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Intelligent vehicles were widely used in logistics handling, agriculture, medical service,
industrial production, and other industries, but they were often not smooth enough in
planning the path, and the number of turns was large, resulting in high energy
consumption. Aiming at the unsmooth path planning problem of four-wheel intelligent
vehicle path planning algorithm, this article proposed an improved genetic and ant colony
hybrid algorithm, and the physical model of intelligent vehicle was established. This article
first improved ant colony optimization algorithm about heuristic function with the adaptive
change of evaporation factor. Then, it improved the genetic algorithm on fitness function,
adaptive adjustment of crossover factor, and mutation factor. Last, this article proposed
the improved hybrid algorithm with the addition of a deletion operator, adoption of an elite
retention strategy, and addition of suboptimal solutions obtained from the improved ant
colony algorithm to improved genetic algorithm to obtain optimized new populations. The
simulation environment for this article is windows 10, the processor is Intel Core i5-5257U,
the runningmemory is 4GB, the compilation environment is MATLAB2018b, the number of
ant samples is 50, themaximum number of iterations is 100, the initial population size of the
genetic algorithm is 200, and the maximum number of iterations is 50. Simulation and
physical experiments show that the improved hybrid algorithm is effective. Compared with
the traditional hybrid algorithm, the improved hybrid algorithm reduced by 46% in the
average number of iterations and 75% in the average number of turns in a simple grid. The
improved hybrid algorithm reduced by 47% in the average number of iterations and 21% in
the average number of turns in a complex grid. The improved hybrid algorithmworks better
to reduce the number of turns in simple maps.
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1 INTRODUCTION

Intelligent vehicles are a significant part of the artificial
intelligence and engineering field. It is often used as an
important platform for logistics handling and exploration (Liu
et al., 2022a). Intelligent vehicle can be used in logistics and
transportation (Duan et al., 2021), industrial production, medical
service (He et al., 2019; Cheng et al., 2020a), patrol inspection,
agricultural machinery, military, exploration, search and rescue,
and other fields (Jiang et al., 2021a; Bai et al., 2022; Liu et al.,
2022b). Along with the national manufacturing future
development strategy, such as the American industrial
Internet, the German industry 4.0, and Made in China 2025,
intelligent manufacturing has become the future development
tendency of the global manufacturing industry (Jiang et al., 2019a;
Cheng et al., 2021a). Intelligent vehicle is an important field of
intelligent manufacturing, and path planning technology is one of
the core problems of intelligent vehicle research (Tao et al.,
2022a). Intelligent vehicle global path planning algorithms,
such as genetic algorithm and ant colony optimization
algorithm, which are broadly studied, have their own defects
(Liao et al., 2020). Although the traditional hybrid algorithm can
absorb the advantages of the two algorithms, there are still some
problems, such as unsmooth planning path and more turns (Sun
et al., 2022a). So, it has extraordinary significance to propose an
improved hybrid algorithm and study it.

Aiming at the problems that the path planned by the
traditional genetic and ant colony hybrid algorithm was not
smooth enough and there are many turns (Tao et al., 2022b),
this article proposed an improved genetic and ant colony hybrid
algorithm. The main contributions were as follows:

1) Aiming at the problem of low pheromone concentration in
the initial stage and the ants were prone to stagnation in ant
colony algorithms, this article improved the heuristic function
and proposed adaptive evaporation factor.

2) In response to the question of too many turns in the path
planned by genetic algorithm, and genetic algorithms are
prone to get caught up in local optimum solutions, this
article improved the fitness function and proposed the
adaptive crossover and mutation factor.

3) Aiming at the problem, the population diversity of traditional
hybrid algorithm decreased sharply and it was difficult to
produce new individuals with more vitality. It affected the
hybrid algorithm to gain the global optimum solutions. Also,
in the later phase of the improved ant colony optimization
algorithm, due to the gradual weakening of the evaporation
factor, it was easy to get caught up in the suboptimal solution
and no longer looked for a better path. This article proposed
adding the suboptimal solution obtained by the improved ant
colony algorithm into the initial population of the improved
genetic algorithm to get the improved genetic and ant colony
hybrid algorithm.

The structure of this article is organized as follows. The second
section retrospects the relevant research on intelligent vehicle
path planning algorithm by domestic and foreign scholars. The

third section constructs the grid map and expands the irregular
obstacles to facilitate the follow-up path planning research. The
fourth section first introduces the ant colony optimization
algorithm, genetic algorithm, and traditional genetic and ant
colony hybrid algorithm. Then, in response to the questions of
the traditional hybrid algorithm, this article improves the ant
colony algorithm and the genetic algorithm. Finally, this article
mixes the improved algorithms to obtain the improved genetic
and ant colony hybrid algorithm. In the fifth part, simulation
comparison experiments are conducted first and the results are
summarized; then, the physical structure and control are
introduced and physical experiments are conducted. In the
sixth part, the data from the simulation and physical
experiments are first recorded, and then the data results are
summarized and carefully analyzed. The last part summarizes
and prospects the full text and explains other popular research
topics of intelligent vehicle path planning, which has some
enlightenment for the future research direction.

2 RELATED WORK

For the path planning of intelligent vehicle, many scholars in China
and abroad have conducted numerous studies and proposed many
related algorithms, such as A* algorithm, artificial potential field
method (Khatib, O et al., 1986), dynamic window method
(Kobayashi, M et al., 2022), RRT algorithm (Cao et al., 2019),
intelligent bionics algorithm, such as simulated annealing
algorithm (Baik, H et al., 2019), ant colony algorithm (Liu et al.,
2022b), particle swarm optimization algorithm (Das, P.K et al.,
2016), genetic algorithm (Yun et al., 2022a), and algorithm
improvement and hybrid. A* algorithm is mainly applied to the
global search in the static environment. The algorithm is simple.
Relevant research mainly improves the heuristic function, but the
efficiency is too low and the amount of calculation is large, and the
searched path is not necessarily optimal (Sun et al., 2022b). Later,
some scholars propose D* algorithm and its improvement (Zhang
et al., 2022). D* algorithm looks for the trajectory from the target
point to the starting point. Its advantage is embodied in efficient re-
planningwhen encountering obstacles (Huang et al., 2022), but it has
many turns and the path is not smooth. The artificial potential field
methodwas brought up byKhatib and first applied to path planning.
The obstacles and targets are abstracted as virtual potential fields, the
obstacles are regarded as repulsive poles, and the targets are regarded
as gravitational poles. The intelligent vehicle travels from the starting
point to the target point, where the target location creates an
attractive force and the obstacles in the environment create a
range repulsion (Tao et al., 2021). The artificial potential field
method has simple computation and good real-time performance,
and can be used for a dynamic path search, but it is easy to get caught
in local minimum points; the target is unreachable, and the path will
fluctuate (Chen et al., 2022a). The dynamic window method is a
commonly used local path planning algorithm that combines robot
kinematics and dynamics (Chen et al., 2022b). It transforms the local
path planning questions into a speed-constrained optimization
problem, but it is easy to get caught in local optimization when
there are many obstacles. Path planning algorithms are based on
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random sampling, such as rapid expansion random number
algorithm (RRT), probabilistic roadmap algorithm (PRM)
(Ravankar, A.A et al., 2020), etc. RRT algorithm generates
multiple “branches” from the start of the path to the end of the
path through random sampling and finally forms a path from the
start of the path to the end of the path; it is appropriate to solve the
path planning of spatial multi-degree-of-freedom robots in
complicated and dynamic environment, but it requires a uniform
sampling of thewhole space, which is inefficient, and it is challenging
to ensure the optimality of real-time solution (Chen et al., 2022c).
Many scholars have improved the RRT algorithm and propose the
RRT* algorithm (Wu et al., 2022), bidirectional extended random
number algorithm (BI-RRT, RRT-connect) (Sun et al., 2020a), etc.

Intelligent algorithms based on heuristic incorporate genetic
algorithm, ant colony optimization algorithm, particle swarm
optimization algorithm, etc. This article choses genetic algorithm
and ant colony optimization algorithm to introduce, whichweremost
studied in path planning and had strong global optimization ability.

Ant colony optimization (ACO) algorithm was a positive
feedback mechanism algorithm, which was proposed by the
Italian scholar Dorigo. In order to solve the deficiencies of ant
colony optimization algorithm in path planning, various
improved ant colony algorithms had been raised by
researchers. Liu et al. (2022c) proposed an improved algorithm
with an adaptive search step size and a pheromone evaporation
strategy to solve the problems that ant colony optimization
algorithm was easy to get caught up in local optimization and
search efficiency is low. Ajeil, F.H et al. (2020) proposed an aging
ant colony optimization algorithm for the optimization problem
in the static environment and compared it with the genetic
algorithm and particle swarm optimization algorithm. Wang
et al. (2018) combined the artificial potential field method
with ant colony optimization algorithm, improved the
heuristic function of ant colony optimization algorithm by
using the artificial potential field method, reasonably allocated
pheromones when the algorithm was not running, and improved
the evaporation rate to make the algorithm find the optimal path.

Genetic algorithm (GA) was first raised by J. Holland in the
United States and applied it to path planning. It is a method to study
the optimal solution by simulating the development of organisms in
the direction of more adapting to the environment. Genetic
algorithm uses genetic arithmetic for selection, crossover, and
mutation, but there are questions such as early maturity and the
tendency to get caught in local optimal solutions. Many scholars
have also improved genetic algorithm. Hao et al. (2020) randomly
divided a large population into several small populations with the
same number of populations, and the migration mechanism
between populations replaced the screening mechanism of
selection operators. The operations of crossover operator and
mutation operator were improved. It was not only suitable for
the simulation map of various scales and the distribution of
various obstacles but also had superior performance and
effectively resolves the questions of the basic genetic algorithm.
Lamini, C et al. (2018) proposed an improved crossover operator,
which significantly improved the premature convergence of the
algorithm, and proposed a new fitness function considering distance,
security, and energy, which was helpful for the algorithm to find the

optimal path. Nazarahari, M et al. (2019) proposed a hybrid method
for the path planning of multiple intelligent vehicle in a continuous
circumstances to solve the problems that genetic algorithm was
affected by the grid size of the environment and the initial solution
cannot find the optimal solution through multiple iterations.

3 BUILD MAP

Before the global path planning of intelligent vehicle, it is necessary to
carry out environmental modeling (Sun et al., 2022c). The modeling
methods used in the current research are raster method, vector
method, and free spacemethod (Tian et al., 2020). The gridmethod is
relatively simple. Therefore, the grid method is used in this article.
The grid method divides the surroundings of the vehicle into squares
of equal size. The common grid types have square, triangle, and
regular hexagon (Li et al., 2019a). In terms of precision, the grid

FIGURE 1 | (A) Grid map and (B) expansion treatment diagram of
obstacles.
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method can be divided into equal precision grid and variable
precision grid (Yang et al., 2021). In this article, the widely used
equal precision square grid is used to record the environmental
information in the unit of grid. The white grid on the map represents
no obstacles, the black grid represents obstacles, and the intelligent
vehicle cannot pass through. The smaller the grid division, the higher
the accuracy, and the more accurate the obstacle information, which
is conducive to the recognition and obstacle avoidance of the robot.
However, the larger the storage space occupied by the algorithm
during an operation, and the search time increases exponentially
(Cheng et al., 2019b).

As shown in Figure 1A), from the lower-left corner to the
upper-right corner, from left to right, from bottom to top, the
numbers are S (starting point), 1, 2, 3, . . .,34, T (target point).
Specify that the vehicle can be moved on each grid centroid, and
the coordinates of each grid are represented by the grid centroid
coordinates (Huang et al., 2021). The movable area is marked
with white, which can be passed by the vehicle, and black is the
forbidden area, which was occupied by obstacles (Jiang et al.,
2021a). When the vehicle moves to a certain grid, it can move
freely to the nearby eight neighborhoods (the obstacle direction
cannot be moved). Grid coordinates can be expressed as

{ x � mod(i, N) + 0.5
y � ceil(i/N) − 0.5

, (1)

where N is the number of rows and columns of the grid map, i is the
sequence number, mod () is the remainder function, and ceil () is the
rounding function in the direction of positive infinity (Liu et al.,
2022d).

In order to ensure that the intelligent vehicle can effectively avoid
irregular obstacles, the obstacles are expanded as shown in
Figure 1B. The expanded size of the obstacles is the sum of the
radius of the intelligent vehicle and the safe reserved distance, so that
the intelligent vehicle can be regarded as a particle (Ma et al., 2020),
and the intersection of the road map and the corner of the grid will
not collide.

4 ALGORITHM DESCRIPTION

4.1 Ant Colony Optimization Algorithm
As shown in Figure 2, on the way from the nest to the food, when
encountering obstacles, the ants will actively look for a feasible
path to bypass the obstacles. Due to the short path ABDEF, the
ants on this path go back and forth more times and leave a high
pheromone concentration. The subsequent ants looking for food
are more likely to adopt path ABDEF.

Ant colony algorithm is a positive feedback simulation
algorithm. There are two important influencing factors when
ants search the path, which are the pheromone concentration
heuristic function and the distance heuristic function. At time t,
the movement of ant k from one grid to another is a probabilistic
choice, which is expressed by the following equations:

Pk
ij(t) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ταij(t)ηβij(t)∑

s∈allowedk
ταis(t)ηβis(t)

, s ∈ allowedk

0, s ∉ allowedk

(2)

where α、β is the weight of two heuristic functions. The next
movable grid set is represented by allowedk. Pheromone
concentration function τij(t) indicates; ηij (t) is the distance
heuristic function, which is expressed as follows:

ηij �
1
dij

(3)

dij �
�������������������(xi − xj)2 + (yi − yj)2√

(4)

When all ants complete a path search, the pheromone left by
them will evaporate naturally. This is the use of the evaporation
rate ρ (0< ρ < 1). It attenuates the pheromone left by ants and
plays the role of a negative feedback. The pheromone renewal
equation is expressed as

τij(t + 1) � (1 − ρ)τij(t) + Δτ ij(t) (5)
where

Δτ ij(t) � ∑m
k�1

Δτkij(t), (6)

where Δτij(t) represents the pheromone increment of the ant on
the path (i,j) in this cycle and Δτijk(t) represents the pheromone
increase in this cycle when the kth ant passes through path (i,j).

Assuming that the ant searches a complete path and then
updates the pheromone, the ant-cycle model is adopted:

Δτkij(t) �
⎧⎪⎪⎨⎪⎪⎩

Q

Lk
, if ant k go by the path(i, j)

0, otherwise

, (7)

whereQ is the pheromone intensity, and its size has little effect on
the search results. Lk is the total length of all paths of the kth ant in
this cycle.

4.2 Genetic Algorithm
During the initial phase of genetic algorithm, the population is
randomly searched, and then the fitness of the solution is
evaluated according to the search results. The larger the
fitness, the stronger the probability of being selected in the
roulette, and the solution with low fitness is not easy to
survive. The selected two solutions cross and mutate, and the
new individual continues to iterate until the end (Liu et al.,
2022c). There are some questions in single genetic algorithm path
planning, such as the single initial population, too many turns,

FIGURE 2 | Schematic diagram of ants looking for food.
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easy to get caught in local optimum solutions, premature, and
redundant points (Huang et al., 2019).

1) Population initialization

Step 1: we set the parameters required by the algorithm and
select a grid for each row.

Step 2: we judge whether the grid is continuous:

Δ � max{abs(xi+1 − xi), abs(yi+1 − yi)} (8)
where (xi, yi), (xi + 1, yi + 1) are the coordinates corresponding to
the two grids, respectively. When Δ = 1, it means that the two
grids are continuous. Otherwise, the average way is used to insert
the grid. The compute method is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x′
i � int[1

2
(xi + xi+1)]

y′
i � int[1

2
(yi + yi+1)]

P′
i � x′

i + y′
i

(9)

Step 3: if there are obstacle grids near the Pi’ sequence number
grid, we eliminate this path and repeat the abovementioned steps
until a feasible path is generated.

2) Establishment of fitness function

The fitness function determines the individual’s adaptability.
When the fitness is high, it is easy to survive; otherwise, it is easy
to be eliminated. It can be used to judge the quality of an individual
(Qi et al., 2020). The traditional genetic algorithm only thinks over
the path length, and the fitness function expression is

fit � 1
length

(10)

where length is the path length.

3) Choice

Roulette is adopted for selection, in which the probability of
individual being selected is positively correlated with its
corresponding fitness function value. When the population
size is n, the probability that individual i will be selected and
passed on to the next generation is

pi � Fi∑n
i�1
Fi

(11)

4) Crossover

Figure 3 displays the crossover process. First select two paths
with a large fitness value, that is, the path length is small, and then
conduct a single point crossing, that is, find out all identical points
on both paths, next randomly select one of them for the crossing
operation, which can ensure the continuity of the path. Cross
operation is to improve species diversity and accelerate the ability
of species evolution (Qi et al., 2019).

5) Mutation

Figure 4 shows the mutation process. The path sequence
number in the 6 × 6 grid map forms a feasible path, which is used
to represent an individual. X1 and X2 are the chromosome codes
of individuals before and after variation, respectively. The
positions with arrows are mutated, and the other positions are
not mutated. The mutation operation mainly changes the original
genes of inferior individuals to make them become superior
individuals with a certain probability (Sun et al., 2020b).

4.3 Traditional Genetic and Ant Colony
Hybrid Algorithm
In the global path planning problem of intelligent vehicle, the
traditional genetic algorithm has excellent global path search
capability, but the lack of a feedback message in the system leads
to a large number of redundant iterations, which leads to weak
local search capability and low solution efficiency (Sun et al.,
2020c). Ant colony algorithm leverages positive feedback
mechanisms of pheromone and has a strong local search
ability. However, the pheromone concentration is low during
the initial phase of search and the accumulation time is long,
resulting in slow solution speed, easy convergence into the local
optimum solutions, and premature algorithm.

The combination of genetic algorithm and ant colony
optimization algorithm can absorb the advantages of the two
algorithms in solving the optimal solution problem, overcome
their respective disadvantages, and complement each other (Chen
et al., 2021a). The hybrid algorithm is better than the single
genetic algorithm in the efficiency of finding the optimum
solutions and ant colony optimization algorithm in time
efficiency. It is a new heuristic algorithm with good solution
efficiency and time efficiency (Chen et al., 2021b).

The flow chart of the traditional genetic and ant colony hybrid
algorithm is as follows in Figures 5:

FIGURE 3 | Crossover process.
FIGURE 4 | Mutation process.
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4.4 ImprovedGenetic and Ant Colony Hybrid
Algorithm
Although the hybrid of genetic algorithm and ant colony
algorithm can learn from each other, the traditional hybrid
algorithm is prone to the problem of the sharp reduction of
population diversity and difficult to produce more viable new
individuals during the execution phase of genetic algorithm. It
affects the hybrid algorithm to obtain the global optimum
solutions. Therefore, this article first improves the ant colony
optimization algorithm and tradition genetic algorithm and then
fuses the improved algorithm to obtain the improved genetic and
ant colony hybrid algorithm.

4.4.1 Improvement of Ant Colony Optimization
Algorithm
This article first improves the ant colony optimization algorithm
to facilitate the subsequent hybrid with genetic algorithm. During
the initial phase of the ant colony optimization algorithm, the ant
colony has not left pheromone on the path. At this time, the

pheromone on the path is scarce, so the ant cannot choose the
next grid based on the pheromone concentration. The search has
no purpose and cannot quickly search for a feasible path. As a
result, the convergence rate of the ant colony optimization
algorithm is slow (Jiang et al., 2019a), so this article chooses
to improve the heuristic function. In response to the questions
that the ant colony optimization algorithm uses a fixed
evaporation factor, which is easy to get caught up in
stagnation and local optimization, so this article makes the
evaporation factor adjust adaptively to improve the global
optimization capability of the algorithm (Li et al., 2019a).

1) Heuristic function improvement

Referring to the artificial potential field method, the ending
point generates an attractive potential field for the intelligent
vehicle, the distance heuristic function is improved, and the sum
of the distance from the current grid to the next grid and the
distance from the next grid to the target grid is introduced into
the heuristic function, so as to enhance the purpose of ant search;
the capability to jump out of the local optimum solutions has also
been improved to a certain extent (Jiang et al., 2019a).

The new distance heuristic function formula is as follows:

ηij �
1

dij + djE
(12)

where i is the current grid, j is the next grid, and E is the target grid.

2) Adaptive adjustment of evaporation factor

The evaporation factor in ant colony optimization algorithm has
an important impact on the expression of the algorithm, so the
improved adaptive evaporation factor is adopted, and the equation is

ρ(t + 1) �
⎧⎪⎪⎨⎪⎪⎩

T

T + t
×

1

e1−ρ(t)
, ρ(t)> ρmin

ρmin, else

(13)

Here, T represents the total number of iterations, t represents
the current number of iterations, and ρmin is the minimum value
of evaporation factor.

In order to strengthen the global search capability of ants, in
the initial stage, the evaporation factor of the algorithm ρ is given
a larger value; at this time, the guiding effect of pheromone
concentration on ants is relatively weak, and the ant colony can
seek more practicable paths (Li et al., 2019a). With the step-by-
step iteration, the evaporation factor ρ gradually decreases, the
negative feedback weakens, the pheromone on the path raises,
and the guiding effect of concentration on ants grows stronger.
After a certain number of iterations, ants will focus on a high
concentration of paths, but it is necessary to set a minimum value
for the evaporation factor; otherwise, the evaporation factor is too
small, and it will be easy to get caught in the local optimum
solutions (Li et al., 2019a).

3) Limitations

FIGURE 5 | The flow chart of the traditional genetic and ant colony hybrid
algorithm.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9059836

Shi et al. Intelligent Vehicle Path Optimization Algorithm

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Although the improved ant colony optimization
algorithm has a certain enhancement in the global search
capability and is not easy to get caught in the local optimum
solutions, after introducing the self-adaptive adjusted
evaporation factor, the evaporation factor changes from
large to small. In the later stage, due to the small
evaporation factor, the pheromone concentration on some
shorter paths will be too large, while the shortest paths may
never be walked by ants, and the pheromone concentration
on the path is too low; it will not be found at all, which leads
to the suboptimal solution path found by the improved ant
colony algorithm (Li et al., 2020b).

4.4.2 Improvement of Genetic Algorithm
1) Improvement of fitness function

In the path planning of the vehicle, length is the primary
consideration, and the vehicle has a certain turning angle when
traveling. In the case of relatively narrow and many obstacles, the
less turning, the less time-consuming and less energy
consumption of the intelligent vehicle. Therefore, this article
considers the length factor, smoothness factor, and safety
factor in the fitness function (Wang et al., 2021). The new
fitness function is as follows:

fit � a × fit1 + b × fit2 + c × fit3 (14)
where a, b, and c are weight coefficients.

fit1 is the length factor:

fit1 � 1
length

(15)

The length factor only considers the length, which is the
reciprocal of the path length.

fit2 is the smoothness factor:

fit2 � ∑end
i�1

1
θ

(16)

cos θ � − ∑end−1
i�1

[(xi+2 − xi+1)2 + (yi+2 − yi+1)2] + [(xi+1 − xi)2
+(yi+1−yi)2]−[(xi+2−xi)2+(yi+2−yi)2]

2
������������������������
(xi+2 − xi+1)2 + (yi+2 − yi+1)2√ ����������

(xi+1 − xi)2
√

+(yi+1 − yi)2, (17)
where (xi+1, yi+1) represents the current time position of the
vehicle, (xi, yi) represents the previous time position, (xi+2, yi+2)
represents the next time position, and θ indicates the angle of the
vehicle’s turn angle during travel. The smoothness factor

represents the reciprocal of the turning angle of the path. The
smaller the turning angle, the greater the reciprocal, the greater
the smoothness factor and the larger the fitness function. So,
when the vehicle turns, the turning angle should not be too large.
Therefore, when the vehicle turns, appropriate punishment will
be given to reduce its turning probability. The cosine function is
used to judge the size of the turning angle. For 90 ° < θ < 180 °,
45 ° < θ<=90 °, 0< θ<=45 ° punishment of 1,000, 100, and 5,
respectively (Liao et al., 2021).

fit3 is safety factor:

fit3 � ∑n−1
i�1

1
Si

(18)

where Si is the security penalty value of node i, and the safety
distance of the point is measured by whether there are obstacles in
the eight grid neighborhoods of the path node. If there are no
obstacle grids in the eight neighborhoods of a path node, the
point is a safe moving point. Otherwise, there is a potential safety
hazard at this point, and the Si penalty value is increased by 1. The

FIGURE 6 | Comparison of paths before and after deletion.

FIGURE 7 | Flow chart of the improved genetic and ant colony hybrid
algorithm.
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fewer obstacles, the safer, the smaller Si, the greater the reciprocal,
the greater the safety factor and the larger the fitness function.

2) Adaptive crossover and mutation probability

The crossover probability is expressed in Pc. In path planning,
the crossover operation refers to the exchange of the searched two
parent paths at the intersection point (randomly determined).
After the exchange, the shorter path is retained and the longer
path is abandoned, which is analogous to the division and
recombination of genes. By the crossover operation, the fitness
of the descendant path may be taller than the parent path to
achieve the purpose of optimization (Li et al., 2019c).

Mutation probability is expressed in Pm. In path planning,
mutation operation refers to flipping the searched parent path
with probability Pm, and combining with crossover operation
may obtain a more adaptable child path. The mutation behavior
of genetic algorithm can make it search for as many feasible paths
as possible, which is conducive to escape from the local optimum

solutions and search for the global optimum paths (Guo et al.,
2019).

Because Pc and Pm in the traditional genetic algorithm are
fixed values, for crossover operation, if Pc is large, the probability
of the destruction of individuals with high fitness will also
increase. If Pc is small, the search speed will be slower (Wang
et al., 2022). For mutation operation, if Pm is large, the number of
random mutation individual raises, which is not conducive to
search. If Pm is small, it is possible that individuals do not mutate,
and the search capability of the algorithm is reduced. Therefore,
the values of Pc and Pm are changed adaptively in this article:

Pc(i) � cos(π
2
×

i

Mg + i
) (19)

Pm(i) �
⎧⎪⎪⎨⎪⎪⎩ cos(π

2
×
Mg − i

Mg + i
), Pm(i)<Pm max

Pm max, else

(20)

FIGURE 8 | Comparison diagram of four kinds of algorithm motion trajectory in a simple grid.
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where i is the current number of iterations, Mg is the maximum
number of iterations, and Pm_max is the maximum value of the
mutation factor. With the increase of the number of iterations, Pc
decreases from large and Pm increases from small, but the
mutation probability should not be too large. Therefore, set
the maximum upper limit for it. The adaptive adjustment of
Pc and Pm can well solve the questions that the single genetic
algorithm is easy to get stuck in local optimum solutions and
premature.

4.4.3 Hybrid of Algorithm
1) Adding a deletion operator

Before the deletion operator is added, the situation on the left
of Figure 6may occur, so more iterations are needed to make the
path close to smoothing. Therefore, this article adds a deletion
operator. If there is a situation on the left of Figure 6 in a path,
after deleting pi, the previous path point pi-1 of pi is connected
with the next path point pi+1, which is a feasible path segment,
then delete pi and connect pi-1 and pi+1 to generate a new path, as
shown on the right of Figure 7, which speeds up the convergence

FIGURE 9 | Comparison diagram of path length-iteration times of three algorithms in a simple grid.

FIGURE 10 | Comparison diagram of the path lengths of three
algorithms for trial-and-error optimization techniques.
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speed of the algorithm and reduces the running time of the
algorithm (Yun et al., 2022b).

2) Algorithm hybrid

Although the improved ant colony optimization algorithm has
good global optimization ability, with the raise of the number of
iterations, the adaptive evaporation factor gradually decreases,
and the pheromone gradually accumulates on some relatively
short paths, resulting in subsequent ants no longer trying to find
other possible better paths, and finally can only find the
suboptimal solution (Zhao et al., 2022).

In the process of traditional hybrid algorithm, the genetic
algorithm is prone to the problem of a sharp reduction of
population diversity and difficult to produce more viable new
individuals in the execution stage. It affects the hybrid algorithm
to gain the global optimum solutions (Tan et al., 2020).

Therefore, this article considers adding the suboptimal
solution generated by the improved ant colony optimization
algorithm to the optimized and screened initial population in
the single genetic algorithm to form a new population. This article
adds deletion operator to optimize the initial path. The screening
of the initial population adopts the “elite retention strategy,”
which retains the top 50% of the individuals with a large fitness
value. So, the individuals in the new population are the better
solutions at the beginning; therefore, it can speed up the
convergence speed of the algorithm. Then, this article
continues adaptive crossover, retains elite individuals, and
finally adaptive mutation until the end. By this process, we get
the improved genetic and ant colony hybrid algorithm.

The flow chart of the improved genetic and ant colony hybrid
algorithm is shown in Figure 7. The specific steps are as follows:

Step 1: the ant starts to find the path randomly and ameliorates
the heuristic function.

FIGURE 11 | Comparison diagram of four kinds of algorithm motion trajectory in a complex grid.
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Step 2: the ant moves to the next node according to probability
until the target point and calculates the path length and updates
the pheromone.

Step 3: we adaptively adjust the evaporation factor, update the
global optimum, find multiple paths, and see whether the stop
conditions are met. If so, several suboptimal solution paths are
obtained. If not, we return to step 2.

Step 4: we initialize the population, add the deletion operator
to optimize the initial path, calculate the population fitness
function, and add smoothing factor and safety factor.

Step 5: we add several suboptimal solutions obtained by the
improved ant colony algorithm, form a new species group
together with the screened initial population, selection adopt
the “elite retention strategy”, and select the top 50% individuals
with a large fitness value.

Step 6: adaptive crossover the new species.
Step 7: elite retention strategy.
Step 8: adaptive mutation.
Step 9: we compare the path length of the optimal solution and

judge whether the algorithm meets the stop condition. If so, output
the obtained optimum solutions. If not, we return to step 5.

5 EXPERIMENT PART

5.1 Simulation Comparative Experiment in a
Simple Environment
The improved genetic and ant colony hybrid algorithm proposed
in this article is simulated and contrasted with the single genetic

FIGURE 12 | Comparison diagram of the number of iteration-path length of three algorithms in a complex grid.

FIGURE 13 | 3D model and physical structure of the intelligent vehicle.
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algorithm and the traditional genetic and ant colony hybrid
algorithm proposed in this article of Bao et al. (2021), and the
experiments are carried out in a 20 × 20 simple grid map and
complex grid map using MATLAB software.

The simulation environment is as follows: the computer
system environment is windows10, the processor is Intel Core

i5-5257U, the running memory is 4GB, and the compilation
environment is MATLAB2018b. The ant colony algorithm and
genetic algorithm parameters are in Table 1.

In the simple grid map of 20 × 20, the parameters of the four
algorithms are the same, and 50 simulation experiments have
been carried out. Now, select one group of results for
comparison.

As can be seen from Figure 8, the four algorithms can all
find the path from the starting point to the ending point in the
simple grid map. In the single genetic algorithm and the A*
algorithm, the intelligent vehicle has made 17 and 11 turns,
respectively. The traditional genetic and ant colony hybrid
algorithm has made eight turns, and the turning angles are
relatively large. The energy consumption and time
consumption are large. The improved genetic and ant
colony hybrid algorithm proposed in this article only makes
two turns and finds the global optimal path. The turning angles
are relatively small, which has low energy consumption and
saves time. But because of a few obstacles, the improved hybrid
algorithm actually avoids the location of most obstacles, so it
has a certain chance.

From Figure 9, it can be seen that the single genetic algorithm,
traditional hybrid algorithm, and improved algorithm converge
to the shortest path after 26, 24, and 13 iterations, respectively.
The average path length of the three algorithms are 32.38, 31.8,
and 30.97, respectively. Due to the limitation of the algorithm
itself, it is not possible to give a graph of the number of iterations
and path length of the A* algorithm. The improved genetic and
ant colony hybrid algorithm proposed in this article has fewer
iterations, faster convergence speed, and shorter average path
length.

Trial-and-Error Experiments
In optimizing the ACO algorithm, if the evaporation factor is not
set as a lower limit, the improved ant colony algorithm* (IACO*)
is obtained. In optimizing the GA, if the mutation factor is not set
as an upper limit, the improved genetic algorithm* (IGA*) is

FIGURE 14 | Physical experiment process.

TABLE 2 | Relevant parameters of intelligent vehicle.

Parameter Data

Drive RoboMaster M2006 DC brushless motor
Weight 10 kg
Maximum speed 500 rpm
Maximum continuous torque 10 Nm
Maximum continuous output power 44 W

TABLE 1 | Simulation experiment initial parameter table.

Parameters Initial quantity Maximum
number of iterations

Other parameters

Ant colony algorithm part 50 100 α = 1,β = 7,Q = 1 ρ initial = 0.9, ρ min = 0.1
Genetic algorithm part 200 50 a = 5, b = 4, c = 1 Pc = 0.8,Pm = 0.1,Pm_max = 0.3
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obtained and compared with the improved hybrid algorithm
(IHA) proposed in this article for simulation experiments. The
simulation experimental conditions and algorithm parameters
are kept constant, and the experimental map is a simple map.

From Figure 10, it can be seen that if the evaporation factor is
not set as a lower limit, when the improved ant colony algorithm
finds the good path, it stops looking for a better path. If the
variation factor is not set as an upper limit, with the increasing
number of iterations, the improved genetic algorithm will deviate
from the better path because the variation probability is too large
later, resulting in the path found by the algorithm later not having
stability.

5.2 Simulation Comparative Experiment in a
Complex Environment
In order to further prove the ability of the improved genetic and
ant colony hybrid algorithm proposed in this article to find the
global optimal path, other conditions remain unchanged; in the
complex grid map of 20 × 20, the parameters of the four
algorithms are the same, and 50 simulation experiments have
been carried out. Now, select one group of results for comparison.

It can be seen from Figure 11 that when the grid map becomes
more complex and there are more obstacles, the single genetic
algorithm is easy to get caught in local optimization and the
planned path is messy. The A* algorithm tends to fall into dead
solutions. The traditional genetic and ant colony hybrid
algorithm can find the shorter path, but there are many turns
about 14 times. The improved genetic and ant colony hybrid
algorithm can find the optimal path with relatively smooth and
lesser turns about 11 times. The improved hybrid algorithm can
reduce the number of turns in the complex environment, but it
does not have the same effect as in the simple map. The main
reason is that there are too many obstacles in the complex map,
resulting in fewer feasible paths, and the improved hybrid
algorithm cannot avoid most obstacles.

As can be seen from Figure 12, the average path length found
by the single genetic algorithm in the 25th iteration is 34.14. The
traditional genetic and ant colony hybrid algorithm can find the
shorter path length of 32.38 when iterating to 21st. The improved
genetic and ant colony hybrid algorithm can find the shortest
path length of 32.14 when iterating to the 11th. The number of
iterations is reduced, the convergence speed is quicker, and the
optimal path length is shorter.

5.3 Physical Experiment Process
5.3.1 Physical Composition
The intelligent vehicle entity is formed by control subsystem,
power subsystem, and drive subsystem and completes specific
tasks through the cooperation between subsystems. Its
environmental information and operating status are obtained
by multiple sensors (Weng et al., 2021). The bottom plate of the
vehicle is made of a carbon plate, which is lighter and stronger.
Other parts are made of aluminum, which are connected and
fixed with screws and corner codes. The wheel is made of
Mecanum wheel, which can realize an omni-directional
movement such as front and rear, left and right, and turning.

Each motor is controlled by a 32-bit microprocessor STM32
board. The STM32 board controls the M2006 motor, drives the
vehicle to move through the C610 electronic speed controller, and
uses the gyroscope to give the position coordinates of the vehicle.
Given the coordinates, the fixed-point motion of the vehicle can
be realized. Combined with the gyroscope, the running track can
be corrected by controlling the number of revolutions of the
motor. The relevant parameters of intelligent vehicle are in
Table 2.

The three-dimensional model and physical structure of the
vehicle are shown in Figure 13.

5.3.2 Physical Experiment
Due to the limitation of terrain, a 6 × 6 physical experiment
platform is built. Obstacles are placed at four positions, occupying
five grids in total. The obstacles are replaced by cartons and
placed in the center of the square grid. The black line is the
boundary of the obstacles, as shown in Figure 14A. The starting
point is in the lower-left corner, and the ending point is in the
upper-right corner. From left to right and from bottom to top, the
grid serial numbers are S, 1, 2,..., 34, T. The single genetic
algorithm, the traditional genetic and ant colony hybrid
algorithm, and the improved genetic and ant colony hybrid
algorithm are input into the control board. Ten physical
experiments are carried out for each algorithm. The motion
trajectories of the three algorithms are shown in Figure 14B,
in which the route planned by the single genetic algorithm is
represented by a white line and the path planned by the
traditional genetic and ant colony hybrid algorithm is
represented by a green line; the path of the improved genetic
and ant colony hybrid algorithm planning is represented by a
yellow line. Figure 14C shows the experiment of a mobile robot.

6 RESULT ANALYSIS

In this article, the algorithm experimental results are compared
and analyzed by several experiments, and the experimental data
are recorded in the below Table 3, 4 and 5.

Conclusion: from the simulation results in the simple grid
map, it can be seen that the algorithms can all realize path
planning, but the average path length found by the improved
genetic and ant colony hybrid algorithm is shorter, the path is
smoother. Compared with the single genetic algorithm and
traditional genetic ant colony hybrid algorithm, the average
number of iterations of the improved genetic ant colony
hybrid algorithm is reduced by about 50% and 46%,
respectively. The average number of turns decreased by about
88% and 75%, respectively. However, whether the improved
hybrid algorithm is suitable for more complex environments
needs further verification.

Conclusion: from the simulation experiment results in the
complex environment, it can be seen that the single genetic
algorithm is easy to get stuck in the local optimum solutions
because of the defects of the algorithm itself in the face of complex
environment. Compared with the single genetic algorithm, the
traditional genetic and ant colony hybrid algorithm has some
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improvements. The path length is shorter, but the path is still not
smooth enough. The improved genetic and ant colony hybrid
algorithm proposed in this article not only finds the optimal path
with shortest length but also has a smoother path. The vehicle
consumes less energy and is safer in the process of moving. The
average number of iterations for the improved genetic and ant
colony hybrid algorithm reduce by about 56% and 47%,
respectively, compared with those for the single genetic
algorithm and traditional genetic ant colony hybrid algorithm.
The average number of turns decreased by about 39% and 21%,
respectively. In terms of reducing the number of turns, the effect
of the improved hybrid algorithm in complex maps is not
particularly ideal. Because in complex maps, the improved
hybrid algorithm cannot avoid most obstacles, so it can only
choose to intersperse through the gap of obstacles.

Conclusion: it can be seen from the results of the physical
experiments that in the simple physical experiment platform
built, the three algorithms can all find the path from the
starting point to the ending point. The traditional genetic and
ant colony hybrid algorithm can find the path faster than the
single genetic algorithm and has less average turns. The improved
genetic and ant colony hybrid algorithm can find the optimal path
with the shortest path length. The time and the number of turns
have a certain reduction, so it can be concluded that the improved
genetic and ant colony hybrid algorithm still has certain

advantages when applied to the physical experimental
platform in a simple environment. The improved hybrid
algorithm can work better in the simple physical environment.

7 CONCLUSION

This article researched the global path planning algorithm of
intelligent vehicle, proposed an improved genetic and ant colony
hybrid algorithm, and carried out simulation and physical
experiments. The traditional hybrid algorithm was prone to a
sharp reduction in population diversity and was difficult to
produce more viable new individuals in the execution stage of
genetic algorithm. This article added the suboptimal solution
obtained by the improved ant colony optimization algorithm to
the initial population. The initial population was optimized and
screened by the improved genetic algorithm. The improved
hybrid algorithm solved the problem that the path planned by
the traditional hybrid algorithm was not smooth enough and
there were many turns. From the results of simulation
comparison experiment and physical experiment, it could be
concluded that the improved hybrid algorithm had a shorter and
smoother path. Compared with the traditional hybrid algorithm,
the average number of iterations reduced by about 46% and the
average number of turns decreased more in simple grid. The

TABLE 3 | Comparison of simulation results of the three algorithms in a simple grid map.

Various parameters Genetic algorithm Traditional genetic and
ant colony hybrid

algorithm

Improved genetic and
ant colony hybrid

algorithm

Optimal path length 30.38 29.8 29.8
Average path length 32.38 31.8 30.97
Average number of iterations 26 24 13
Average number of turns 17 8 2

TABLE 4 | Comparison of simulation results of the three algorithms in a complex grid map.

Various parameters Genetic algorithm Traditional genetic and
ant colony hybrid

algorithm

Improved genetic and
ant colony hybrid

algorithm

Optimal path length 33.03 31.56 31.56
Average path length 34.14 32.38 32.14
Average number of iterations 25 21 11
Average number of turns 18 14 11

TABLE 5 | Comparison of results of the three algorithms in the physical experiment.

Various parameters Genetic algorithm Traditional genetic and
ant colony hybrid

algorithm

Improved genetic and
ant colony hybrid

algorithm

Average path length (m) 8.24 8.24 7.66
Average plan time (s) 24 20 14
Average number of turns 6 5 2
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capability of improved hybrid algorithms to cope with complex
environments needs further improvement.

This article is about global path planning with a known
map and obstacles at rest (Hao et al., 2021a) and does not
involve local path planning (Hao et al., 2021b) and dynamic
obstacle path planning (Sun et al., 2021). In the later stage,
the introduction of dynamic obstacles will be considered,
and the relevant algorithms of local path planning will be
used for research. It is still worth exploring other
improvement methods (Luo et al., 2020) and other
hybrid methods (Yu et al., 2020) for the algorithms in the
future.
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