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Abstract: The objective of this study is to evaluate, in vitro, the microleakage of bacteria of 3 different
implant connections for a period of 14 days. 60 dental implants (AoN) (n = 20) were distinguished
into three groups, accordingly to the type of connection: External Hexagon (EH), Internal Hexagon
(IH), and Cone Morse (CM) connection. All implants were inserted and fixed on sterile special
vinyl support. Ten fixtures for each group were inoculated in the internal platform with 1.0 µL of
Streptococcus oralis (SO) and the other ten with the same amount of Pseudomonas aeruginosa (PA). The
penetration of bacterial suspension into the surrounding solution was determined by the observation
of the turbidity of the broth. Five implants for each sub-group were randomly observed at SEM, to
verify the correct fitting of the abutments. Considering the total of the samples analyzed, CM showed
significantly lower bacterial contamination, with respect to IH. In particular, bacterial contamination
was found in 45%, 55%, and 20% of EH, IH, and CM, respectively. Analyzing results for the type of
inoculated bacteria, P. aeruginosa showed a higher ability to contaminate all the connections, with
respect to S. oralis.

Keywords: implant-abutment connections; bacterial contamination; bacterial microleakage

1. Introduction

Failure in implant dentistry can be caused by several factors, such as surgical trauma,
structural design, overload, peri-implantitis, periosteal reflection, the autoimmune response
of the host, type of tightening (torque or pre-torque), presence of a microgap between
implant and abutment and consequent bacterial microleakage [1–3].

Several studies have reported the penetration of bacteria into the cavities and gaps gen-
erated by the presence of microgap at the implant-abutment interface, causing a bacterial
reservoir that can interfere with the health of the peri-implant tissue, causing inflammation
and bone loss [3–7]. The size and shape of bacteria can be very variable: Cocci are spherical
with a diameter of 1–3 µm; rods, comprehend very small bacteria like Pelagibacter ubique
(diameter 0.2 µm; length 0.5 µm), Escherichia coli (diameter 1–2 µm; length 1–8 µm), and rel-
atively big ones, like Epulopiscium fishelsoni (diameter 40–80 µm; length 250–600 µm) [8].
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Some bacterial species are considered great colonizers of the implant surface and
have been found in periimplantitis lesions. Streptococcus oralis (S. oralis) is an oral com-
mensal organism, a member of the mitis group of viridans streptococci, a Gram-positive
bacterium, and facultative aerobic. It is considered an opportunistic human pathogen,
whose size ranges from 1 to 2 µm. Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative
bacterium, aerobic/facultative anaerobe, a rod-shaped bacterium with unipolar motility. It
is considered an opportunistic human pathogen, whose size ranges from 0.5 to 1 µm [9,10].

Under load conditions, the implant abutment junction can increase, and can lead
to rotation and micro-movement of the abutment and lead to reduced screw preload,
loosening, bending, and fracture [11–13].

In an attempt to limit the microgap and increase the stability of the abutment, a
variety of implant-abutment connection designs have been developed, which are basically
classified into internal and external connections [11]. The external connection usually has
an external hexagon above the implant platform. And the internal connection can be further
divided into passive joint or flat-to-flat systems (such as triangles, hexagons, and octagons)
and conical interfaces or Cone Morse [14,15]. Combined implant-abutment connections
are characterized by the combination of geometric features that provide antirotational
and prosthetic positioning properties [15]. Even when the implant and the abutment are
correctly connected, microleakage produced by a microcap can be generated, allowing the
passage of acids, enzymes, bacteria, and/or their metabolic products [3,16,17].

The external connection is the one with the highest chance of bacterial microleakage,
according to studies [18–20]. Others found no statistical differences in bacterial penetration
into the implant/abutment complex between internal connections such as hexagons and
Cone Morse [21–23]. On the other hand, other researchers have shown that bacterial species
from human saliva penetrated internal hexagonal connection implants significantly more
than the Cone Morse connection [20,24,25].

According to Baggi et al. [26], although the abutments were connected to the implants
with the recommended torque, the geometry of some systems still permitted the passage of
microorganisms. This is probably due to the different degrees of tolerance and different
interface geometries that different implant systems and brands allow.

Indeed, the literature is still uncertain about such findings. Thus, the purpose of this
in vitro study was to evaluate the microleakage of two bacterial species with different
diameters at implant-abutment (I-A) interfaces of 3 different implant connections, for a
period of 14 days. Applying a classical methodology in the measurement of bacterial
infiltration, as well as comparing a bacterial species already studied, in vitro, in previous
experiments, (P. aeruginosa), with one not yet analyzed (S. oralis).

2. Materials and Methods

A total of 60 dental implants AON (Grisignano di Zocco, Italy), 3.30 mm (diameter) × 11.5 mm
(length) implants were used in this in vitro study:

• 20 with a screw-retained External Hexagon connection (EH)
• 20 with a screw-retained Internal Hexagon connection (IH)
• 20 with a Cone Morse taper internal connection with a screw-retained (CM).

All implants and prosthetic components were standard manufactured sterile samples.
All other materials utilized in the experiment were sterilized inside surgical bags with the
use of an autoclave.

All procedures were performed under laminar flow in absolute sterility, by using
components that were previously sterilized by the Manufacturer.

To improve the explanation of the study and facilitate the reader’s understanding,
below is a diagram with the stages of the experiment (Figure 1), and a schematic of the
three different implant connections (Figure 2).
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Figure 2. 3D rendering of the three implant platforms compared in this study ((A) = External
Hexagone, (B) = Internal Hexagone, (C) = Cone Morse), with the relative longitudinal section of
the implant/abutment connection ((D) = EH, (E) = IH, (F) = CM). Courtesy of AON (Grisignano di
Zocco, Italy).

In brief, each implant was inserted and fixed on a sterile special vinyl support apposite
produced for this in vitro study. The body of the fixtures was submersed in the base by
living the more occlusal threads free. In order, to avoid any movement of the base during
the screwing of the abutment, each base was fixed in a morse, as shown in Figure 3.

2.1. Bacterial Inoculation

Pure cultures of Streptococcus oralis CH 05 and Pseudomonas aeruginosa ATCC 15,442 were
used for implant inoculation. For the preparation of the bacterial suspension, the tested
microorganisms S. oralis and P. aeruginosa were first plated onto fresh trypticase soya and
cetrimide agar, respectively, incubated for 24 h at 37 ◦C and standardized at optical density
OD600 0.125 [7,27–29]. 20 specimens of each group were tested in the microbiological experiment.

Each group was divided into two sub-group, and each fixture was inoculated with
1.0 µL of different standardized broth cultures (Figure 4A):

• Subgroup SO (10 fixtures for each group): inoculated with S. oralis CH 05
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• Subgroup PA (10 fixtures for each group): inoculated with P. aeruginosa ATCC 15442
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2.2. Abutment Connection

In all cases, after the implant inoculation, the abutment was carefully connected to the
implant, according to the manufacturer’s protocol, without touching the outer surface of
the implant and while using sterile gloves.

A specific dynamometric manual ratchet was used to screw the abutments with the
optical torque, as suggested by the Manufacture (Figure 5B,C).
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In particular, the following torques were used:

• External Hexagon: insert the passing screw, and tighten it to 30 Ncm
• Internal Hexagon: insert the passing screw, and tighten it to 30 Ncm
• Cone Morse: Insert the conometric activation key (AoN), tighten up to 35 Ncm, remove

the key with a reverse torque, insert the passing screw, and tighten it to 25 Ncm.

During the screwing, the abutments were managed only by touching with steril-
ized pliers.

After the abutment connection, a 3D-printed peek cap was inserted in the upper hole
of each abutment, to prevent the passage of bacteria, from this upper interface (Figure 5A).

As a positive control, 2 identified test tubes were used with only nutrient solution and
inoculated with 1.0 µL of S. oralis and P. aeruginosa, respectively. They showed bacterial
growth with solution cloudiness, and this confirmed the viability of the microorganisms
throughout the experiment. As a negative control, 2 identified test tubes were used with
only sterile nutrient solution. This was confirmed by the transparency of the solution and
conventional microbial culturing techniques.

Subsequent to inoculation and abutment connection, the assembled components were
totally immersed for 1 min inside the nutrient solution in a rolling motion for evaluation of
inadvertent contamination of the external surface. Tubes with a cloudy broth (indicative
of colonization/contamination of the outer parts of the implant) were excluded from
further observation after evaluation of bacterial growth in plates. Then, the specimens
were placed into sterile tubes and the volume of nutrient solution required in the test
vials was determined exactly for each implant system, so that the fluid level remained just
above the I-A interfaces (Figure 5B). Then all tubes were closed with a cap and then left for
observation (Figure 5C).

All the vials containing the assemblies, the test tubes used as external contamination
control, the test tubes used as a positive control, and the test tubes used as negative control
were incubated at 37 ◦C under aerobic conditions. They were maintained for 14 days, and
the culture broth in the vials containing the assemblies was replaced every 4 days. The
possible penetration of bacterial suspension into the surrounding solution was determined
by the visual observation of the turbidity of the broth (Figure 6). The samples were
checked daily, and any presence or absence of turbidity was recorded. Such leakage caused
bacterial colonization and resulted in a cloudy solution, 1 µL of the solution was analyzed
with a gram stain and by colony morphology in trypticase agar plates (for S. oralis) and
cetrimide agar (for P. aeruginosa), incubated at 37 ◦C for 24 h to confirm the purity of the
microorganism which had been inoculated in the inner part of the implant and determining
the presence of S. oralis and P. aeruginosa, respectively.
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2.3. SEM Analysis

A Phenom ProX scanning electron microscope (Phenom-World BV, Eindhoven,
The Netherlands) was utilized with the Element Identification (EID) package (Phenom
ProSuite Software, Phenom-World B.V., Eindhoven, The Netherlands). 5 implants for each
sub-group were observed at SEM at 240× of magnification at 15 Kv, to verify the correct
fitting of the abutments [30]. The purpose of these images was to verify qualitatively the
complete fitting between the prefabricated components.

So, before SEM observation, the samples were decontaminated, disinfected, and
sterilized, to avoid the risk of microbial contamination during the SEM observation.

2.4. Statistical Analysis

The total number of implants per group exhibiting bacterial colonization of the micro-
gap was reported.

The evaluation of homogeneity of the groups was analyzed using the Levene test. The
differences between the groups were statistically analyzed using the analysis of variance
(ANOVA) and the Fisher’s Least Significant Difference (LSD). Statistically significant differ-
ences were considered to be a p-value < 0.05. The statistical software used to run these tests
was SPSS Statistics for Windows, version 21 (IBM SPSS Inc., Chicado, IL, USA).

3. Results

All SEM observations confirmed the correct fitting of the abutments in the implant
connections (Figure 7).

Table 1 shows the percentage of connections showing bacterial contamination in the
nutrient solution over the 14-day observation period. At the beginning of the study, both
groups of implants and abutments analyzed were equally sterile, and therefore comparable
from a statistical point of view. In total, CM showed a significant lower contamination,
respect IH (p = 0.025).

Pseudomonas aeruginosa showed a higher ability to contaminate all implant connections,
respect Streptococcus oralis.

In particular, in the EH, 30% bacterial contamination was found in I-A assemblies
seeded with S. oralis and 60% seeded with P. aeruginosa.

And in the Internal Hexagon implants (IH), 40% bacterial contamination was found in
I-A assemblies seeded with S. oralis and 70% seeded with P. aeruginosa. And in the Cone
Morse implants (CM), 40% bacterial contamination was found in I-A assemblies seeded
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with P. aeruginosa while none for S. oralis. Although a lower contamination percentage was
found on CM, with respect to other groups, no statistically significant differences were
recorded for P. aeruginosa and S. oralis contamination, in the sub-group analysis.
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Table 1. Bacterial leakage in implants with different implant-abutment connections inoculated with
Streptococcus oralis and Pseudomonas aeruginosa over a 14-day observation period.

Implants Bacterial Species Contamination with
Different Species %

Total
Contaminations%

EH
S. oralis (SO) 30%

45%P. aeruginosa (PA) 60%

IH
S. oralis (SO) 40%

55%P. aeruginosa (PA) 70%

CM
S. oralis (SO) —

20%P. aeruginosa (PA) 40%

4. Discussion

The use of implants in oral rehabilitation has become a great option for the treatment of
partially or totally edentulous patients. However, microgap formation at implant-abutment
interfaces can act as a bacterial reservoir, and tissue inflammation and bone loss may occur,
leading to injury or failure of the implants, and impacting the biological success of implant
treatment [2,4,31].

The potential colonization of the microgap is probably related to multifactorial condi-
tions, i.e., the imprecise fit between the implant components and improper male-female
adaptation, imprecise machining of implant parts, the torque forces used to connect the
components leading to part distortion, and the loading forces when the implants are in
function [1,28]. Analyzing qualitative SEM images at 240x magnification, we can verify the
correct fitting of the abutments in the implant connections.

Several studies defend the possibility of a lower bacterial infiltration in Morse Cone
connections compared to external and internal hexagon connections. Verdugo et al. [18],
determined that Morse taper connection implants showed lower levels of microleakage
than external connection implants. In the narrative review of Lauritano et al. [19], after
evaluating 55 articles, they found that conical connections were better in relation to bacterial
sealing. D’Ercole et al. [28], reported high permeability to bacterial leakage of screw-
retained abutment connections, and the lower infiltration rates, although not significantly,
of Cone Morse taper internal connections.
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This, in fact, is also shown in our study, since Morse Cone connections proved to be
more effective in bacterial sealing, presenting only a 20% of contamination, compared to
the EH 45%, and IH 55%.

Due to its self-locking characteristics and high stability with the absence of micromove-
ments between the parts during function, the Morse Cone taper internal connection seems
to be able to resist the penetration of bacteria more [32]. According to Teixeira et al. [23], the
lateral loads are resisted mainly by the tapered interface, which prevents the abutment from
tilting off. This mechanism, referred to as positive or geometric locking, is responsible for
protecting the abutment threads from excessive functional loading. There is no possibility
of tilting about a single point or small area. Despite these findings, studies like that of
Teixeira et al. [23], observed the bacterial leakage through the implant/abutment interface
in Morse taper and internal-hexagon implants.

In the present study, although the implant/abutment assemblies were assembled
according to the manufacturer’s recommendations, microleakage of the selected microor-
ganisms (S. oralis and P. aeruginosa) nevertheless occurred. Streptococcus oralis is highly
abundant at implant sites and human gingival fibroblasts and human gingival epithelial
cells, are the main cell types in peri-implant tissue. Pseudomonas aeruginosa has the ability
to form biofilms and can be present in the bloodstream and periodontal infections. The
use of those bacteria seems relevant for in vitro studies because these microorganisms
have been found in periimplantitis lesions [17,27,28,32,33]. These bacteria were chosen
over other known periodontal pathogens because they are easy to culture and because of
their reduced size, their permeability through the microgap of the I-A interface, and their
common residence in the peri-implant area [34].

Since the size of the mean microgap from the abutment to the implant junction has
been reported to be 1 to 49 µm [8], in fact, bacterial infiltration could occur, mainly in
groups conditioned to P. aeruginosa, due to their smaller size.

Despite the type of connection and even when the implant and the abutment are
correctly connected, microleakage produced by a microcap can be generated, allowing
the passage of bacteria and metabolic products, and may result in soft tissue inflamma-
tion, constituting a risk to the stability and clinical success of the implants. Thus, the
improvement of implant dentistry materials is expected, so that the annihilation of the
microbial passage in implant-abutment connections occurs. And still, new studies should
be developed to better study bacterial infiltration with such bacteria, as well as performing
new microbiological analyzes and measuring the size of the microgap.

5. Conclusions

Within the limits of this study, the following conclusions were drawn:

1. The in vitro leakage of Pseudomonas aeruginosa through the abutment/implant inter-
face occurred at both types of interface connections tested-Cone Morse, external and
internal hexagon- and with more intensity than Streptococcus oralis.

2. Less bacterial leakage and a lower rate of infiltration in Cone Morse connections when
compared to Internal Hexagon connections.
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