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Mitochondria are double-membraned cytoplasmic organelles that are responsible for the production of
energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by
the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell,
depending on the function of that cell. Primary mitochondria disorder (PMD) is a clinically heterogeneous
disease associated with germline mutations in mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA)
genes, and impairs mitochondrial structure and function. Mitochondrial dysfunction can be detected in
early childhood and may be severe, progressive and often multi-systemic, involving a wide range of
organs. Understanding epigenetic factors and pathways mutations can help pave the way for developing
an effective cure. However, the lack of information about the disease (including age of onset, symptoms,
clinical phenotype, morbidity and mortality), the limits of current preclinical models and the wide range
of phenotypic presentations hamper the development of effective medicines. Although new therapeutic
approaches have been introduced with encouraging preclinical and clinical outcomes, there is no defini-
tive cure for PMD. This review highlights recent advances, particularly in children, in terms of etiology,
pathophysiology, clinical diagnosis, molecular pathways and epigenetic alterations. Current therapeutic
approaches, future advances and proposed new therapeutic plans will also be discussed.
� 2022 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mitochondria are double-membraned cytoplasmic organelles
known for their energy production in eukaryotic cells. They serve
as energy factories that produce the energy required for the body
to function through metabolic processes, in particular, oxidative
phosphorylation (OXPHOS) (Alahmad et al., 2019; La Morgia
et al., 2020). Other mitochondrial functions are homeostatic regu-
lations, apoptotic cell death signaling, and implications for innate
immunity (Chan, 2012; Green et al., 2014; Mills et al., 2017). The
mitochondria contain several copies of their own 16.569 DNA
building blocks (base pairs), a closed circular genome, which varies
from 100 to 10,000 copies/cell depending on the cellular energy
demand (Alahmad et al., 2019), as shown in Fig. 1. Eukaryotic cells
carry two types of genomes, the mitochondrial DNA (mtDNA) and
the nuclear DNA (nDNA) (Lane et al., 2013). Both genomes control
the oxidative phosphorylation process and encode structural mito-
chondrial proteins. It was reported that the mitochondria contain
approximately 1500 types of proteins, 13 of which are encoded
by the mtDNA while the rest are encoded by nDNA (Wang et al.,
2021). In addition, the mtDNA contains 37 genes, which encode
22 mitochondrial-transfer RNAs (mt-tRNAs), 2 mitochondrial-
ribosomal RNAs (mt-rRNA) and 13 OXPHOS protein subunits
(Alahmad et al., 2019).

When mitochondria start to lose their oxidative phosphoryla-
tion function, which is triggered by mutations in mtDNA and nDNA
genes, it will lead to mitochondrial diseases (Gorman et al., 2016).
Such disorders are chronic, heterogeneous, genetically inherited,
Human mitochondrial DNA. The human mitochondrial genome is organized as d
13 of these genes encode one polypeptide subunit, which is involved in the re
tion mechanism, 2 for making molecules called ribosomal RNAs (rRNAs) and 22
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and can affect an individual at any age and in any body organ,
including nerves, the brain and other major organs. It was esti-
mated that one in every 5,000 newborns (Pérez-Albert et al.,
2018; Rahman, 2020) and one in 8,000 adults has a mitochondrial
genetic disease (Watson et al., 2020), with the mtDNA mutation
responsible for 15 to 30% of pediatric cases and more than 50% of
adult cases (Tan et al., 2020). Depending on the type of mitochon-
drial disease, severity of the symptoms, and organ affected, a per-
son can live a near-normal life or suffer from a drastic change in
their health that could lead to mortality. Mitochondrial diseases
are governed mainly by mutations in the mtDNA and nDNA gen-
omes that represent approximately 75% to 95% of all cases
(Wang et al., 2021). Additionally, a secondary mitochondrial dys-
function can occur due to other diseases, such as Alzheimer’s, dia-
betes, and cancer, which are not caused by a genetic-related factor.

This review highlights the recent advancements in mitochon-
drial diseases in their etiology, pathophysiology, clinical diagnosis,
molecular pathways and epigenetic alterations. Additionally, the
current therapeutic approaches and future advances in the treat-
ment of mitochondrial diseases are also discussed.
2. Types of mitochondrial diseases

Mitochondrial diseases are genetic disorders that may affect
single or multiple organs. Mitochondrial diseases can be grouped
into syndromic and non-syndromic (Finsterer, 2012). Syndromic
mitochondrial disorders usually include various organs or tissues
ouble-stranded a light (inner) and a heavy (outer) circular molecule containing 37
gulation of respiratory chain (RC), while the remaining 24 are necessary for RNA
for transfer RNAs (tRNAs). Created with Biorender.com.
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with recurrent patterns of signs and symptoms, which can
frequently affect some major organs, such as the skeletal muscles,
the nervous system, the auditory system, the ophthalmic system,
heart, gastrointestinal tract, kidneys, and lungs (Finsterer and
Scorza, 2017; Muraresku et al., 2018). Mitochondrial diseases could
also be categorized based on mutations affecting the mitochondrial
metabolic pathways into primary and secondary. The former type
is due to mutations in the genes, mtDNA or nDNA, responsible
for OXPHOS, or the genes encoding for proteins that interfere with
the OXPHOS pathway.

On the other hand, secondary mitochondrial disorders may
involve genetic, non-OXPHOS genes, and environmental factors
(Niyazov et al., 2016). The prevalence of primary mitochondrial
diseases was estimated as 1 in every 5000 newborns (Pérez-
Albert et al., 2018). In childhood, mitochondrial disorders are not
defined by specific symptoms; instead, a group of genetic, clinical,
and biochemical manifestations are used to diagnose such diseases
(Gorman et al., 2016). Several children who suffer from mitochon-
drial diseases display non-classical multi-organ diseases, where
organs with high energy demands such as muscles, kidneys, pan-
creas, and the brain are highly affected (Rahman, 2020; van de
Loo et al., 2020). Diagnosis and differentiation between primary
and secondary mitochondrial disorders are a challenge for physi-
cians due to the clinical manifestations’ closeness. In addition,
mitochondrial diseases can decline rapidly or continue for an
extended period with recurrent episodes of aggravation in
response to stressors like infections (Muraresku et al., 2018).
Fig. 2 demonstrates the clinical features of mitochondrial diseases.

Neurologic manifestations are among the most severe conse-
quences of mitochondrial diseases that can result in several condi-
tions, such as Leigh syndrome, Epilepsia partialis continua,
occipital stroke-like episodes, axonal sensorimotor neuropathy,
Fig. 2. Schematic presentation of homoplasmic and heteroplasmic mitochondrial DNA.
mutant and wild-type mtDNA (heteroplasmy)). The proportion of mutant mtDNA copies d
affected if it exceeds a specific limit (threshold). Abbreviations: mtDNA, mitochondrial
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myoclonus, and ataxia (Martikainen and Chinnery, 2015;
Muraresku et al., 2018; Riquin et al., 2020). In addition, neuropsy-
chological disorders were also recorded, such as impaired con-
sciousness, hallucinations, reasoning, confusional state,
depression, autism and unsteadiness (Finsterer, 2006; Koene
et al., 2013). In the case of the ophthalmic system, different regions
of the eye could be affected, which are expressed in the form of
progressive ptosis and external ophthalmoplegia, visual loss (retro-
chiasmal), pigmentary retinopathy and bilateral optic atrophy (Al-
Enezi et al., 2008; Yu-Wai-Man and Newman, 2017; Lock et al.,
2021). In infants and adolescents, these neuro-ophthalmologic
symptoms may be progressive and lead to serious eye complica-
tions with decreased vision efficacy (Muraresku et al., 2018).

Hearing loss at both ears (i.e. bilateral) is usually associated
with mitochondrial dysfunctions, particularly in mitochondrial
encephalomyopathy, lactic acidosis and stroke like episodes or
MELAS (Chinnery et al., 2000; Di Stadio et al., 2018). Metabolically
active ear parts, such as the stria vascularis and the outer hair cells,
are the most affected. In children with bilateral hearing loss, mito-
chondrial dysfunctions could be the leading cause, or other neuro-
logical disorders can also be involved (Vandana et al., 2016). The
heart is another vital organ that might deteriorate by primary
mitochondrial dysfunction. Lack of functions in the myocardium
cells is characterized by deformed muscle structure and functions
(Meyer et al., 2013). Several syndromes have been reported in chil-
dren with primary mitochondrial diseases, for instance, mitochon-
drial cardiomyopathy, Wolff-Parkinson-White, and Kearns-Sayre
syndromes. Individuals with mitochondrial cardiomyopathy often
display heart hypertrophy and left ventricular noncompaction.
Individuals with MELAS are most likely to develop arrhythmia,
including Wolff-Parkinson-White and ventricular pre-excitation
(Ng and Turnbull, 2016). The disease severity ranges from
A single cell may obtain wild type copies of mtDNA (homoplasmy) or a mixture of
etermines the penetrance and severity of phenotype expression, and the cell will be

DNA. Created with Biorender.com.
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asymptomatic to life-threatening tachyarrhythmia and heart fail-
ure and could eventually lead to cardiac death (Debray et al.,
2007; Meyer et al., 2013).

The gastrointestinal tract is also affected by primary mitochon-
drial disorders, in which numerous manifestations will cause per-
manent and untreatable disability due to the difficulty of early
diagnosis (Rose et al., 2017). These manifestations include gastroe-
sophageal sphincter dysfunction, dysphagia, hepatopathy, pancre-
atitis, intestinal pseudo-obstruction and gastroparesis (Finsterer
and Frank, 2017). (Moreover, patients diagnosed with Crohn’s dis-
ease commonly suffer from mitochondrial neurogastrointestinal
encephalopathy Patel et al., 2019; Tawk et al., 2020).

The kidneys are among the organs that are likely to fail due to
mitochondrial disorders due to the high energy consumption in
this organ (Finsterer and Scorza, 2017; Govers et al., 2021). Kidney
diseases resulting from mitochondrial dysfunctions can be catego-
rized into primary and secondary. In the first category, several dis-
eases have been reported, such as acute or chronic kidney failure,
nephrotic syndrome, renal tubular acidosis, tubulointerstitial
nephritis, and nephrocalcinosis (Finsterer and Frank, 2016). Renal
insufficiency in the second category includes either organ other
than the kidneys, for example, the heart and pancreas, or other dis-
eases such as rhabdomyolysis (Yokoyama et al., 2016). A previous
study has reported a significant relation between mitochondrial
dysfunctions, chronic kidney diseases and sarcopenia (Takemura
et al., 2020).

Children with mitochondrial diseases have frequently suffered
from several physicals, neuropsychological disorders, behavior
and speech disorders, high morbidity, and recurrent episodes of
anxiety and depression (van de Loo et al., 2020). Due to the
impaired mitochondrial functions, affected children are usually
unable to participate in daily activities, which could aggravate psy-
chiatric disorders (Lindenschot et al., 2018; Riquin et al., 2020).
Caregivers and parents might also suffer from stress that can exac-
erbate hospitalization and the need for clinical intervention
(Morava et al., 2010; Sofou, 2013).
3. Etiology and pathophysiology of mitochondrial diseases

The human mitochondria double-strand DNA, i.e. mtDNA, com-
prises 37 genes (16569 bp in a circular shape) encoding 13 proteins
(7 subunits of respiratory chain complex I, 3 subunits of complex
IV, 2 subunits of complex V and 1 subunit of complex III), 22 tRNAs,
and 2 rRNAs. Each mitochondrion has multiple copies of mtDNA
(2–10 copies), while the number of mitochondria in each cell can
vary. The inheritance of mtDNA is maternally transmitted, in con-
trast to the nDNA, which has a biparental transmission pattern
(Sato and Sato, 2013; An et al., 2020). Additionally, there are
1,500 identified genes presented in the nDNA, which are essential
for the mitochondrial structure and function (Li et al., 2020).

The mutation rate of the mtDNA is considered higher (greater
than10 times) than the nDNA. This could link to the missing pro-
tection of the histone complex and the high sensitivity of mtDNA
to oxidative stress with less efficient mtDNA repair mechanisms,
such as the base excision repair pathway (Gredilla, 2010;
Alexeyev et al., 2013). In addition, the DNA polymerase (DNA poly-
merase c) activity in the mitochondria has a relatively low fidelity
rate which can rise the mutation during the mitochondrial DNA
replication (Song et al., 2005). The mutation in the mitochondria
may affect the whole mtDNA in the cell (homoplasmy) or partially
(heteroplasmy), as shown in Fig. 2. Consequently, the severity of
the mitochondrial diseases is influenced by both phenomena
(Tuppen et al., 2010; Moggio et al., 2014). In addition to the pri-
mary mitochondrial function, i.e. generating energy, the mitochon-
dria have other roles in calcium metabolism, innate metabolism,
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cell death, stem cell maintenance, autophagy, inflammation and
senescence (Smith et al., 2012). Therefore, mutation at the mtDNA
or nDNA levels can have a variety of pathogenesis outcomes.

The nuclear genome is essential for mitochondrial function,
with more than 1,000 genes involved. The mutations of greater
than 280 genes have been reported to cause mitochondrial disor-
ders, where the defect may be inherited as autosomal dominant
(8 genes), recessive (262 genes) or X- linked pattern (14 genes)
(Tuppen et al., 2010; Frazier et al., 2019; Stenton and Prokisch,
2020). Historically, the first nDNA mutation (autosomal recessive)
was associated with human mitochondrial disease at the SDHA
gene, which is involved in encoding a structural subunit of com-
plex II, as reported in 1995 by Bourgeron et al. (Bourgeron et al.,
1995). On the other hand, the first X-linked recessive mutations
identified in 2007 at the NDUFA1 gene were p.Gly8Arg and p.
Arg37Se (Fernandez-Moreira et al., 2007). The prevalence of nDNA
mutation triggering mitochondrial diseases is estimated to be 1 in
35,000 (Gorman et al., 2015). Leigh syndrome is a common neu-
rodegenerative mitochondrial disorder with a 1 in 40,000, which
can be caused by approximately 90 gene mutations, including
the mtDNA and nDNA genomes (Gerards et al., 2016; Rahman
et al., 2017). An example of this is the mutation in the SURF1 nDNA
gene, which is linked with Cytochrome c oxidase deficiency
(Wedatilake et al., 2013).

The prevalence of mtDNA mutation causing mitochondrial dis-
ease is estimated to be 1 in 5,000 (Schon et al., 2021). The main two
types of mutation are large deletion and point mutations, mostly
maternal transmitted with some de novo mutations have also been
reported (Ruiz-Pesini et al., 2007). The first large-scale mtDNA
deletion was previously reported in 1988 by Massimo et al., who
observed a large deletion in the mtDNA ranging from 2.0 to
7.0 kb that caused Kearns-Sayre syndrome (Zeviani et al., 1988).
The most common large-scale mtDNA deletion resulted from the
omission of 4977 bp located between the locus 8470 and 13447,
which involved the encoding of 15 genes from ATPase8 gene to
ND5 gene (Holt et al., 1989; Shoffner et al., 1989; Yusoff et al.,
2019). In contrast, point mutation can involve an insertion, dele-
tion or substitution, affecting either the respiratory chain coding
genes or the RNA coding genes (mt-rRNA and mt-tRNA). Mutations
in 2 mt-rRNA may directly affect the ribosome’s function on the
other 13 proteins synthesized by the mt-DNA. An example is
847C > U (m.1494C > T) and 908A > G (m.1555A > G), which are
linked to hearing impairment (Guan et al., 2006; Bindu and
Reddy, 2008). Furthermore, m.3243A > G mutation is one of the
most commonmutations in the tRNAs genes, with a heterogeneous
effect on the muscles and the nervous system, causing mitochon-
drial encephalomyopathy, lactic acidosis and stroke-like episodes
(MELAS) (Pickett et al., 2018).
4. Clinical features of mitochondrial diseases

The childhood-onset of mitochondrial diseases have mainly
resulted from recessive nDNA or mutations in mtDNA that exist
at high levels of mtDNA heteroplasmy (Taylor and Turnbull,
2005). As mitochondrial diseases have diverse phenotypes and
usually cause multi-organs dysfunction, the clinical features and
diagnosis are relatively complicated (Alston et al., 2017). Moreover,
the tenuous link between the observed clinical phenotype and the
genotype in mitochondrial disease patients complicates the accu-
rate diagnosis (Stenton and Prokisch, 2020).

The pediatric-onset of mitochondrial disorders have several
clinical features that are regularly observed, such as fatigue, vom-
iting, failure to thrive, encephalopathy, seizures, hypotonia, exer-
cise intolerance and dysautonomia, as illustrated in Fig. 3
(Kanungo et al., 2018). However, most of these clinical features



Fig. 3. Schematic presentation of clinical features of mitochondrial diseases. The clinical features of mitochondrial diseases vary between patients and have non-neurological
or neurological characteristics, commonly involving two or more organ systems causing dysfunction of any organ or tissue. Created with Biorender.com.
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are not specific to mitochondrial diseases, and confirmation analy-
sis should be performed (i.e. molecular genetic screening analysis).
The congenital disabilities in children with mitochondrial dysfunc-
tions are frequently associated with different complications, as in
the case of renal disease and proximal tubulopathy that occurs
due to the mutations in RMND1 (O’Toole, 2014), RRM2B
(Stojanovic et al., 2013) genes, respectively.

In addition to previously mentioned clinical features of mito-
chondrial diseases, hypertrophic cardiomyopathy is frequently
observed in children with mitochondrial disorders, and it is associ-
ated with MTO1 or AARS2 mutations (Baruffini et al., 2013; Euro
et al., 2015). Moreover, excessive hair growth (hypertrichosis)
and dysmorphic disorder are common clinical manifestations in
children with mitochondrial diseases that are caused by mutations
in SURF1 (Baertling et al., 2013) and FBXL4 (Ballout et al., 2019),
respectively. The modifications in SUCLA2, SUCLG1, MT-RNR1
(m.1555A > G), MT-TL1 (m.3243A > G), RMND1 and RRM2B in chil-
dren can lead to sensorineural hearing loss (Rahman, 2020). The
typical clinical features of pediatric mitochondrial diseases are
summarized in Fig. 4.
5. Clinical diagnosis of mitochondrial diseases

Mitochondrial diseases can be evaluated through different diag-
nostic testing, such as blood, urine, molecular genetics and tissue
biopsy analyses. To confirm the mitochondrial disease’s diagnosis,
several conventional biomarkers could be used, which are specific
enzymes, anaerobic glucose metabolism and products or metabolic
intermediates (i.e., alanine, lactate, creatine kinase, pyruvate, deox-
yuridine, thymidine, acylcarnitines and organic acids) (Boenzi and
Diodato, 2018). It is beneficial to conduct metabolic screening anal-
ysis in urine and blood samples to detect mitochondrial dysfunc-
tions in their early stages. Different diagnostic biochemical
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screening tests might also be used that include complete blood
count, urine organic acid analysis, urine amino acid analysis,
hormone screening, hemoglobin A1C, comprehensive chemistry
panel, blood lactate and pyruvate, creatine kinase, ammonia and
carnitine, acylcarnitine and lipoprotein profiles (Muraresku et al.,
2018). Additional biochemical screening tests can be performed
when needed to confirm the mitochondrial disorder.

One of the most valuable biomarkers in the diagnosis of mito-
chondrial disease is the metabolic fingerprints of OXPHOS defi-
ciency (Finsterer and Zarrouk-Mahjoub, 2018). For instance, it
has been demonstrated that the fibroblast growth factor 21
(FGF21) level is a potential biomarker for muscle-manifesting
mitochondrial disease (Finsterer and Zarrouk-Mahjoub, 2018).
The elevated growth-differentiation factor 15 (GDF15) has been
detected in blood samples collected from mitochondrial dysfunc-
tion patients and is considered another potential biomarker
(Yatsuga et al., 2015). The measurement of abnormal quantities
of organic acids in urine may be used as a diagnostic tool to detect
several mitochondrial disorders in children (Yatsuga et al., 2015),
such as methylmalonic aciduria (caused by mutations in SUCLA2
and SUCLG1) (Landsverk et al., 2014), and 3-methylglutaconic acid-
uria (caused by mutations in TAZ, TMEM70 and SERAC1) (Tort et al.,
2013).

Molecular genetic testing is an essential diagnostic tool that
helps identify the molecular etiology that caused the mitochon-
drial dysfunction; hence, it could improve therapeutic outcomes.
The first-line molecular diagnostic test of mitochondrial dysfunc-
tion is the whole-exome sequencing that includes mtDNA
sequencing in proband, parental or family members (Lieber et al.,
2013; McCormick et al., 2013). This is a crucial test to identify de
novo dominant mutations in the affected individuals and increase
the interpretation accuracy of variant pathogenicity. The next-
generation sequencing (NGS) of mtDNA and its content in the dis-
eased tissues may be considered the most successful approach to



Fig. 4. Clinical presentation of childhood-onset mitochondrial diseases. Genotypic and phenotypic features of mitochondrial diseases in children. Abbreviations: ASH, Alpers–
Huttenlocher syndrome; myopathy sensory ataxia; ANS, Ataxia neuropathy spectrum; CLA, Congenital lactic acidosis. Created with Biorender.com.
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identifying the primary mitochondrial diseases. Biotin and
thiamine responsive basal ganglia disease (SLC19A3) and riboflavin
transport deficiencies (SLC52A2 or SLC52A3) were reported to have
phenotypic overlap with mitochondrial dysfunctions (Ferreira
et al., 2017).

In addition to biochemical screening analysis and molecular
genetic testing, tissue analysis is another important test to diag-
nose mitochondrial diseases, particularly in symptomatic tissues
that have mtDNA mutations or mitochondrial dysfunctions
(Dimmock and Lawlor, 2017). The mitochondrial enzymes and
functions can be evaluated through a skin biopsy (Newell et al.,
2019). This tissue screening might include the measurement of
integrated mitochondrial OXPHOS and the analysis of enzymatic
activity of the electron transport chain (ETC) complex (Germain
et al., 2019). Biopsy from skeletal muscles can be performed to
understand the degree of mitochondrial dysfunctions or confirm
the dysfunction as an alternative approach to a failed blood genetic
analysis (Ahmed et al., 2018). Further clinical diagnostic testing
may be conducted on high energy demanding tissues, i.e. kidneys
or muscle, such as ETC complexes I-IV enzyme activity analyses
(Parikh et al., 2015).
6. Epigenetic alterations in mitochondrial diseases

The significant differences between the mtDNA and the nDNA
are that there are several copies of mtDNA that lack histone. The
histone contains several cationic amino acids, such as lysine and
arginine, which will cause the DNA chromosome to compact;
hence, its absence in the mtDNA could be more vulnerable to epi-
genetic alterations (Chinnery et al., 2012). Epigenetic variation is a
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change that may occur in the genetic expression, which is not
heritable (Sharma et al., 2019). Several mtDNA variabilities are also
inheritable (D’Aquila et al., 2015).

The primary epigenetic regulation of the mitochondria can
occur in the mtDNA methylation, non-coding RNAs (ncRNA) mod-
ification, and posttranslational modification (Sharma et al., 2019).
DNA methylation is the process in which a methyl group from S-
adenosyl-methionine binds to the DNA nucleotide, mainly adenine
(A) and cytosine (C), by the support of DNA methyltransferases
(DNMTs) (Maresca et al., 2015). This process of DNA methylation
is essential for the stability of the whole genome (Jin and
Robertson, 2013). Regarding the mtDNA methylation, it was
reported by Rebelo et al. that the mtDNA might be methylated in
different sites, suggesting that this methylation is caused by
DNMTs, which rely on the occupied level of proteins around the
mtDNA (Rebelo et al., 2009). It was reported that the level of
DNA methylation could also be observed in cancerous cells
(Horvath, 2013). However, low levels of mtDNA methylation could
be less observed in pediatrics, as the methylated area in the mtDNA
declined upon ageing (Heyn et al., 2012; Horvath, 2013).

The communication between mitochondria and the nucleus
plays a critical role in cellular homeostasis. The nucleus controls
the mitochondrion’s gene expression and post-translation process;
however, the nuclear gene expression and protein activity are
mediated by the mitochondria through signal transport from mito-
chondria to cytosol. This crosstalk is controlled by several signals,
such as microRNA (miRNA), a subclass of ncRNA (Cavalcante
et al., 2020). The transcription of miRNA, which is non-coding
RNA, occurs in the nucleus as primary miRNA to be transformed
to precursor miRNA by Drosha and then to its mature form by
Dicer at the cytoplasm. The primary function of miRNA is to inhibit
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the translation of mRNA via destabilizing its binding to the 30

untranslated region of mRNA (Chipman and Pasquinelli, 2019).
miRNA can play a vital role in mitochondrial function. For instance,
several miRNAs such as miR-138, miR-1291, miR-150, and miR-
199a-3p can cause a change in the regulation of the expression
of some glycolytic enzymes’ glucose transporters. This explains
the role of miRNA in controlling glucose uptake by the mitochon-
drion (Chow et al., 2010; Srinivasan and Das, 2015). In addition,
lipid metabolism could be affected by miRNA. It was reported that
miR-33a/b might control the metabolism by targeting ATP binding
cassette subfamily A member 1 (ABCA1), a cholesterol transporter
(Rayner et al., 2011). In addition, miR-24, miR-126, and miR-143
can also regulate the mitochondrial lipid metabolism by inhibiting
Apolipoprotein L6 (APOL6) (Ye et al., 2013).

Additionally, the production of reactive oxygen species (ROS)
from the mitochondria could trigger the expression of hypoxia-
inducible factor 1 (HIF-1) (Weinberg et al., 2015). The ncRNA has
a vital role in regulating gene expression and controlling the mito-
chondria. For example, miRNA from the nucleus might control the
mitochondrial gene expression, which depends on the adenosine
triphosphate (ATP) produced by the mitochondria (Duarte et al.,
2014).
7. Current and future treatments of mitochondrial diseases

There is no cure or an FDA (i.e. Food and Drug Administration)-
approved therapy currently available for mitochondrial diseases
owing to the different genes and phenotypes associated with the
cause of such disorders. Nevertheless, few symptomatic treatments
have been proven by clinical trials as palliative therapies in the last
decade. A mitochondrial cocktail, i.e. a combination of vitamins,
cofactors, nutrients and antioxidants, may alleviate symptoms,
limit disease progression, and overcome mitochondrial toxins. This
symptom-based management aims to enhance mitochondrial
function by supporting the electron transport chain and treating
mitochondrial dysfunction’s consequences (Parikh et al., 2009;
Pfeffer et al., 2012).
7.1. Nutritional supplement and exercise

Poor diet and extreme malnutrition lead to secondary mito-
chondrial dysfunctions, while overeating increases ROS formation
and generates toxic metabolites (Wortmann et al., 2009). There-
fore, specific dietary restrictions have been shown to ameliorate
mitochondrial health in patients with mitochondrial disorders;
thus, evaluating individuals’ nutritional necessity and deficiencies
are significantly needed (Morava et al., 2006). A High-
carbohydrate diet has been reported to increase oxidative stress,
which can be metabolically challenging for those with impaired
oxidative phosphorylation (El-Hattab et al., 2012; Munnich et al.,
2012). On the other hand, the ketogenic diet (high-fat diet) has
been beneficial for patients with pyruvate dehydrogenase defi-
ciency but not helpful in the case of pyruvate carboxylase defi-
ciency and treating fatty acid oxidation disorders (Bough et al.,
2006).

Mitochondrial diseases affecting the respiratory chain could be
treated with agents known to enhance the electron transport and
substrate supply and bypass its components. Several phenotypes
of mitochondrial disorders resulting from the biosynthetic defects
of Coenzyme Q10 (CoQ10) were treated with CoQ10 supplementa-
tion and found to decrease the elevated levels of lactate in post-
exercise and increase oxygen consumption (Rötig et al., 2000; Di
Giovanni et al., 2001). Other food supplements, including vitamins
and amino acids, may be used as redox agents and intracellular
buffering for ATP (Parikh et al., 2009). Other symptoms relevant
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to mitochondrial diseases, including stroke-like episodes, myopa-
thy, diabetes, and lactic acidosis associated with nitric oxide (NO)
depletion, could be treated with NO natural precursors, for exam-
ple, arginine and citrulline, to restore the production of NO (El-
Hattab et al., 2012; Pfeffer et al., 2012; Almannai and El-Hattab,
2021).

Physical therapy and exercise have been found to elevate mito-
chondrial health and decrease the burden of dysfunctional mito-
chondria. Patients with mitochondrial disorders are exercise-
intolerant due to lowmaximal oxygen uptake, but a gradual endur-
ance exercise could help overcome such difficulty and enhance
mitochondria enzymic activity (Parikh et al., 2009). In addition,
physical therapy leads to mitochondrial biogenesis induced by
the high expression of the master transcription regulator PGC-1a.
Accumulating evidence was demonstrated that exercise elevates
mitochondrial ROS, which triggers the organelle biogenesis path-
way by the high expression of the master transcription regulator
PGC-1a leading to increased mitochondrial quantity and quality
(Taivassalo et al., 2001; Kang and Ji, 2012). In addition, physical
training can improve OXPHOS, respiratory capacity and electron
flow, reducing ROS production (Holloway, 2017; Memme et al.,
2021).

7.2. Pharmacological agents

Analogues of CoQ, for instance, idebenone, mitoquinone and
short-chain CoQ10 with improved pharmaceutical and pharmaco-
logical properties were developed to boost the electron transport
chain of mitochondria and evaluated clinically for their therapeutic
efficacy. These natural and synthetic quinones demonstrated
potential antioxidant activities against toxic metabolites from the
defected mitochondria and accumulated ROS (Suárez-Rivero
et al., 2021). For example, a study by Klopstock et al. showed
remarkable success in treating the visual acuity of a large group
of patients using idebenone (Klopstock et al., 2011). Many applica-
tions in clinical trials, such as Leber’s Hereditary Optic Neuropathy
(LHON; NLM, 2013), Parkinson’s disease (NLM, 2018), and MELAS
syndrome (NLM, 2016), have assured the safety of idebenone and
its efficacy, even at higher doses. It has passed phase III evaluation
(Suárez-Rivero et al., 2021). Other CoQ analogues with diverse
side-chain displayed unique biological activities and enhanced
pharmacological properties, such as bioavailability, mitochondrial
accumulation and antioxidant effect. Kagan et al. found that CoQ
analogues with shorter isoprenoid side chains have more antioxi-
dant potential (Kagan et al., 1990). In addition, antioxidants, such
as lipoic acid and N-acetyl-cysteine were used to decrease ROS-
induced toxicity and accumulated ROS from the defected
mitochondria.

7.3. Gene editing technology

Other than the controversial Mitochondrial Replacement Ther-
apy (MRT) utilized to prevent the inherited mitochondrial DNA
(mtDNA) mutations (Klopstock et al., 2016),genome-editing ther-
apy can be considered the ultimate treatment strategy to which
mitochondrial diseases patients hold their hopes out. Despite being
the prominent approach for gene editing, the Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology
falls behind in mitochondrial diseases due to the encountered dif-
ficulties in delivering the Cas9 nuclease and a guide RNA (gRNA)
along with a homologous repair template coincidentally to mito-
chondria for editing to take place (Gammage et al., 2018). Alterna-
tively, restriction endonucleases have been developed as an
effective tool for gene editing owing primarily to their ability to
form linear fragments of mtDNA after selective cleavage of the
mutant mtDNA while leaving the wild type intact. Elimination of
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the mtDNA fragments pursues rapidly by the exonucleolytic activ-
ity of enzymatic machinery, including the mitochondrial poly-
merase gamma (POLG) (Nissanka et al., 2018), the mitochondrial
replicative DNA helicase Twinkle (TWNK), and the mitochondrial
genome maintenance exonuclease 1(MGME1) (Peeva et al.,
2018), leading to an increased population of the wild type mtDNA.
However, the indispensable use of gRNAs constrains the applica-
tion of such restriction endonucleases.

This limitation has steered the research toward developing pro-
grammable nucleases that can induce specific elimination of the
mutant mtDNA. These nucleases include the mitochondrial-
targeted- zinc finger nucleases (mtZFN) delivered by an adeno-
associated virus (AAV; Gammage et al., 2018), and transcription
activator-like effector nucleases (mitoTALENs) (Bacman et al.,
2018), both corrected the mtDNA heteroplasmy through inducing
a specific elimination of the mutant mtDNA in a mouse model.
Nonetheless, these programmable nucleases cannot cause particu-
lar nucleotide changes in mtDNA nor be applied to homoplasmic
mtDNA mutations due to the potential harmful destruction of all
mtDNA copies (Stewart and Chinnery, 2015).

A safer gene therapy reliant on base editing was recently devel-
oped by Mok et al. (Mok et al., 2020). They successfully engineered
an interbacterial cytidine deaminase toxin, called DddA, to split
into non-toxic halves that could be activated upon contact with
mtDNA. Such base editors consist of a catalytically inactive Cas9
protein conjugated to a bacterial deaminase and a single guide
RNA (sgRNA) to facilitate the single-nucleotide conversion via
deamination reaction. DddA- base editors may catalyze the pro-
grammable transformation of C�G-to-T�A with high target speci-
ficity enabling the precise manipulation of human mtDNA
without inducing double-strand cleavage. Collectively, these
promising tools exhibit preclinical evidence for a robust shift in
mtDNA heteroplasmy. However, their translation into clinics is still
pending, owing to the lack of efficient delivery of nucleic acids to
mitochondria (Gammage et al., 2018).

7.4. Gene therapy

Until now, there are no successful therapies available for mito-
chondrial diseases. Treatment is primarily symptomatic and does
not significantly change disease progression (Tashiro et al., 2018).
One of the proposed alternative therapeutic approaches is gene
therapy, which involves transferring normal genetic materials to
targeted cells to correct congenital disabilities and, hence, prevent
or even treat diseases (David and Peebles, 2008).

LHON, caused by abnormalities in the mitochondrial encoded
MT-ND4 gene, is the only primary mitochondrial disease currently
undergoing active clinical gene therapy trials (Slone and Huang,
2020). Nearly 70% of patients with LHON carry pathogenic variants
in the mtDNA gene encoding subunit 4 of complex IV (MT-ND4)
(Tashiro et al., 2018). Multiple trials are currently investigating
the treatment of LHON using AAV and MT-ND4 coding sequences
that have been modified to carry a mitochondrial targeting
sequence (Slone and Huang, 2020). This helps restore ATP produc-
tion deficiencies in mutant ND4 cells by re-expressing the ND4
gene (Tashiro et al., 2018). In 2011, Yang et al. performed the
world’s first LHON gene therapy study by injecting 0.05 mL of
AAV2-ND4 into the vitreous cavity of one eye for nine patients.
After this treatment, systemic examinations and visual function
checks were carried out over 36 months to determine the safety
and efficiency of gene therapy (Yang et al., 2016; Zhang et al.,
2017). One patient received an AAV2-ND4 injection in their second
eye a year after gene therapy (Yang et al., 2016). After the 36-
month follow-up period, no serious adverse events in the eye or
the rest of the body were found in any nine patients (Yang et al.,
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2016; Zhang et al., 2017). Several measurements were used,
including best-corrected visual acuity (BCVA), which showed that
six of the nine patients improved their vision compared to before
treatment. Meanwhile, visual field tests showed seven of the nine
patients showed progress compared to baseline measurements. In
terms of retinal nerve fiber layer thickness and Visual Evoked
Potential (VEP), all patients showed improvements compared to
baseline measurements recorded before treatment (Zhang et al.,
2017). Another study was performed in 2014, in which five
patients with LHON who had the m.11778G > A mutation were
treated with a unilateral intravitreal injection of AAV2-P1ND4-
v2. Three individuals showed no tangible improvement in visual
acuity, while two cases showed higher visual acuity. There were
no substantial side effects (Feuer et al., 2016). Another study was
done by Yu et al., which showed that using AAV containing mito-
chondrial targeting sequence (MTS) to deliver the human ND4 into
the eyes of rodents helped to prevent visual loss and atrophy of the
optic nerve induced by the mutant ND4 allele (Yu et al., 2012).
These studies have shown that gene therapy as a potential treat-
ment for LHON may be a promising avenue of exploration for
future mitochondrial disease treatments.

In-utero gene therapy (IUGT) or fetal gene therapy is a sub-
branch of gene therapy that hopes to prevent early, irreversible
and fatal pathogenic changes in inherited genetic diseases
(Rashnonejad et al., 2019). Potential genetic therapeutic agents
can be delivered to the fetus either into the umbilical vein in the
womb or via direct injection into the fetal organs. Both approaches
assume that treating fetal life could prevent or mitigate irre-
versible pathological mutations linked with rare diseases and
enhance clinical outcomes compared to postnatal treatments
(Bottani et al., 2020). The advantages of IUGT may overcome limi-
tations in postnatal gene therapy, including small fetal size, access
to a large number of proliferative stem/progenitor cells in different
organs and minimizing disease complexities before birth by treat-
ing irreversible pathological changes (Peranteau and Flake, 2020).
Although fetal gene therapy might be beneficial for early-onset pri-
mary mitochondrial dysfunction diseases, it is still in its early
stages.

One of the earliest mutations in mitochondria before birth was
found in SURF1-associated Leigh syndrome. This gene is responsi-
ble for the OXPHOS process, and evidence suggests that a mutation
in the SURF1 functionmay lead to metabolic impairments in neural
progenitor cells (NPCs), where the glycolytic state cannot be
switched to OXPHOS metabolism, resulting in abnormal prolifera-
tion and insufficient support for neuronal morphogenesis (Inak
et al., 2019). Similar neuronal defects were detected in the SURF1
knocked-down pig model (Quadalti et al., 2018), suggesting that
OXPHOS defects may impair the NPC cellular metabolism in early
development, triggering neurological phenotypes. This example
supports the importance of prenatal intervention for infants as a
crucial treatment strategy for mitochondrial diseases (Bottani
et al., 2020).

Due to the lack of PMD-specific treatments, fetal therapeutic
approaches and curative strategies proposed for other genetic dis-
eases should be considered (Bottani et al., 2020). For instance,
recent research showed that introducing AAV serotype-9 (AAV9)-
EGFP to spinal muscular atrophy (SMA) mouse embryos through
IU-intracerebroventricular injections led to overexpression of EGFP
proteins in different parts of the CNS, producing more transduced
neural stem cells. Mouse fetuses received a single IU-
intracerebroventricular injection of a single-stranded (ss) or self-
complementary (SC) AAV9-SMA therapeutic vectors, leading to
an improved muscle pathology and motor neuron survival
(Rashnonejad et al., 2019). Learning from such examples sheds
light on fetal therapy, yet, more work remains in this area. Ethical
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issues and parental and fetal safety must be considered before
clinical trials with fetal gene therapy can be initiated in human
pregnancies (Bottani et al., 2020).
7.5. Mitochondrial-targeted nanomedicine

Nano-medical interventions for clinical trial innovation may
assist in accelerating the clinical translation of a successful gene
editing therapy to overcome mitochondrial diseases. In support
of this proposal, lipid-based nanoparticles (NPs) have been used
to deliver two COVID-19 vaccines accelerating their clinical trials
and, consequently, their approval by the FDA (Alsudir et al.,
2021). The application of nanotechnology represents a break-
through in battling the COVID-19 pandemic in its early stages. Sim-
ilarly, tailoring mitochondrial-targeting NPs for the selective
delivery of nucleic acids could accelerate the translation of gene
editing therapy into clinics and promote the development of a suc-
cessful personalized nanomedicine. Hyperpolarization and
hydrophobicity of the mitochondrial membrane might contribute
to tailoring the mitochondrial-targeting NPs by moderating the
degree of hydrophobicity and charge density of the NPs and gov-
erning their size and shape. Developing a library of NPs with vari-
ous such properties can help discover the optimal/ideal
mitochondrial-targeting nanoplatforms.

There are two developed mitochondrial targeting routes; pas-
sive and active. The passive route is based upon the negative
potential of the mitochondrial membrane that permits the
design/fabrication of positively charged NPs to increase cellular
uptake. Contrarily, the active route involves decorating the NP sur-
face with mitochondrial specific ligands such as delocalized lipo-
philic cations (DLCs), including triphenylphosphonium (TPP+)
(Neuzil et al., 2013), tetramethylrhodamine-5-isothiocyanate
(Zhang et al., 2018), cationic heterocycles (Hickey et al., 2008),
and dequalinium (DQA) (Mallick et al., 2019). The efficiency of
these DLCs in delivering large cargoes is highly dependent on the
size and charge density of the conjugates (Lu et al., 2016). Other
targeting ligands include mitochondrial peptides (Horton et al.,
2008; Chen et al., 2013; Jean et al., 2016; Wisnovsky et al.,
2016), vitamin E analogue a-tocopheryl (Cheng et al., 2013), 7-
amino coumarin (Lee et al., 2018), hypericin & glycyrrhetinic acid
(Han et al., 2018), aptamers such as cytochrome c (Cyt c) (Mo
et al., 2014; Chen et al., 2015) that could bind cardiolipin confined
to the mitochondrial inner membrane, and the ‘‘MitoLigands” (Xiao
Table 1
A summary of mitochondrial-targeting NPs along with their targeting ligands.

Mitochondrial- Targeting NPs

Poly-L-lysine self-assembling NPs
Poly (amidoamine) (PAMAM) dendrimer NPs
Poly (D, L-lactic-co-glycolic acid)-block-poly ethylene glycol (PLGA-PEG NPs)

Poly (e-caprolactone) (PCL) NPs
Poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide), PEO-

PPO-PEO NPs
PEG- Polydopamine (PDA) NPs
Hyaluronic acid-D-a-tocopherol succinate (HA-TS) NPs
Glycol chitosan
PEG2000- 1, 2-Distearoyl-sn-glycero-3 phosphoethanolamine (DSPE)- Liposomes
Polypyrrole-silica (Py-SiO2) hybrid NPs
SiO2-PDA-Fe3O4

Gold-Platinum bimetallic (Au-Pt) NPs
Au nanostars
Ceria (CeO2) NPs
Zirconia (ZrO2) NPs
Nitrogen-doped graphene quantum dots
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et al., 2021) (SeSe-TPP and miniCPM3 consisting of two D- and L-
alternating hydrophobic naphthylalanine amino acids and three
positively charged arginines (Arg)). For nuclear targeting, the most
reported ligands include nuclear localization signal sequences
(NLSs) (Cheng et al., 2017) such as SV40 T antigen (Lu et al.,
2021), adenoviruses containing dsDNA covalently linked to a ter-
minal protein (TP) (Al-Wassiti et al., 2021), transactivator of tran-
scription (TAT) peptide (Sun et al., 2020), and KRRRR (Cheng
et al., 2019) that plays a leading role in nucleocytoplasmic
trafficking.

Significant efforts have been made to develop mitochondrial
targeting NPs, including polymeric, lipid, organic, or inorganic
NPs, summarized in Table 1. Nevertheless, none of these NPs has
been utilized to deliver the genetic materials required for gene
therapy. Thereby, there is an urgent need to investigate the optimal
mitochondrial-targeting nanoplatforms to stabilize and provide
the therapeutic gene in a simple, safe and affordable manner.
7.6. Future directions

Several treatments show a great promise for primary mitochon-
drial disorders, yet, only a few of them have undergone controlled
clinical trials or remain inconclusive (Garone and Viscomi, 2018).
Currently, one medicine, in particular, idebenone, offers enough
scientific evidence for treating mitochondrial dysfunctions, in
addition to its ability to treat acute vision loss in LHON
(Klopstock et al., 2011; Rudolph et al., 2013; Singh et al., 2021;
Tinker et al., 2021). However, there is continuous interest in devel-
oping potential therapeutic alternatives for mitochondrial dis-
eases. Significant progress has been made in the fundamental
understanding of mitochondrial biology and the ability to detect
genetic abnormalities in most patients (Russell et al., 2020). The
use of gene therapy to correct heteroplasmic mtDNA defects has
been investigated for more than 25 years and is close to becoming
a reality in its application clinically (Murphy and Hartley, 2018).

Meanwhile, the ability to conduct meaningful clinical trials to
validate new treatments increases. The rarity of primary mitochon-
drial disorders has impacted the conduction of successful clinical
trials, design and funding (Augustine et al., 2013). However, signif-
icant breakthroughs in developing new therapeutic approaches
will continue in the coming decade through further advances in
gene therapy and screening assays to improve mitochondrial func-
tion (Garone and Viscomi, 2018). Alongside the innovative
Targeting
route

Targeting
ligand

Ref.

Active Aptamer Cyt c (Chen et al., 2017)
Active TPP+ (Biswas et al., 2012)
Active TPP+ (Marrache and Dhar, 2012, Marrache et al.,

2013)
Active TPP+ (Cho et al., 2015)
Active TPP+ (Wang et al., 2020)

Active TPP+ (Li et al., 2017)
Active TPP+ (Lee and Cho, 2019)
Active DQA (Mallick et al., 2019)
Active DQA (Li et al., 2013)
Active TPP+ (Xu et al., 2020)
Active TPP+ (Guo et al., 2016)
Active TPP+ (Song et al., 2017)
Active TPP+ (Chen et al., 2017)
Active TPP+ (Kwon et al., 2016)
Active TPP+ (Chen et al., 2018)
Active TPP+ (Guo et al., 2017)
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approaches to clinical trial design, the development of new tech-
nologies and the creation of virtual controls will herald a new
era, particularly in personalized medicine, for patients with mito-
chondrial diseases (Garone and Viscomi, 2018).

8. Conclusion

Mitochondrial diseases affecting newborns and the elderly can
be distinguished by their clinical, biochemical and genetic
complexities. Recently, advanced technology has enhanced the
understanding of mitochondrial disorders’ manifestations, diagno-
sis, prognosis, management and prevention, and determined the
underlying genetic mutations of the complex clinical phenotypes
associated with such dysfunctions. Several essential mitochondrial
genes have been identified, where they could be targeted to
improve mitochondrial function. Although no medicine has yet
been developed specifically to target the mitochondrion, palliative
therapy is usually considered instead. More viable cures should be
evaluated through more precise medical strategies that target an
individual’s genetic variations. Developing new therapeutic
approaches and the increasing number of clinical trials could hold
a great future in treating mitochondrial diseases.
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