2020) 10:8212  | https://doi.org/10.1038/s41598-020-64979-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

In contrast, the structure of the untreated tumor tissue did not reveal significant changes in the tissue struc-
ture in control experiments that were carried out without the injection of targeted drugs (PGS-LHRH and 
PTX-LHRH). The current results, therefore, suggest that the LHRH-conjugated drugs induced more significant 
changes in the structure and morphology of the breast cancer cells and tissue.

Implications. The implications of this work are significant for the design of targeted drugs for the specific 
and localized treatment of TNBC. First, we have shown that the conjugation of LHRH peptides to cancer drugs 
(such as PGS and PTX) significantly enhance the delivery of such drugs to TNBC tumor sites. The specific deliv-
ery reduces the side effects associated with bulk chemotherapy. The corresponding increase in adhesion forces 
(between LHRH-conjugated drugs and the breast tumors) is also attributed to the increase in hydrogen bonds 
and Van der Waal’s interactions between LHRH (attached to the drug) and the overexpressed LHRH receptors 
on the surfaces of the breast cancer cells/tissue48. Although, the expressed LHRH receptors shown via immu-
nofluorescence staining may quantitatively support the claims on the adhesion results that the LHRH ligands 
are binding to the receptors expressed on the cells/tissue. However, the results from our siRNA knock down, 
RT-qPCR quantification and alamar blue cell viability studies show evidence that the receptors help to promote 
specificity of the conjugated drug to the LHRH receptors of the MDA-MB-231 cell lines considered. Furthermore, 
there is a need to gain more insights and unravel direct evidence of interactions or binding between LHRH ligand 
and their receptors expressed on cells/tissues using a combined knowledge of tagged fluorescence receptors and 
CRISPR analysis.

Also, in the case of the xenograft tumors that were induced subcutaneously at the interscapular sites, the intra-
venous injection of LHRH-conjugated prodigiosin via the tail vein, resulted to elimination or shrinkages of the 
induced tumors at the different stages (early, mid and late stages) of tumor development (Fig. 7a–c). Furthermore, 
the LHRH conjugation of the prodigiosin and paclitaxel also significantly enhanced the specific targeting of 
TNBC in the athymic nude mouse model that was used in the current study. The side effects associated with the 
specific delivery of the drugs were also minimal.

It is important to note that the injection of 10 mg/kg of LHRH-conjugated prodigiosin or LHRH-conjugated 
paclitaxel eliminated the tumors that were formed within the early stages of tumor development (within 14 days). 

Figure 8. (a) Summary of measured pull-off force/adhesion forces between drug-coated AFM tip and early 
stage, mid stage and late stage triple negative breast tumor (n = 5, @p < 0.001 vs. control). Immunofluorescence 
staining of expressed LHRH receptors on (b) early stage (c) mid stage (d) late stage triple negative breast cancer 
tissue (LHRH receptors stain in green and nuclei stain in blue).
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This tumor elimination was achieved without any evidence of toxicity (Figs. 7a and 9). The same concentration 
of drug also resulted in significant shrinkage of the mid- and late-stage tumors that were formed after 21 and 
28 days, without any noticeable toxicity (Figs. 7b,c and 9). This suggests that extended treatments (beyond the 
two-week injection period that was explored in this study) could result in the possible elimination of mid-and 
late- stage tumors.

Hence, the results obtained from the in vitro cell viability study, immunofluorescence staining, drug-tumor 
adhesion measurements and ex vivo histopathology/microscopy revealed that the improved therapeutic effects are 
associated with the increased adhesion forces/interactions of the LHRH-conjugated cancer drugs (PGS-LHRH 

Figure 9. (a) Change in the body weight of xenograft tumor-bearing mice treated with 10 mg/kg of conjugated 
and unconjugated PGS and PTX drug in the presence of control (n = 3, #p < 0.005). (b) Histopathological 
examination of tumor tissues and organs in MDA-MB 231 induced xenograft breast tumor model mice after 
treatment (from 21-day treatment group) with unconjugated and LHRH-conjugated PGS and PTX drugs.

Figure 10. Representative TEM micrographs showing the morphologies and ultrastructures of tumor tissue/
cells from MDA-MB 231 induced xenograft breast tumor model mice after treatment with PGS, PGS-LHRH, 
PTX, PTX-LHRH (circled and pointed structures are fragmentation of the membranes and nuclei).
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and PTX-LHRH) to LHRH receptors that are overexpressed on the surfaces of triple negative breast cancer cells/
tumors. These give rise to improvements in the specific targeting of TNBC cells/tissue and the elimination or 
shrinkage of TNBCs that were observed in this study. In future, additional tests are needed to demonstrate the 
observed effects of the conjugated and unconjugated drugs on cohorts of at least 6 animals per group to validate 
this pioneering work under in vitro conditions. Further work is needed to study the effects of different drugs 
concentrations in animal models to target different types of cancer (like pituitary cells) that expresses LHRH 
receptors.

Conclusion
We have successfully developed specific LHRH-conjugated PGS drug that target overexpressed LHRH recep-
tors on TNBC cells/tissue under in vitro and in vivo conditions. Our results suggest that the specific targeting 
is enhanced by increased adhesion of the LHRH-conjugated drugs to TNBC cells/tissues under in vitro and 
in vivo studies. The LHRH-conjugated drugs (PGS-LHRH and PTX-LHRH) also increase the inhibition of 
MDA-MB-231 TNBCs more than the unconjugated drugs (PGS and PTX).

The results obtained from our siRNA knockdown experiments showed that siRNA 1 and siRNA 2 knocked 
down LHRHR transcripts by 70% and 90%, respectively. The results from our knocked down receptor/cell via-
bility studies demonstrate that LHRH receptors on the MD-MB-231 cells can mediate ligand-conjugated drug 
entry into the cells to increase cell death. In the case of the in vivo studies, our results show that the double 
injection of 10 mg/kg of LHRH-conjugated prodigiosin or LHRH-conjugated paclitaxel (within a two-week 
period) eliminates early stage breast tumors (14-days tumor-treatment group). The results also show that sim-
ilar dosage administered significantly shrunk mid (21-days tumor-treatment group) and late stages (28-days 
tumor-treatment group) tumors in the athymic nude mice.

Also, the adhesion forces/interactions between the LHRH-conjugated drugs (PGS or PTX) and the breast can-
cer tissue were about 3–4 times those between the unconjugated drugs (PGS or PTX) and TNBC tissue. Hence, 
the increased specificity of the LHRH-conjugated drugs (in the targeting of TNBC) is attributed to the increased 
adhesion of the LHRH to the LHRH receptors that are overexpressed on the surfaces of the TNBC cells/tissue 
during the early, mid and late stages of TNBC progression.

Furthermore, the ex vivo histopathological results revealed no evidence of physiological changes due to 
LHRH-conjugated drug administration. No adverse differences in mortality, or changes in body weight were 
observed, compared to control mice, after treatment with PGS-LHRH or PTX-LHRH drugs. This suggests that 
the proliferation of the induced xenografts TNBC tumors in the athymic nude mice was specifically and robustly 
inhibited by PGS-LHRH or PTX-LHRH. Hence, the current results show that LHRH-conjugated PGS and 
LHRH-conjugated PTX significantly enhance the specific targeting and localized treatment of TNBCs without 
adverse toxicity effects.

Experimental Section
Materials. Prodigiosin was biosynthesized from Serratia marcescens35,36, while paclitaxel, 
(N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC HCl), 
Alamar Blue Assay (ABA) kits, Dubecco Phospate Buffer (DPBS), 12-well plate, and opaque 96-well plates were 
purchased from Thermo Fisher Scientific (Waltham, MA, USA). N,N-Dimethylformamide (DMF), 2-Ethoxy-1-
ethoxycarbonyl-1,2-dihydroquinoline (EEDQ), Dimethyl sulfoxide (DMSO), [D-Lys6]LHRH peptide, anhydrous 
pyridine, succinic anhydride and silica were all obtained from Sigma-Aldrich Co. LLC, (St. Louis, MO USA). 
Also, 3 kDa Amicon Ultra -4 Centrifugal Filters Units and Amicon Pro Purification System were purchased from 
Millipore Sigma (Burlington, MA, USA). The growth media (L15), fetal bovine serum (FBS), and the human tri-
ple negative breast cancer cell line (MDA-MB-231) that was used for in vitro cytotoxicity/cell viability study and 
to induced subcutaneous tumors, were all purchased from American Type Culture Collection (ATCC, Manassas, 
VA, USA).

Finally, penicillin/streptomycin, a cell medium supplement and antibiotic was obtained from Thermo Fisher 
Scientific, Inc. (Waltham, MA, USA). Athymic Nude-Foxn1nu strain mice with individual weights of ~17 g was 
purchased from Envigo (South Easton, MA, USA). All of the animal protocols were approved by the Institutional 
Animal Care and Use Committee (IACUC) at the University of Massachusetts Medical School, Worcester, MA 
(IACUC docket # A2630-17) and carried out in accordance with the guidelines published by the National Institute 
of Health Guide for the Care and Use of Laboratory Animals.

Experimental procedure. Prodigiosin synthesis and conjugation. Prodigiosin (PGS) was synthesized in 
the Soboyejo Research Group at WPI, as reported in our previous work35,36. A PGS concentration of 31.15 mg/ml 
was prepared with DMSO. The resulting solution of PGS was activated by adding 5.14 mg/ml of NHS under gentle 
agitation at room temperature (23 °C) for 2 h. The EDC HCl linker was then added to the PGS-NHS solution to 
form PGS esters. This was done in a dark enclosed area for 18 h at a temperature of 4 °C. Supernatant formed from 
the mixture was separated from a precipitate by centrifugation at 4500 rpm for 15 mins. The centrifugation was 
done using an Eppendorf 5804 Benchtop Centrifuge with an A-4-44 Rotor (Eppendorf, Hauppauge, NY, USA). 
The resulting supernatant was then concentrated under vacuum for 24 h before running it through a silica-loaded 
gel column chromatography system (Corning LG4564T-104 Glass Chromatography, Cole-Parmer, Vernon Hills, 
IL) to purify the solution.

After activation and binding with the linker, as described above, the resulting solution of active derivatives of 
PGS was then incubated with 1 mg/ml of [D-Lys6]LHRH. This was done to chemically conjugate PGS to LHRH. 
The conjugation process was carried out by swirling at 600 rpm in a test tube within a dark enclosure for 18 h at 
4 °C. Excess and unconjugated LHRH, as well as the excess derivative of PGS, were removed from the conjugated 

https://doi.org/10.1038/s41598-020-64979-1


13Scientific RepoRtS |         (2020) 10:8212  | https://doi.org/10.1038/s41598-020-64979-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

drug molecules using 3 kDa Amicon Ultra -4 Centrifugal Filters Units, followed by an Amicon Pro Purification 
System (Millipore Sigma, Burlington, MA, USA). The conjugation of LHRH to PGS was then confirmed with 
FTIR, while the purity was analyzed using LC-MS.

Paclitaxel conjugation. The paclitaxel (PTX) # P3456 that was used in this study was purchased from Thermo 
Fisher Scientific (Waltham, MA, USA). It was activated with 2-hydroxyl groups. Since the coupling of PTX 
directly to LHRH peptides was not favorable, a two-step coupling process was used to couple LHRH to PTX. 
First, esters of PTX were formed by modifying a method reported by Deutsch et al.49, to form 2′-O-paclitaxel suc-
cinate (a hemisuccinate). The esters were formed by using PTX and succinic anhydride. These were dried for 24 h 
in the presence of silica gel that was fused with calcium chloride at room temperature (~23 °C) in a high-vacuum 
desiccator.

The dried PTX was dissolved in anhydrous pyridine, followed by the addition of a solid form of succinic anhy-
dride. The combined solution was then stored at room-temperature (~23 °C) under argon gas in a 3-neck sealed 
flask for 12 h to form 2′-O-paclitaxel succinate (PTXSCT). Subsequently, silica gel was used to purify the resulting 
solution via column chromatography, with chloroform as a solvent (for column packing and product loading)38.

The conjugation of PTXSCT to [D-Lys6]LHRH involved the initial activation of PTXSCT with freshly pre-
pared NHS and EEDQ linker in dry DMF, and gentle stirring at 4 °C for 3 h. The resulting solution (containing 
DMF solution of the PTXSCT activated ester) was then added to the [D-Lys6]LHRH and gently vortexed at 
600 rpm for 6 hours at 4 °C to form LHRH-conjugated paclitaxel drug. The conjugated drug molecule was sep-
arated using a combination of 3 kDa Amicon Ultra-4 Centrifugal Filters Units, and a Amicon Pro Purification 
System. The conjugation was confirmed with FTIR, and further characterized with LC-MS.

Drug characterization (FTIR and LC-MS). PGS, PTX and their conjugated components (PGS-LHRH and 
PTX-LHRH) were analyzed using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy 
(ATR-FTIR) (IRSpirit, Shimadzu, Kyoto, Japan). The FTIR was set to absorbance mode in an effort to investigate 
the functional groups, bonding types, and the chemical characteristics of the novel compounds.

Furthermore, an Agilent 1200 LC/MS system equipped with a 6130 series (Santa Clara, CA, USA) 
single-quadrupole was used to analyze the purity of the conjugated drugs. The drug samples were ionized using 
an electrospray source with polarity switching (±ESI). The Ionized species were analyzed at an m/z range between 
180 and 1200. This was done using the gradient method under acidic conditions.

The mobile phase components were A1: 95% H2O 5% acetonitrile containing 0.1% formic acid, B1: 5% H2O 
95% acetonitrile containing 0.1% formic acid. These were identified with a diode array detector that simulta-
neously monitors the following three UV wavelengths: 210 nm, 254 nm, and 277 nm. In each LC-MS test, 2 µl 
of sample was injected. Mobile Phase Composition: 5%B for 0.5 min., 8 min. gradient to 100%B, hold 1 min., 
0.5 min. gradient to 5%B, hold 4 min. The total data acquisition time was about 18 minutes per sample.

LHRH Receptors Staining, siRNA knockdown, RT-qPCR quantification, Cancer Cell Viability and Drug Uptake 
Studies. Immunofluorescence staining of the LHRH receptors on the cells were carried out as reported by 
prior work20. siRNA knockdown and RT-qPCR quantification of LHRH receptor were carried out to explore 
drug-ligand receptor interaction. Predesigned DsiRNAs (hs.Ri.GNRHR.13) against LHRH receptor (GnRHR) 
were obtained from IDT (Coralville, Iowa, USA). 1 × 105 MDA-MB-231 cells were seeded per well in 24-well 
plate. After 24 hours, the cultured cells were transfected with 10 nM DsiRNAs using Invitrogen Lipofectamine 
3000 Transfection Reagent (ThermoScientific, Waltham, MA, USA) according to the manufacturer’s instruction. 
48 hours after transfection, cells were harvested and total RNA was isolated and cDNA was synthesized using SV 
Total RNA Isolation and GoScript Reverse Transcription kits from Promega (Madison, WI, USA). Primers for 
RT-qPCR were purchased from Genewiz (Cambridge, MA, USA) and RT-qPCR was performed using PowerUp 
SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA). Reactions were run and analyzed on 
QuantStudio 5 Real-Time PCR machine, and results were normalized against GAPDH expression.

Alamar Blue (AB) cell viability and cytotoxicity assay was used to study the MDA-MB-231 cells lines in the log 
phase of growth under in vitro conditions. First, MDA-MB-231 cells were harvested with trypsin-EDTA in the 
presence of Dulbecco Phosphate Buffer (DPBS). 104 cells/well were seeded in 12-well plates with L15+ medium 
(L15 medium with cell medium supplement of FBS and penicillin/streptomycin). After a 3-hour attachment 
period (of the cells), a concentration of 5 µM of LHRH, prodigiosin, paclitaxel, LHRH-conjugated prodigiosin, 
LHRH-conjugated paclitaxel and DMSO (in culture medium) were added to each well of the 12-well plates con-
sisting of 104 cells. Effect of concentration was further explored with concentrations of 15 µM, 25 µM and 30 µM, 
respectively. The se concentrations are within the recommended range16,50.

Cell viability and cytotoxicity were monitored using the alamar blue cell viability and cytotoxicity reagent 
(Thermo Fisher Scientific, Waltham, MA, USA) during incubation times of 0 h, 18 h, 24 h, 48 h and 72 h, with the 
drugs at 37 °C. At each time point, the culture medium was replaced with 1 ml of 10% AB solution (in the culture 
medium). After each time point, 100 µl of the solution incubated with alamar blue solution (ABS) was transferred 
into triplicate wells of black opaque 96-well plate (Thermo Fisher Scientific, Waltham, MA, USA).

The fluorescence intensities of the cell medium supernatant incubated with ABS were measured at 544 nm 
excitation and 590 nm emission using a 1420 Victor3 multi-label plate reader (Perkin Elmer, Waltham, MA, 
USA). The percentage of alamar blue reduction (the percentage difference in cell population between the treated 
and untreated cells) and the percentage of cell growth inhibition were determined using a combination of the ABS 
and cell viability studies. In this way, the cytotoxicity of the respective conjugated drug molecules was obtained 
from Eqs. 3 and 4 below. These (% Reduction and % Growth inhibition) are given by:
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where FIsample is the fluorescence intensity of the (treated or untreated) cells, FI10%AB is the fluorescence intensity 
of 10% AB reagent (negative control), FI10%R is the fluorescence intensity of 100% reduced alamar blue (positive 
control). FItreated is the fluorescence intensity of treated cells, and FIuntreated is the fluorescence intensity of the 
untreated cells.

Finally, in vitro cell fluorescence staining (of drug-interacted cells) was used to study the effects PGS, 
PGS-LHRH, PTX and PTX-LHRH drugs on the actin and vinculin cytoskeletal structures in of MDA-MB-231 
breast cancer cells. First, breast cancer cells were incubated for 6 hours with 30 µM of each drug. The incubated 
cells were then washed with PBS and fixed with 4% paraformaldehyde for 15 minutes. The resulting cells were 
permeabilized by incubating with 0.1% Triton X-100 for 15 minutes followed by blocking with 1% BSA for 1 hour 
at room-temperature (25 °C). The samples were then further stained with primary antibody Vinculin Mouse 
Monoclonal Antibody (Product # MA5-11690) and incubated for 3 hours at room-temperature. This was followed 
by labeling with a secondary antibody [Goat anti-Mouse IgG (H+L) Superclonal™, Alexa Fluor® 488 conjugate 
(Product # A28175)] for 45 minutes at room-temperature. The actin cytoskeleton was then stained with Alexa 
Fluor 555 Rhodamine Phalloidin (Product # R415, 1:300, Thermo Fisher Scientific, Waltham, MA, USA).

Finally, the nuclei were counterstained with SlowFade Gold Antifade Mountant with DAPI (Product # S36938, 
Thermo Fisher Scientific, Waltham, MA, USA). The resulting stained samples were then imaged with a Leica SP5 
Point Scanning Confocal Microscope (Leica TCS SP5 Spectral Confocal couple with Inverted Leica DMI 6000 CS 
fluorescence microscope, Leica, Buffalo Grove, IL, USA) equipped with a 60X magnifying lens.

In vivo Tumor Development and Targeted Drug Delivery. In this section, cell culture, tumor induction, and drug 
injection studies were conducted. First, 20 µl of 1 × 106 MDA-MB-231 human triple negative cancer cells were 
cultured in T75 tissue culture flasks (CELLTREAT, Pepperell, MA, USA). This was done at 37 °C until 70% con-
fluence was reached. The cells were grown under normal atmospheric pressure levels in an “L15+ medium” that 
consisted of: L-15 medium (ATCC, Manassas, VA, USA) supplemented with 100 I.U./ml penicillin/100 lg/ml 
streptomycin and 10% FBS (ATCC, Manassas, VA, USA).

Forty 4-week-old female Athymic Nude-Foxn1nu strain mice of ~17 g each were purchased from Envigo 
(South Easton, MA, USA). These animals were approved for use in the current work by the University of 
Massachusetts Medical School Institutional Animal Care and Use Committee (UMMS IACUC). All of the ani-
mals were maintained in accordance with the approved UMMS IACUC procedures and guidelines.

Subcutaneous tumor xenografts were induced by the injection of 5.0 × 106 of MDA-MB-231 human triple 
negative breast cancer cells (suspended in sterile saline) into the interscapular region (for a better angiogenic 
response) of each of the mouse. Tumor formation was carefully assessed by palpation and MRI. Tumor growth 
was then monitored daily with the digital calipers. The tumor volume was calculated using the following modified 
ellipsoidal formula51,52:

Width LengthTumor Volume (TV)
2 (5)

2
=

×

where the Length was the longest axis of the tumor and the Width was the longest measurement at a right angle 
to the length.

The mice were randomly assigned into treatment groups of three (for each drug injection) due to the pioneer-
ing studies as well as the animal welfare. These included groups of mice designated for early stage tumors (14 days 
after tumor induction), mid stage tumors (21 days after tumor induction), and late stage tumors (28 days after 
tumor induction) tumors. The weights of the mice and their tumor sizes were monitored and measured daily 
using digital calipers. The instantaneous tumor volumes and body weights were used to guide the subsequent 
administration of the drugs. They were also used to monitor toxicity and side effects associated with the drugs 
administered. For each of the study groups, 3 mice were randomly assigned to injections of 10 mg/kg of the spe-
cific drug configuration (PGS, PTX, LHRH-conjugated PGS, LHRH-conjugated PTX and DMSO).

The different groups of mice were injected intravenously with each drug through their tail veins. This was 
done after tumor growth for 14, 21 and day 28 days. The mice were injected with 10 mg/kg per week, during the 
two-week periods in which the effects of drugs were investigated under in vivo conditions. Following each drug 
administration, the tumor sizes were monitored with calipers on a daily basis (every 24 hours). This was done to 
monitor possible tumor shrinkage, growth or elimination. At the end of the treatment protocol for each treatment 
group, the mice were euthanized. The tumor tissues were then excised from all of the mice, including tissues from 
their major organs (kidneys, liver and lungs).

Immunofluorescence Staining of Overexpressed Receptors. Immunofluorescence (IF) staining was used to char-
acterize the overexpressed receptors on the triple negative breast cancer tumor using the method described in 
prior work20. The IF staining was used to study the distributions of LHRH receptors that were over-expressed on 
the breast tumors. Tissue from the frozen tumors were embedded slowly in optimum cutting temperature (OCT) 
compound. This was done in a cryostat (Leica CM3050 S Research Cryostat, Leica Biosystems Inc., Buffalo Grove, 
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IL, USA) that was used to ensure that the tissues did not thaw. 10 µm thick slices were obtained from specific fro-
zen breast cancer tumors (obtained from the nude mice) that were then sectioned on charged glass slides using a 
Leica cryomicrotome (Leica Biosystems Inc., Buffalo Grove, IL, USA).

The sliced sections were allowed to dry overnight at room-temperature (~23 °C). This was done to facili-
tate adhesion to the glass slides for subsequent immunofluorescence staining. Following their adherence to 
glass slides, the sliced tumor samples were incubated with 0.5 ml of 3% bovine serum albumin (Sigma-Aldrich, 
St. Louis, MO, USA) (blocking agent) prepared with PBS mixed with 30 µl of triton X-100 (Life technologies 
Corporation, Carlsbad CA). This was done at room-temperature (~23 °C) for 60 mins.

The blocking agents were aspirated from the samples, and then incubated with drops of 100 µl of anti-LHRH 
Antibody (Millipore Sigma, Burlington, MA, USA) a primary antibody, to detect the levels of LHRH. This was 
done using a concentration of 1 µg/ml in a desired dilution. The resulting samples were then incubated overnight 
at 4 °C before dip-rinsing three times (1 min each) in 1X PBS. The treated tumors were further incubated with 
50 µl of anti-mouse IgG conjugated with Alexa fluoro 488 secondary antibody with concentration of 1 µg/mL for 
2 hours. This secondary antibody was prepared at a concentration of 1 µg/ml in 1% BSA solution. Both the pri-
mary and secondary antibody kits were purchased from Thermo Fisher Scientific, Inc. (Waltham, MA, USA). The 
stained samples were then rinsed thrice in 10 ml 1X PBS for 1 min each.

Finally, the cell nuclei of the tumor samples were stained with drops of 5 µg/ml of ProLong Gold antifade rea-
gent with DAPI (Thermo Fisher Scientific Inc., Waltham, MA, USA). The resulting samples (on the glass slides) 
were fixed with coverslips using a few drops Permount Mounting Medium. The stained samples were then imaged 
at a magnification of 60x with Leica SP5 Point Scanning Confocal Microscope (Leica TCS SP5 Spectral Confocal 
couple with Inverted Leica DMI 6000 CS fluorescence microscope, Leica, Buffalo Grove, IL, USA).

Drug-Tissue Adhesion Study. In an effort to understand the specificity in the targeting of triple negative breast 
cancer via the receptors that are over-expressed on the tumor using the LHRH-conjugated drugs, ex vivo adhesion 
measurements at nanoscale with Atomic Force Microscope (AFM) (Asylum Research, Oxford Instrument, CA, 
USA) were carried out on the control xenograft tissue samples at different stages of tumor development. Adhesion 
forces and interactions (between the different drug molecules and receptors on the surfaces of the tumor tissues 
at different stages of development) were measured in an effort to understand the interactions of the drugs with 
the tumors.

Adhesion measurements were carried out on the 10 µm thick microtome tissue slices. These sliced tissues were 
used for adhesion measurements in an Asylum MFP3D-Bio AFM. The RESP-20 AFM tips AFM tips (Bruker 
Santa Barbara, CA, USA) were dip-coated with prodigiosin or paclitaxel or LHRH-conjugated prodigiosin or 
LHRH-conjugated prodigiosin using the techniques described in ref. 20.

A simple AFM tip dip-coating technique20,28,36 (of the drugs) was used to coat the AFM tips at 
room-temperature (~23 °C). In addition, a positive control of LHRH peptides was coated onto some AFM tips 
and used to determine the adhesion forces between the coated AFM tips and the receptors on the surfaces of the 
breast cancer tissue slices. All of the coated AFM tips were air-dried for about 6 h and kept overnight in a desic-
cator before the adhesion measurements.

The spring constants of the coated and uncoated AFM tips were measured experimentally using the ther-
mal tune method20. This was done to obtain the actual spring constants that were used to calculate the pull-off 
forces from Hooke’s law. The adhesion interactions were measured for the following configurations of drug coat-
ings on the AFM tips and breast cancer tumor tissue at different stages: bare AFM tip to breast cancer tumor; 
LHRH-coated AFM tip to breast cancer tumor; LHRH-prodigiosin coated AFM tip to breast cancer tumor; 
LHRH-paclitaxel coated AFM tip to breast cancer tumor; prodigiosin-coated AFM tip to breast cancer tumor 
and paclitaxel-coated AFM tip to breast cancer tumor.

Toxicity, Histopathological and Electron Microscopy Studies. Following the two doses of 10 mg/kg of PGS, PTX, 
PGS-LHRH and PTX-LHRH that were administered (on a weekly basis for two weeks) to the athymic female 
nude mice (subcutaneously-induced with TNBC) for tumor shrinkage/treatment, qualitative toxicity was char-
acterized by accessing differences in mortality, changes in body weight, of poor health, general observations, and 
the histopathology of the lungs, kidneys and the liver at different stages of tumor development. Daily observations 
and weight measurements were also used to check for potential adverse reactions to the drugs, physiological 
changes, weight loss/gain, and the general well-being of the mice for the different treatment groups.

Tissues samples (from the 21-day treatment group) extracted from the kidneys, lungs, liver and tumor regions 
of the mice at the end of each study were fixed immediately in 4% paraformaldehyde, dehydrated in a graded 
series of alcohol, and embedded in paraffin. Hematoxylin and eosin (H and E) staining was also carried out 
to identify tumor necrosis and examine histologic changes in vital organs following the administration of the 
drugs. Briefly, formalin-fixed, paraffin-embedded tissue/organs (tumor, kidneys, liver and lungs) samples (5 μm) 
for mice that were injected with PGS, PTX, LHRH-conjugated PGS, LHRH-conjugated PTX drugs and DMSO. 
These were hydrated by passing them through decreasing concentrations (100, 90 and 70%) of alcohol baths and 
water. The hydrated tissue sections were then stained in hematoxylin solution for 5 mins. This was followed by 
rinsing with tap water for 3 minutes and differentiation in 1% acid alcohol for 5 minutes. Tap water was then used 
to rinse (three times), before dipping the sections in ammonia water for 2 minutes. This was followed by staining 
with eosin for 10 mins. The treated sliced samples were dehydrated in solution with increasing concentrations of 
alcohols, followed by xylene. Finally, a few drops of Permount Mounting Medium was used to mount the result-
ing samples. The stained slides were finally imaged with a 20x objective lens using a TS100F Nikon microscope 
(Nikon Instruments Inc., Melville, NY, USA) coupled with a DS-Fi3 C mount Nikon camera.

Tumors extracted from the different mice at the mid-stage tumor (day-21) and late (day-28) stages were 
fixed immediately in 2.5% glutaraldehyde in 0.1 M Sodium Cacodylate buffer pH 7.2, along with their respective 
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control tumors that were not subjected to drug treatment. Prior to the processing of the fixed tumors, the tumors 
were transferred into freshly prepared 2.5% glutaraldehyde in a 0.1 M Sodium cacodylate buffer, and left over-
night at 4 °C. The samples were then rinsed thrice in the same fixation buffer and post-fixed with 1% osmium 
tetroxide for 1 h, at room-temperature (~25 °C). The samples were then washed twice with DH2O for 10 minutes, 
before dehydrating through a graded series of 60%, 80% and 90% ethanol. This was followed by three changes in 
100% ethanol.

The samples were then infiltrated, first with two changes of 100% propylene oxide, and finally with a 50%/50% 
propylene oxide/SPI-Pon 812 resin mixture. They were then left overnight in the resin mixture. On the next 
day, the samples were put through five changes of fresh 100% SPI-Pon 812 resin. They were then polymerized 
in the embedding molds for 24 hours at 68 °C. Ultra-thin sections with thicknesses of ~ 70 nm were obtained 
using a diamond knife (Diatome, Hatfield, PA) that was mounted in the Ultramicrotome Leica EM UC7 system 
(Leica Biosystems Inc., Buffalo Grove, IL, USA). These thin sections were placed on copper support grids and 
contrasted with lead citrate and uranyl acetate for transmission electron microscopy. Subsequently, the ultrathin 
sections were examined in a CM10 TEM (FEI Technologies Inc., Hillsboro, Oregon, USA) that was operated at an 
accelerated voltage of 80 kV. The TEM images were captured using a Gatan CCD camera (Ultrascan 4000 CCD, 
Pleasanton, CA, USA).

Statistical analysis. An OriginPro 2017 software package was used to analyzed the statistical data. 
Independent Student t tests and one-way analyses of variance (ANOVA) were used to study the differences 
between the control and the study groups. The statistical significance in the survival (%) of drug treated mice 
versus the control mice were statistically evaluated by using the differences in their population means. In this way, 
the effects of the cancer drugs (PGS, PTX, PGS-LHRH and PTX-LHRH) were evaluated statistically. A p-value < 
0.05 was considered to be significant.
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