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ABSTRACT

Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of
their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may
require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their
genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs
such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and
many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly
identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also
provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
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INTRODUCTION

With regularity we face previously unknown strains of vir-
ulent respiratory viruses that are life-threatening for large
numbers of people. Perhaps the most well known and recent
are the pandemics associated with influenza viruses and
coronaviruses that have been in contact with humans for
millennia.

It is generally thought that the first large outbreak of a res-
piratory infection with clinical symptoms similar to those of
influenza was described in detail by Hippocrates in the year
412 BC as contagious cough of Perinthus (Kuszewski and Bry-
dak 2000; Pappas, Kiriaze and Falagas 2008). Next, a detailed

written report of an epidemic respiratory disease similar to
influenza was noted in England and named peasant fever and
lasted from 1173 to 1174 (Potter 2001). The first pandemic
of influenza was clearly documented in 1580 (Potter 2001;
Daly, Gustafson and Kendall 2007). In the 16th century, this
infection was named influenza (from the Latin influentia, influ-
ence), as this disease was considered a bad influence from
the heavens (Broxmeyer 2006). Since that time, no less than
31 pandemics of influenza have been documented, including
3 in the 20th century and 1 in the 21st century (Kilbourne
2006; Daly, Gustafson and Kendall 2007; Al-Muharrmi 2010)
(Table 1).
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Table 1. Influenza pandemics in the last 100 years.

Name of the
pandemic Years Strain

Number of
deaths (millions)

Spanish flu 1918–1920 H1N1 40–50
Asian flu 1957–1958 H2N2 1–2
Hong Kong flu 1968–1970 H3N2 0.5–2
Swine flu 2009–2010 H1N1 0.5

Although a targeted search for pathogens able to pro-
duce an epidemic/pandemic of acute respiratory infections
started in the late 19th century (Pfeiffer 1893; Olitsky and
Gates 1921a,b), it was not until 1933 that the influenza A
virus was selected (myxovirus influenza) (Smith, Andrewes
and Laidlaw 1933). Influenza B and C viruses were identi-
fied in 1940 and 1947, respectively (Francis 1940; Taylor 1949),
and the influenza D virus was isolated and characterized
recently in 2011 (Hause et al. 2013; Ducatez, Pelletier and
Meyer 2015).

Coronaviruses are also very common (Suzuki et al. 2005;
Koetz et al. 2006; Sloots et al. 2006; Zhao et al. 2008) and seem
to have been in contact with humans from the earliest of times
(Wertheim et al. 2013). Until recently, it was thought that coro-
navirus infections with symptoms of the common cold cause
between 15% and 35% seasonal acute respiratory diseases. Chil-
dren become infected at a rate of five to seven times more often
than adults (McIntosh et al. 1970; Callow et al. 1990; Holmes
2001). In humans, respiratory infections can be caused by two
species of α-coronaviruses (229E and NL63) and two species of β-
coronaviruses (OC43 and HKU1) (Gaunt et al. 2010). In addition,
veterinary specialists have known for a long time that coron-
aviruses cause fatal respiratory and gastrointestinal infections
in animals (Pensaert 1999). Coronaviruses were only recently
acknowledged as a potential biological hazard as they are a chal-
lenge for medicine. In recent decades, new pandemic strains of
coronaviruses have often appeared, which are frequently fatal
for humans. These include severe acute respiratory syndrome-
related coronavirus (SARS-CoV, which occurred from 2002 to
2004), Middle East respiratory syndrome-related coronavirus
(MERS-CoV, which was identified in 2012) and most recently the
new pneumonia coronavirus (SARS-CoV-2, which is the ongoing
outbreak that was identified in 2019) (Table 2). In all cases, these
three viruses cause severe bronchiolitis and pneumonia, often
with fatal outcomes (Cherry 2004; Ramadan and Shaib 2019; Hui
et al. 2020).

Human coronaviruses were for the first time isolated from
a patient with acute respiratory diseases in 1965 (Hamre and
Procknow 1966; Tyrrell and Bynoe 1966). Their characteristic
corona seen under the electronic microscope was reflected
in the name coronaviruses (Tyrrell et al. 1975). During the
next three decades (until the pandemic strains appeared),
the coronaviruses were not of any special interest for most
scientists.

It is apparent that pandemic outbreaks of respiratory viral
infections represented a danger for humanity in the past, and
there are no reasons to believe that they would not repeat in
the future. It is as yet impossible to predict the time and place
of the start of a new pandemic as well as the virulence of
pandemic viral strains. However, there are certain factors that
increase the potential for these viruses to spill over from other
species (Bobrowski et al. 2020; Gomes and Ruiz 2020; Johnson
et al. 2020).

BIOLOGICAL PROPERTIES OF INFLUENZA
VIRUSES AND CORONAVIRUSES

Influenza viruses belong to the orthomyxoviruses family
(Orhtomyxoviridae, RNA viruses with segmented genome) and
are represented by four monotypic genera: influenza A viruses
(Alpha influenzavirus), influenza B viruses (Beta influenzavirus),
influenza C viruses (Gamma influenzavirus) and influenza D
viruses (Delta influenzavirus); each genus contains only one
type of eponymous virus. It is understood that only type A
viruses have pandemic potential (Bouvier and Palese 2008;
Spickler 2016; King et al. 2018). Influenza A viruses are further
classified into subtypes, depending on the antigenic properties
of hemagglutinin (HA; a glycoprotein of the viral envelope
that ensures the recognition of target cells and binding of
viral particles to the terminal residues of sialic acids of the
glycoproteins of plasma membranes of epithelial cells) and
neuraminidase (NA; exo-α-sialidase catalyzing the splitting
of glycoside bonds of the terminal residues of sialic acids of
oligosaccharides, glycoproteins and glycolipids, thus providing
release of newly formed influenza virions from the infected
cells).

There are 18 known types of hemagglutinin (H1–H18) and
11 identified serotypes of neuraminidase (N1–N11). Therefore,
in theory, 198 diverse combinations of these proteins (and thus
subtypes of the influenza A virus) are possible (Skehel 2009;
Tong et al. 2013; Quan et al. 2016; Kosik and Yewdell 2019; Zhao
et al. 2019); of them, >120 combinations have been identified in
nature (Tsai and Chen, 2011; Rejmanek et al. 2015).

There are eight negative polar segments of RNA genome
of the influenza virus that code at least 10 structural and 9
regulatory proteins (Varga et al. 2011; Muramoto et al. 2013;
Hutchinson et al. 2014; Vasin et al. 2014). Some uncertainty
regarding the proteome of the influenza A viruses is related to
the fact that, unlike most RNA viruses, the transcription and
translation of the genome of these viruses take place in the
nucleus and not in the cytoplasm of infected cells. This per-
mits influenza A viruses (Fig. 1A) to use the cellular splicing
machinery to form splice variants of viral mRNA(messenger
RiboNucleuc Acid). In addition, to widen their proteome, the
influenza A viruses are probably using alternative open reading
frames.

Most viral proteins are located inside the lipid envelope,
while only HA, NA (in the molar relation about 10:1; Mitnaul et al.
2000) and M2 proteins, which are built into the virion envelope
and present antigenic determinants, are available for immune
antibodies (Kosik and Yewdell 2019). HA and NA molecules are
highly glycosylated proteins, which give them functional activ-
ity and provide for immune evasion by shielding antigenic deter-
minants (Kim et al. 2018; York, Stevens and Alymova 2019).

Unlike influenza viruses, coronaviruses are enveloped RNA
viruses (with non-segmented positive polar RNA) of the Nidovi-
rales order, Coronaviridae family and Orthocoronavirinae sub-
family (Fehr and Perlman 2015). Coronaviral virions have a
spherical shape with the typical bulbous projections (Neuman
et al. 2006; Bárcena et al. 2009). The viral envelope is made of
a bilipid layer where S, M and E proteins are fixed (Lai and
Cavanagh 1997; de Haan and Rottier 2005) (Fig. 1B).

The S protein functions in the form of highly glycosylated
3D complexes (Zheng et al. 2018; Parsons et al. 2019) provide the
interaction of the virion with the receptors of epithelial cells fol-
lowed by the internalization of the viral genome (Li 2016). The S
protein also is known as the spike protein of SARS-CoV-2 which
crystal structure described (Wang et al. 2020b).
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Table 2. Coronavirus epidemics and pandemics in recent years.

Name of the epidemic/pandemic Years Strain Number of deaths (hundreds)

2002–2004 SARS outbreak 2002–2004 SARS-CoV-1 774
2012 Middle East respiratory syndrome
coronavirus outbreak

2012–present MERS-CoV 862

(as of 13 January 2020, WHO)
COVID-19 pandemic 2019–present SARS-CoV-2 280 431

(as of 9 May 2020, WHO)

Figure 1. (A) Structural elements of the influenza A virus. (B) Structural elements

of the coronavirus (based on betacoronavirus subgroup A).

The M protein functions in the form of a dimer with a gly-
colyzed N-terminal ectodomain (Nal et al. 2005) and can be
present in two different conformations. The conformers of this
glycoprotein ensure the correct assembly and formation of a
viral particle (Neuman et al. 2011).

The E protein is a transmembrane protein that is present
in low quantities and has several functions, namely, in virion
assembly, envelope forming and release of a viral particle from
the cell. There is indirect evidence that it has the structure of a
glycoprotein (Schoeman and Fielding 2019).

The N protein is the only protein present inside the virion; it
is responsible for the viral genome packaging (McBride, van Zyl
and Fielding 2014).

The fact that deserves particular attention is that the pro-
teins of the envelopes of both influenza A viruses and coron-
aviruses are made up of glycoproteins.

An influenza virus enters a cell during a process that involves
several steps. A critically important moment in the lifecycle
of an influenza virus is the recognition of the specific cellular
receptors that are glycoproteins or glycolipids containing a ter-
minal α2,6- or α2,3-sialic acid in the glycan (Leung et al. 2012;
Byrd-Leotis, Cummings and Steinhauer 2017). When viral HA
binds sialic glycoproteins or glycolipids on the plasma mem-

brane of an epithelial cell, this results in the initiation of several
mechanisms of endocytosis that quickly lead to the formation of
endosomes, each of which contains a viral particle (Chardonnet
and Dales 1970; Matlin et al. 1981; Kartenbeck, Stukenbrok and
Helenius 1989; Rojek, Perez and Kunz 2008; Nanbo et al. 2010;
Watanabe, Watanabe and Kawaoka 2010; Boulant, Stanifer and
Lozach 2015).

The next step of the internalization is the release of the
viral genome (RNA segments) into the cellular cytoplasm; this
phase depends on the activity of Na+/K+-ATPase located in
the endosomal membrane, which functions as a proton pump.
Na+/K+-ATPase is responsible for the acidification of the inter-
nal environment of endosomes/lysosomes (to pH 5.0) (Cain,
Sipe and Murphy 1989). The acidification of the internal endo-
somal medium, i.e. the accumulation of protons (Н+) inside
the endosomes, helps the tetramers of the M2 protein of the
viral envelop to realize its potential as a protonophore (Sug-
rue and Hay 1991; Pinto, Holsinger and Lamb 1992; Manzoor,
Igarashi and Takada 2017). When hydrogen ions enter a viral
particle, it mediates conformational changes and decomposi-
tion of the structural components of the viral envelope, which
finally leads to an increase in the lability of its genome (Shibata
et al. 1983; Yoshimura and Ohnishi 1984). However, the fusion
of the viral envelope membrane and the endosomal membrane,
which releases the RNA genome of the virus into the cellular
cytoplasm, is possible only with the participation of the viral HA
after the previous proteolytic processing with serine (secretory
trypsin-like) proteases (Klink et al. 1975; Lazarowitz and Choppin
1975; Tashiro et al. 1987; Steinhauer 1999; Kido et al. 2008).

The translocation of RNA segments of the influenza viral
genome from the cytoplasm to the nucleus is necessary for their
replication, during which viral mRNA exits the nucleus to syn-
thetize viral proteins in the cytoplasm. The viral self-assembly
takes place at the apical surface of the plasma membrane of
epithelial cells, where HA and NA molecules are concentrated
(Samji 2009; Dou et al. 2018).

The process of internalization of coronaviruses is deter-
mined by the functional activity of the S protein (widely known
as the spike protein) of the viral envelope. The S protein of a
coronavirus is a highly glycosylated supramolecular structure
that enables the fixation of viral particles on the plasma mem-
brane of epithelial cells, followed by the release of their RNA into
the cellular cytoplasm (Li 2016; Watanabe et al. 2020). Each S pro-
tein has two receptor-binding domains located on its S1-subunit;
these domains interact with either specific proteins or sialogly-
cans of the epithelial cells (Li 2012; Shahwan et al. 2013; Hulswit
et al. 2019). For example, MERS-CoV preferentially binds the α2,3-
bonded sialic acid (and to a lesser degree the α2,6-bonded sialic
acid) (Li et al. 2017). It seems that SARS-CoV-2 has the same affin-
ity for the α2,3-sialic acid conjugates (Ou et al. 2020).

After that, the internalization of the viral genome may
proceed by endocytosis of the virion (which is in many respects
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a similar process to the internalization of the influenza viruses)
or by the fusion of the membrane of a coronaviral envelope with
the plasma membrane of an epithelial cell, without the forma-
tion of endosomes (directly on the plasma membrane). In any
case, the release of the viral RNA into the cellular cytoplasm is
preceded by the proteolytic (provided by serine proteases) cleav-
age of S1-subunit and modulation of the S2-subunit of the S pro-
tein (Bosch et al. 2003; Belouzard, Chu and Whittaker 2009; Sim-
mons et al. 2013; Heurich et al. 2014; Zumla et al. 2016).

In the cytoplasm of an epithelial cell, the viral RNA genome
functions as mRNA, where the complex of replication and tran-
scription is responsible for both RNA genome replication and
synthesis of mRNA of structural viral proteins (Sola et al. 2015;
Nakagawa, Lokugamage and Makino 2016). After the posttrans-
lational glycosylation in the Golgi apparatus cisternae (Nal et al.
2005; Tseng et al. 2010), newly synthesized coronaviral proteins
enter the cytoplasm and ensure the self-assembly of viral parti-
cles. The latter particles migrate to the cellular membrane inside
the cisternae and are released from the cell by exocytosis (Fehr
and Perlman 2015; Lim et al. 2016).

Taking into account the importance of serine proteases, gly-
coproteins and glycolipids in the lifecycle of influenza viruses
and coronaviruses, it seems logical to suggest that the factors
that modulate the profile of glycosylation of proteins and lipids
of epithelial cells and viruses, as well as control the activity of
serine proteases on the epithelial lining of respiratory ways, may
significantly limit the virulence of influenza viruses and coron-
aviruses and represent therapeutic drug targets.

GENETIC EVOLUTION OF INFLUENZA A
VIRUSES AND CORONAVIRUSES

When influenza viruses circulate in their natural reservoirs,
they are characterized by high genetic variability that is
reflected in the formation of quasi-subtypes (immunologically
different antigenic variants) of type A viruses (Barbezange
et al. 2018). This biological characteristic is called antigenic
drift (Taubenberger and Kash 2010) and it is explained by the
fact that RNA-dependent RNA-polymerase of influenza viruses
does not have an active corrective site (Steinhauer, de la Torre
and Holland 1989; Cheung et al. 2014), which results in a high
frequency of point mutations in the process of RNA genome
replication (300 times higher than during the replication of
bacterial DNA genome) (Drake 1993). Another distinctive char-
acteristic is the high mutational tolerance of glycoproteins of
viral envelopes, i.e. the ability of HA and NA to maintain their
functional activity in case of significant changes in the primary
structure of the polypeptide chain (Thyagarajan and Bloom
2014; Visher et al. 2016).

An important and prevalent phenomenon in the evolution
of influenza A viruses is so-called antigenic shift (Holmes et al.
2005; Dugan et al. 2008). The antigenic shift is the interchange
of RNA segments of viral genome that code the HA and/or NA
structure in case of simultaneous infection of a cell by several
strains of the influenza A virus (Taubenberger and Kash 2010). It
is the antigenic shift that permits new subtypes of influenza A
virus to overcome cross-species barriers (Scholtissek et al. 1978;
Garten et al. 2009).

Unlike other RNA viruses, the coronavirus genome repli-
cation involves RNA-dependent RNA-polymerase that has 3′-
exonuclease corrective activity (Smith, Sexton and Denison
2014). With the objective of immune evasion in humans and
maintenance of the genotype in the Homosapiens population,
as has been demonstrated for the coronaviral strain HCoV-
OC43, coronaviruses also maintain the antigenic drift (Ren et al.
2015). In addition, the genome of coronaviruses uses RNA–RNA

recombination for its evolution (Keck et al. 1988; Huang et al.
2016; Forni et al. 2017). Homologous RNA recombination repre-
sents a redistribution of the genetic material by interchange of
RNA segments in the conditions of co-infection (Makino et al.
1986; Lai 1990; Lai and Cavanagh 1997). In addition to evasion
from the host immune reactions, RNA recombination lets coro-
naviruses change the profile of virulence and tissue affinity as
well as overcome cross-species barriers (Haijema, Volders and
Rottier 2003; Stavrinides and Guttman 2004).

High genetic and phenotypic variability of influenza A
viruses and coronaviruses can lead to a situation where these
pathogenic agents obtain resistance to specific therapeutics as
well as to the sudden appearance of new virulent pandemic
strains.

PANDEMIC RESPIRATORY VIRAL INFECTIONS
AND THE PROBLEM OF PNEUMONIA

The influenza pandemic in 1918–1920 became the most fatal
disease-related event in human history (to date), which resulted
in the death of >50 million people (Johnson and Mueller 2002).
The mortality during pandemics of influenza and coronavi-
ral infections is largely associated with pneumonia (Morens,
Taubenberger and Fauci 2008; Metersky et al. 2012; Yin and
Wunderink 2018; Al-Baadani et al. 2019). Primary viral pneu-
monias are often complicated by bacterial co-infection as they
transform to viral-bacterial and bacterial pneumonias (Oswald,
Shooter and Curwen 1958; Bisno et al. 1971; Palacios et al. 2009;
Gill et al. 2010; Martı́n-Loeches et al. 2011; Cillóniz et al. 2012). The
statement by Louis Cruveilhier expressed in 1919 is still com-
mon in expert circles: ‘The influenza awards a sentence, and it
is bacterial flora that carries it out’ (Cruveilhier 1919).

The clinical picture of severe viral respiratory infections often
presents with symptoms of primary viral pneumonia. The devel-
opment of primary viral pneumonia in case of a viral respira-
tory infection is probably related to co-expression of glycopro-
teins and glycolipids that contain glycans with terminal α2,3-
linked sialic acid (which plays the role of respiratory virus recep-
tor), and to the transmembrane serine protease TMPRSS2 (which
itself plays a role in proteolytically activating viral HA and S pro-
tein) of the epithelial cells of alveoli and bronchioles (Ibricevic
et al. 2006; Shinya et al. 2006; Kumlin et al. 2008; Bertram et al.
2010; Limburg et al. 2019; Tortorici et al. 2019).

The vulnerability to bacterial co-infection during respira-
tory viral pandemics is associated with multiple factors: virus-
induced dysbiosis and disruption of barrier function of the
epithelial lining of respiratory airways (Pittet et al. 2010; Ellis et al.
2015; Nita-Lazar et al. 2015; Hanada et al. 2018; Sencio et al. 2020);
virus-induced dysfunction of effector immune cells (McNamee
and Harmsen 2006; Small et al. 2010; Ghoneim, Thomas and
McCullers 2013; Sun and Metzger 2014) and immunosuppres-
sive activity of cytokines in relation to antibacterial immunity
(Cao et al. 2014; van der Sluijs et al. 2004; Shepardson et al. 2019);
and virus-associated dysfunction of alveolar-capillary barrier
(McAuley et al. 2007; Henkel et al. 2010; Short et al. 2016; Kamal,
Alymova and York 2018) and suppression of activity of ion chan-
nels that are responsible for the absorption of fluid from the
alveolar lumen (Carlson et al. 2010; Peteranderl et al. 2016; Brand
et al. 2018).

Pneumonias associated with respiratory viral infections
are an independent factor in disease severity and mortality
(Maruyama et al. 2016; Ishiguro et al. 2017). This means that the
main problem of severe viral infections, in the past as well as
in the present, has been the problem of viral, viral-bacterial and
secondary bacterial pneumonias.
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ANTIVIRAL THERAPY

The biology of influenza viruses and coronaviruses inevitably
leads to the appearance of new pandemic strains; it is impossible
to predict the moment of their development, genomic variabil-
ity and antigenic properties. This means that pandemics of new
respiratory infections will always start in the absence of immune
prophylactics and treatments. This underlines the necessity of
prior research and development of treatments for the preven-
tion and treatment of respiratory viral infections and in partic-
ular for coronaviruses and influenza A viruses. Several antiviral
drugs that will be described herein are presented in Table 3.

The nature of RNA viruses suggests that systemic interferon
alfa-2b might be effective as non-specific background therapy,
taking into account the weakened state of patients. The effi-
cacy of topical interferon solutions is doubtful, but they may
be considered in case of local symptoms (rhinitis, pharyngitis
etc.). Usage of systemic interferon inducers such as tilorone and
cycloferon (Ekins et al. 2020; Ekins and Madrid 2020) may result in
secondary immunosuppression 10–14 days later, which can lead
to another infection. Background antiviral therapy also includes
targeted agents that affect enzymes of the viral genome repli-
cation; this includes oseltamivir, and the most potent (but also
most toxic of this group) ribavirin, as well as other novel tar-
geted antiviral medications. Anti-replicative activity has been
observed for inosine pranobex (Sliva, Pantzartzi and Votava
2019), a purine derivative that is active against influenza A and
B viruses.

The current knowledge of the viral nature and pathogenetic
properties of the infectious process allows us to consider the
possibility of using adjuvant agents, the efficacy of which has
been observed in different studies (Ekins, Lane and Madrid 2020).

It is well known that serine proteases participate in the pro-
cess of internalization of coronaviruses and influenza A viruses
into the epithelial cells (Simmons 2013; Garten et al. 2015).
The activity of trypsin-like proteinases in the upper respira-
tory tract significantly depends on the activity of inhibitors of
secretory leucoproteinases and in the lower respiratory tract it
depends on the surfactant (Kido et al. 2004). Therefore, therapeu-
tics that induce the expression of inhibitors of secretory leuco-
proteinases and surfactant may significantly inhibit the multi-
cyclic replication of RNA viruses (including influenza and coro-
naviruses).

Quercetin has such properties. In the micromolar range, in
addition to antioxidant effects, it can chelate metals of mixed
valency (Gholampour and Saki 2019), stimulate the expression
of antioxidant enzymes (Chen et al. 2017), provide direct reduc-
tion of free radicals of fatty acid residues of phospholipids and
oxidized forms of vitamin E (Ozgen, Kilinc and Selamoglu 2016;
Chepur et al. 2020), inhibit the activity of serine proteases (Xue
et al. 2017; Jo et al. 2019) and shield the active center of HA of the
influenza A virus (Wu et al. 2015), which gives it a wide range
of antiviral effects (Zakaryan et al. 2017). However, in our opin-
ion, this compound is highly promiscuous and not a good drug
candidate.

Ambroxol (trans-4-[[(2-amino-3,5-dibromophenyl)methyl]
amino]cyclohexanolhydrochlo-ride) also deserves attention
as an additional antiviral agent (Yang et al. 2002). The in vitro
inhibitory effects of ambroxol on influenza virus were described
in 2014 (Yamaya et al. 2014). The spectrum of pharmacological
activity of ambroxol, in addition to its mucolytic effects (Rogers
2007), includes antibacterial and anti-biofilm effects (Lu et al.
2010; Li et al. 2011; Cabral-Romero et al. 2013; Cataldi et al.
2014); the ability to serve as chemical chaperones (Bendikov-Bar

et al. 2013; Sanchez-Martinez et al. 2016), modulate surfactant
secretion (Yang et al. 2002; Seifart et al. 2005), provide anti-
inflammatory (Gibbs et al. 1999; Beeh et al. 2008; Gupta 2010)
and antioxidant action (Nowak et al. 1994; Stetinová, Herout
and Kvetina 2004); and the ability to locally (in the respiratory
airways) stimulate the secretion of IgA and IgG (Yang et al. 2002)
as well as to provide a local anesthetic effect (Kern and Weiser
2015). Due to these diverse effects and high oral bioavailabil-
ity (Jauch et al. 1978), ambroxol may be included in a list of
medications used for the treatment of viral pneumonias.

An important role in the pathogenesis of respiratory infec-
tions is being played by the virus-induced oxidative stress
(Schwarz 1996; Lin et al. 2006; Liu et al. 2017; Khomich et al. 2018).
Xanthine oxidoreductase has an important role in the appear-
ance of the symptoms and complications of virus-associated
pneumonias. Xanthine oxidoreductase is a cytosolic enzyme
of purine catabolism (Frederiks and Vreeling-Sindelarova 2002;
Agarwal, Banerjee and Banerjee 2011) and its activity strongly
increases in hypoxic conditions (Poss et al. 1996; Terada et al.
1997; Linder et al. 2003) as well as under the influence of proin-
flammatory mediators and cytokines (Page et al. 1998; Brandes
et al. 1999). In pathological conditions, xanthine oxidoreductase
is released from the cells to the blood (predominantly in oxi-
dase form; Spiekermann et al. 2003) and fixates at the lumi-
nal surface of the plasma membrane of endothelial cells in the
area of the inflammation by physical/chemical interaction with
glycosaminoglycans (Akaike et al. 1990; Adachi et al. 1993; Rou-
quette et al. 1998). Xanthine oxidoreductase located on the cyto-
plasmic membrane of endothelial cells produces a superoxide
anion radical in the process of purine oxidation, and at the
same time may redux nitrite and nitrate anions to the nitrogen
oxide (NO•) at another active site (Jansson et al. 2008; Cantu-
Medellin and Kelley 2013), i.e. it can recycle this vasodilating
agent. Local production of the prooxidative complex (O2

–•, H2O2,
NO•, ONOO–) is potentially very dangerous, especially in the
vascular bed of the lungs. Nevertheless, the attempts of using
allopurinol, an inhibitor of xanthine oxidoreductase (Pacher,
Novorozhkin and Szabo 2006; George and Struthers 2009), for
the treatment of influenza A virus-induced pneumonia in daily
doses of 5–50 mg/kg have failed. Allopurinol has not shown
any effects on the evolution and outcomes of the viral infec-
tion (Dolganova and Sharonov 1997). Lack of therapeutic effect
in this case is associated with the fact that after the inhibition
of (Mo-Co)-containing center of the enzyme by allopurinol, the
NADH-oxidative and nitrite-/nitrate-reductive activities of xan-
thine oxidoreductase, which are realized at the FAD-dependent
site of the enzyme, were not affected (Harris and Massey 1997;
Doel et al. 2001; Boueiz, Damarla and Hassoun 2008). As there are
still no approved medications able to inhibit the FAD-dependent
activity of xanthine oxidoreductase, administration of heparin
seems feasible as prophylaxis of pulmonary embolism with the
objective of the desorption of xanthine oxidoreductase from the
cytoplasmic membrane of endothelial cells (Povalyaev 2014; Obi
et al. 2019).

Another significant source of the active forms and metabo-
lites of oxygen during respiratory viral infections is mitochon-
dria (To et al. 2020). Melatonin is a mitochondrial antioxidant
(Reiter et al. 2017) with anti-inflammatory and immunomodula-
tory activity and has noticeable positive effects on the evolution
and outcomes of viral infections under experimental conditions
(Srinivasan, Mohamed and Kato 2012; Silvestri and Rossi 2013;
Tan et al. 2014; Huang et al. 2019; Zhang et al. 2020). Melatonin is
also widely used to promote sleep, so this may be undesirable in
an antiviral during the daytime.
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Table 3. Chemical structures of selected drugs described in this review.

INN Chemical structure Brand name Key reference

Tilorone
O

O

NEt2

O

NEt2 2HCl
Amixin, Lavomax Ekins et al. 2020; Jeon et al. 2020

Meglumine acridine acetate

N

O

O

O

N
+

OH

OH

OH

OH

OH

H

H

Cycloferon Ekins et al. 2020

Oseltamivir

NH

NH2

COOEtO

O Tamiflu Neupane et al. 2020

Ribavirin

N

N
N

O

OHOH

OH

CONH2

Copegus, Rebetol, Ribasphere, Vilona,
Virazole

Neupane et al. 2020

Inosine Pranobex

O

N NH

N
N

OH OH

OOH

MeCONH COOH

OH

NMe2

Methisoprinol Sliva, Pantzartzi and Votava 2019

Quercetin

O

O

OH

OH

OH

OH

OH

Zakaryan et al. 2017

Ambroxol

N
H

OH

Br

Br

NH2

Muciclar, Mucosolvan, Mucobrox, Mucol,
Lasolvan, Mucoangin, Surbronc,

Brontex, Ambolar, Lysopain

Yang et al. 2002; Yamaya et al. 2014

Allopurinol

N

N N
H

NH

O

Allohexal, Allosig, Milurit, Alloril,
Progout, Ürikoliz, Zyloprim, Zyloric,

Zyrik and Aluron

Pacher, Novorozhkin and Szabo
2006; George and Struthers 2009



Makarov et al. 7

Table 3. Continued

INN Chemical structure Brand name Key reference

Melatonin
N
H

NHCOMeMeO

Reiter et al. 2017

Deferoxamine

N
H

N

O

OH O O

N
H

O

N

OH

NH2

N

OH

O Desferal Borg and Schaich 1986; Klebanoff
et al. 1989; Dulchavsky et al. 1996;
Niihara et al. 2002; Francisco et al.
2010

Mexidol NMe

OH

Et Emoxipine, Emoxypin, Epigid Pavelkina, Yerovichenkov and Pak
2010

Chloroquine NCl

NH
NEt2

Chloroquine FNA, Resochin, Dawaquin,
Lariago, Delagil

Jeon et al. 2020; Jin et al. 2020; Liu et
al. 2020

Hydroxychloroquine NCl

NH
N

OH

Plaquenil, Hydroquin, Axemal,
Dolquine, Quensyl, Quinoric, Immard

Liu et al. 2020

Mefloquine
NH

N

CF3
CF3

OH

H

NH

N

CF3
CF3

OH

H

Lariam

Remdesivir

N

N

N

NH2

O

OH OH
N

NH

PhO

O

O

O

GS-5734 Lu 2020; Wang et al. 2020a; Zhang
et al. 2020

Ivermectin

O
O

O

O

OO

O

O

O

O

OH

O

H

OH

H

OH

Stromectol Caly et al. 2020
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The superoxide anion radical may act on organic and inor-
ganic compounds, depending on their chemical properties, as
an oxidant (E0O2

–•/H2O2 +0.89 V) or a reductant (E0O2/O2
–• –

0.16 V) (Wood 1987, 1988). The reductive properties of the super-
oxide radical is produced in the area of inflammation during
viral pneumonias. This may occur via reduction of ferric ions
after their release from complexes with biomacromolecules. For
example, iron in a molecule of ferritin is represented by Fe3+

ions, which under the influence of the superoxide anion rad-
ical transforms into Fe2+ and leaves the aforementioned pro-
tein (Biemond et al. 1984; Bolann and Ulvik 1987). In the pres-
ence of free ferric ions and partially reduced forms of oxy-
gen, the conditions are created for a kind of catalytic reactor for
redox catabolic production of prooxidants, especially very toxic
hydroxyl radicals (Morris, Earl and Trenam 1995). This condition
of a biological system is extremely dangerous because in the
presence of free ferric ions, biological fluids lose their antibac-
terial properties (Bullen, Ward and Rogers 1991; Griffiths 1991;
Sritharan 2006). The elimination of free ferric ions from the
biological media of a body is a life/death issue in case of viral
pneumonias. There were earlier attempts to use available com-
plexones (for example, deferoxamine) to bind ferric ions during
viral pneumonia; contrary to the expected, not only did they
show no positive effects on the pathological process, but they
also led to increased mortality (Dolganova and Sharanov 1997).
The explanation of this paradox is that deferoxamine (desferal)
has approximately the same affinity constant for ferric ions as
siderophores of microorganisms (Hallaway et al. 1989; Askwith,
de Silva and Kaplan 1996); for this reason, it is unable to limit
the availability of Fe3+ for pathogenic organisms (Kim, Park and
Shin 2007; Cassat and Skaar 2013). At the same time, it seems
that ferric ions chelated by deferoxamine do not completely lose
their ability to redox transformation and thus support the reac-
tions of Fenton and Osipov (Borg and Schaich 1986; Klebanoff
et al. 1989; Dulchavsky et al. 1996; Niihara et al. 2002; Francisco
et al. 2010).

In contrast, 2-ethyl-6-methyl-3-hydroxypyridine succinate
(mexidol, emoxipine) has noticeable iron chelating activity
(Andrusishina et al. 2014), antioxidative activity (Voronina 2001)
and the ability to inhibit serine proteases and matrix metal-
loproteases (Akhmedov, Budylgin and Dolgikh 2010). Mexidol
has many such biological effects and has been proposed for the
effective use as a supportive agent in the treatment of pneumo-
nia (Ilyashenko et al. 2001; Luzhnikov et al. 2006) and viral infec-
tions (Pavelkina, Yerovichenkov and Pak 2010).

In clinical practice, chloroquine has been widely used as a
safe, effective and affordable medication for more than seven
decades (since 1947; Solomon and Lee 2009). It is used in
the forms of phosphate, hydrochloride and sulfate for the
following indications: treatment and prevention of malaria
(Mengesha and Makonnen 1999; Bello, Chika and Bello 2010;
Waqar, Khushdil and Haque 2016); treatment of leprosy (Meinão
et al. 1996; Bezerra et al. 2005; Gordon et al. 2018); as an
anti-inflammatory agent in patients with rheumatoid arthritis
(Augustijns et al. 1992; Schrezenmeier and Dorner 2020); treat-
ment of antiphospholipid syndrome (Tektonidou et al. 2019);
treatment of Sjogren’s syndrome (Vivino et al. 2016; Shivaku-
mar et al. 2018; Lee et al. 2019); treatment of amoebic hepatitis
and hepatic abscesses (Sodeman et al. 1951; Cohen and Reynolds
1975); cancer treatment as sensitizing agent (Solomon and Lee
2009; Maycotte et al. 2012; Kimura et al. 2013); and treatment
of metabolic syndrome (Kastan, Semenkovich and Schneider
2008; McGill et al. 2019) and inflammatory diseases of bacterial
nature (in synergy with antibiotics (Crowle and May 1990; Feurle

et al. 2012; Jagadeesh, Saivisveswar and Revankar 2014; Son and
Chung 2014).

Chloroquine and its many analogs (such as hydroxychloro-
quine etc.) have properties of weak acidic amines in unproto-
nated form as they easily permeate cellular membranes (Chi-
nappi et al. 2010) and after the protonation accumulate in
closed cellular compartments with acidic pH (i.e. endosomes
or lysosomes) (Vincent et al. 2005). The level of chloroquine
in such compartments may be >100 times higher than its
concentration in the cell (de Duve et al. 1974). Chloroquine
may stay in the isolated intracellular compartments for hun-
dreds of hours (Schrezenmeier and Dorner 2020). Accumulat-
ing in endosomes/lysosomes, chloroquine shifts the pH to alkali
(Homewood et al. 1972; Ohkuma and Poole 1978; Al-Bari 2017)
and inhibits diverse ATPases, including Н+-ATPase (V-ATPase),
which defines the acidification of the environment of endo-
somes and cisternae of the Golgi apparatus (Chandra et al. 1992;
Bhattacharyya and Sen 1999; Holliday 2017). It is possible that
these many phenomena define the blockade of the release of
RNA genome of influenza viruses from the lipoproteins of their
envelopes (Shibata et al. 1983), which results in the inhibition of
viral replication (Ooi et al. 2006; Di Trani et al. 2007). The ability of
chloroquine to inhibit the acidification of endosomes that con-
tain respiratory viruses, and thus to block the release of their
RNA genomes and following replication, may partially explain
its antiviral activity. Chloroquine also has high antiviral activity
against not only influenza A viruses (internalized in the endo-
somes) but also coronaviruses (Keyaerts et al. 2004; Vincent et al.
2005; Ooi et al. 2006; Yan et al. 2013; de Wilde et al. 2014; Kearney
2020), which are almost exclusively internalized by membrane
fusion, i.e. without the formation of endosomes (Matsuyama
et al. 2005).

Of the three types of biological aperiodic polymers (nucleic
acids, polypeptides and carbohydrates), aperiodic polymers of
carbohydrates (glycans and oligosaccharides) have the high-
est information capacity, due to their structural properties.
This ensures high specificity of ligand–receptor interactions of
oligosaccharide conjugates. But the structure of glycans in the
eukaryotic genome is coded indirectly. Oligosaccharides are syn-
thetized in the cisternae of Golgi apparatus with the support
of secondary protein matrices that form functional heterogenic
associations (conveyor lines) of glycosyltransferases (Chepur et
al. 2019). Obviously, the spatial structure of such matrix protein
molecules and thus their affinity to the enzymes of glycan syn-
thesis may quickly and significantly change under the influence
of the dynamics in the pH and oxidative-reductive potential in
the cisternae of Golgi apparatus.

For this reason, it is important that chloroquine is able to
change the redox status of a cell (Giovanella et al. 2015) and
decrease the concentration of protons (increase the рН) in the
cisternae of Golgi apparatus by suppression of ATPase activ-
ity, including Н+-ATPase (Reaves and Banting 1994; Hassinen
et al. 2011). The function of the Golgi apparatus that is consid-
ered most sensitive to pH changes is the synthesis of aperiodic
oligosaccharides (Kellokumpu 2019). A pH increase by 0.2 inside
the Golgi apparatus is associated with a disruption in termi-
nal α2,3-sialylation of both N-linked and O-conjugated glycans
(Rivinoja et al. 2006, 2009). It seems that aberrant glycosyla-
tion after the decrease in acidity of intraluminal environment of
Golgi complex cisternae is associated with рН-induced changes
in the topology/location of glycosyltransferases in multienzyme
complexes of aperiodic oligosaccharides synthesis.

As all participants of the interaction between human cells
and respiratory RNA viruses (glycoproteins and glycolipids) are
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richly decorated by glycans with terminal sialic acids, which
are recognized by the viral particles as specific receptors, the
chloroquine-induced disruption of the processes of sialyla-
tion/glycosylation of cellular and viral participants of this inter-
action is reflected in its antiviral effects.

The participation of glycans in viral adhesion and pro-
liferation are extremely important. A wide array of viruses,
including coronaviruses (Milewska et al., 2014, 2018; Szczepanski
et al. 2019), use a common heparan sulfate-dependent mecha-
nism of the attachment to a cellular membrane. Inhibitors of
this attachment could therefore prevent and treat infections.
The N,N′-bisheteryl derivative of dispyrotripiperasine, pyrimi-
dine dispirotripiperasinium, became the first synthetic small
molecule (Schmidtke, Wutzler and Makarov 2004; Novoselova
et al. 2017) broad spectrum inhibitor of the replication of viruses
of different families that use heparan sulfate to attach to and/or
enter a host cell. The inhibition is via mimicking the binding of
specific structural parts of heparan sulfate. This investigational
class of compounds opens new opportunities for the inhibition
of the process of viral transmission, for example, by using them
to prevent infection by herpes simplex virus type I.

A method of prevention and treatment of aspiration pneu-
monias and ventilator-associated pneumonias may be adapted
for virus-associated pneumonias. The method involves hypoos-
motic (to 200–250 mM) conditioning of red blood cells (RBCs)
of autogenic blood in a solution of a broad-spectrum antibi-
otic, with the addition of dimethyl sulfoxide (DMSO) and hep-
arin. This approach avoids hemolysis and uses autogenic RBCs
as an intravenous depot for the delivery of antibiotics to the
area of inflammation (pneumonia), where the tonicity of blood
is normalized due to swelling. DMSO increases the fluidity
(decreases the microviscosity) and permeability of cellular RBC
membranes, which helps to deliver antibiotic into the cell. A
proposed dose of DMSO (0.3–0.4 ml) does not affect morphology
or functional properties of blood cells (Gurtovenko and Anwar
2007). In addition, DMSO inhibits the activation of proinflamma-
tory transcription factors NF-κB, AP-1 and expression of adhe-
sion molecules ICAM-1 (Chang, Albarillo and Schumer 2001),
blocks transcription of the IL-1, IL-6, IL-8 genes, as well as acti-
vation of the inflammasomes NLRP3 (Ahn et al. 2014; Elisia et al.
2016), and has noticeable antioxidant activity in extremely low
concentrations (Jia et al. 2010; Sanmartı́n-Suárez et al. 2011).

From the earliest days of the current outbreak of SARS-CoV-
2, there has been considerable focus on drug repurposing. A bib-
liometric analysis of drug repurposing has described the many
FDA-approved drugs that have been tested for other indica-
tions. This analysis highlighted chloroquine as one of the most
repurposed drugs as it has been tested against hundreds of dis-
eases (Baker et al. 2018). Not surprisingly, chloroquine has also
been identified by several groups (in China, South Korea and the
United States) (Jeon et al. 2020; Jin et al. 2020; Liu et al. 2020)
to have micromolar activity against SARS-CoV-2. Remdesivir,
which had previously failed in clinical trials for Ebola (Mulangu
et al. 2019) but had also recently shown activity against MERS
in rhesus macaques (de Wit et al. 2020), was tested in vitro
against SARS-CoV-2 and shown to be active. Both these drugs
(and closely related analogs) are already in many clinical trials
globally. There are numerous other drugs proposed, including
a broad array of nucleoside analogs, neuraminidase inhibitors,
peptides, RNA synthesis inhibitors, anti-inflammatory drugs as
well as traditional Chinese medicines (Lu 2020; Wang et al. 2020a;
Zhang and Liu 2020). In just a few months, many papers and
preprints have described one or more molecules with in vitro
data against the virus. To date, there are likely >100 drugs that

have been tested and described with in vitro IC50 data in cells
from these studies (Caly et al. 2020; Choy et al. 2020; Jeon et al.
2020; Jin et al. 2020; Liu et al. 2020; Yamamoto et al. 2020). These
cover large natural product molecules like ivermectin (Caly et al.
2020) through to an array of small molecules that are primarily
lysosomotropic drugs (Weston et al. 2020). Most of these stud-
ies use Vero cells for testing and this animal cell type may not
be an ideal. We await seeing how the wider use of human cells
may impact the discovery of other inhibitors of this virus. Addi-
tionally, some of these molecules identified may be impractical
due to off-target effects or not being able to be used at concen-
trations similar to their original indication.

CONCLUSIONS

Respiratory RNA viruses are anthropozoonotic infectious
pathogens that have natural reservoirs and form dynamic
genetic pools. Such a genetic pool suggests the interchange or
spillover of genetic material between the genomes of familial
RNA viruses of humans and animals. This inevitably leads to
the appearance of new, highly virulent strains of pathogens
and it is impossible to predict the moment of such appearance
and antigenic properties of these strains. This means that
epidemics of new respiratory RNA viral infections will always
begin in the absence of medications for their immune-mediated
prevention or treatment. This underlines the necessity of con-
tinuing to perform research and development of antivirals and
other therapeutic drugs that could be used in the treatment of
respiratory RNA viral infections. This review has focused on the
past and present efforts at addressing these viruses. Clearly, our
future will be very much defined by such viral outbreaks if we
are not able to identify broad-spectrum antivirals or vaccines.
Looking at the past research may provide some important clues
as to how we can identify such therapeutics. The reliance on a
single magic bullet for every disease may be unrealistic and we
therefore need to consider the combination of diverse antiviral
treatments as we currently do for HIV and HBV. Considering
molecules that are traditionally not considered ‘antivirals’ may
also be critical to open our eyes to accessing additional targets
and mechanisms. Host-targeted mechanisms may also be of
interest such as those that stimulate the immune system.
Clearly, we are seeing many drugs that are lysosomotropic;
while long-term use of such molecules may be detrimen-
tal, short-term use may prevent viral entry and protect the
individual. There is certainly much more research that can
be performed to understand how combinations of drugs for
these respiratory viruses may work together. While interest in
antiviral research and development has apparently languished
for decades, the COVID-19 may permanently change that. If we
continue to ignore such viruses, the cost will be unimaginable
and continue to hold back human progress. We will now see
a rebirth in interest and perhaps significant investment in
developing antivirals. For years, there have been few major
drug companies dominating this field. What we have seen with
viruses should also serve to remind us that we also face great
pressures such as drug resistance for other classes of drugs like
antibiotics. This review should remind us that we need to be
ready for the next outbreak and that means having a plentiful
supply of drugs that can potentially address any new virus we
are faced with. A relatively small investment in this science
could pay big dividends for the future in preventing catastrophic
pandemics, limiting the global financial depressions that result
and providing a degree of security for humanity. We cannot



10 Pathogens and Disease, 2020, Vol. 78, No. 7

neglect these or other viruses for they provide other insights
that could ultimately be useful in healthcare and beyond.
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