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ABSTRACT The branched-chain amino acids (BCAAs [lle, Leu, and Val]) represent
important nutrients in bacterial physiology, with roles that range from supporting
protein synthesis to signaling and fine-tuning the adaptation to amino acid starva-
tion. In some pathogenic bacteria, the adaptation to amino acid starvation includes
induction of virulence gene expression: thus, BCAAs support not only proliferation
during infection, but also the evasion of host defenses. A body of research has accu-
mulated over the years to describe the multifaceted physiological roles of BCAAs
and the mechanisms bacteria use to maintain their intracellular levels. More recent
studies have focused on understanding how fluctuations in their intracellular levels
impact global regulatory pathways that coordinate the adaptation to nutrient limita-
tion, especially in pathogenic bacteria. In this minireview, we discuss how these
studies have refined the individual roles of BCAAs, shed light on how BCAA auxotro-
phy might promote higher sensitivity to exogenous BCAA levels, and revealed
pathogen-specific responses to BCAA deprivation. These advancements improve our
understanding of how bacteria meet their nutritional requirements for growth while
simultaneously remaining responsive to changes in environmental nutrient availabil-
ity to promote their survival in a range of environments.
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BACTERIAL ADAPTATION TO NUTRIENT AVAILABILITY

acteria sense a variety of physical and chemical signals in their environment and

use this information to coordinate an adaptive response that promotes their
growth and survival. These signals include nutrients such as sugars, lipids, metals, and
amino acids, and their depletion triggers upregulation of high-affinity nutrient acqui-
sition systems and/or biosynthesis pathways. Nutrient availability is also an important
environmental cue during infection, as pathogens encounter fluctuating nutrient ac-
cess in a host and must adapt their metabolism accordingly to proliferate and avoid
being cleared. Host environments impose an added challenge by actively sequestering
nutrients to limit pathogen growth. To cope, pathogens release toxins that act to
liberate nutrients from host tissues. In this way, virulence determinant production is
tied to the nutrient composition of a given host niche.

Several transcriptional regulators are positioned at the intersection of metabolism
and pathogenesis, such as CcpA (responds to a preferred carbon source), CodY (re-
sponds to GTP and branched-chain amino acids [BCAAs]), and RpiR (responds to
pentose phosphate pathway intermediates) (1, 2). The relevance of such regulators to
gross bacterial physiology is typically evidenced by mutating the regulator and mea-
suring transcriptional changes to identify shifts in metabolism that presumably allow
the pathogen to adapt to restriction of a given nutritional signal. This approach
assumes that adaptive responses are binary, with each category defined by a com-
pletely active or inactive regulator. This methodology, however, fails to capture the
intermediate responses that occur along a gradient of nutrient concentrations, which
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are more likely to represent the conditions pathogens encounter in vivo. It has
remained challenging to capture the adaptive responses along a spectrum of nutrient
availability because the mechanisms pathogens use to obtain nutrients, which there-
fore dictate this spectrum, are often unknown. Without a good understanding of the
mechanisms that influence intracellular levels of regulatory nutrients, it remains largely
unanswered how pathogens fine-tune intracellular nutrient pools at levels that are
sufficient to promote growth in host tissues, while still allowing the bacteria to maintain
sensitivity to changes in their external environment.

Several recent studies have applied a novel approach to address these gaps and
have characterized the adaptive responses that correspond to graded nutritional levels
(3-5). This approach, applied to the CodY regulator, involves mutating the effector
binding site to mimic graded nutrient depletion, resulting in protein variants with fixed
activation states along the full spectrum of CodY activity. Readers are directed to a
recent review by Brinsmade (6) for a detailed summary of these studies. Comparison of
the transcriptomes of cells bearing each protein variant has revealed that CodY-
regulated genes are expressed as a hierarchy, whereby some target genes are dere-
pressed upon a slight reduction of CodY activity, whereas other target genes remain
repressed under the same conditions and are derepressed only upon a more significant
reduction of CodY activity (3-5). These studies reveal the sensitivity of important
physiological responses, including virulence gene expression, to changes in intracellu-
lar nutrient availability, namely BCAA concentrations. This has renewed interest in
characterizing the factors that dictate intracellular BCAA concentrations, such as en-
dogenous synthesis and acquisition mechanisms, and in investigating the relative
contribution of these mechanisms to supplying BCAAs at key threshold concentrations
that define a microorganism’s physiological state. In this review, we will discuss the
roles of BCAAs in bacterial physiology, the mechanisms of biosynthesis and transport,
and the recent advancements made in understanding how depletion of intracellular
sources impacts pathogen proliferation and adaptation in host niches, with a focus on
the role of BCAAs in regulating CodY. Although CodY is found only in Gram-positive
bacteria, we will nonetheless discuss BCAA metabolism in both Gram-negative and
Gram-positive bacteria to highlight shared physiological roles and mechanisms of
acquisition and biosynthesis.

MULTIFACETED ROLE FOR BRANCHED-CHAIN AMINO ACIDS IN BACTERIAL
PHYSIOLOGY

The BCAAs are small nonpolar amino acids with branched alkyl side chains that
make them hydrophobic and confer unique properties in proteins. Leu is a strong
stabilizer of a-helical structures and, as such, is typically found in the inner helical core
of proteins (7), whereas the substitution of the B-carbon with a methyl group on lle and
Val creates bulkiness that destabilizes a-helical structures; thus, lle and Val are prefer-
entially located in B-sheets (8, 9).

Bacteria synthesize BCAAs through a conserved pathway that is present in fungi and
plants, but absent in mammals. The level of synthesis is dependent on the availability
of metabolites linked to central metabolism, including pyruvate, acetyl coenzyme A
(acetyl-CoA), and oxaloacetate (Fig. 1). The biosynthetic pathway also provides inter-
mediates for the synthesis of vitamin B (pantothenate) (10) and branched-chain fatty
acids (BCFAs) (Fig. 1). BCFAs are the predominant fatty acids in Gram-positive bacterial
membranes, and the nature and abundance of specific BCFAs determine the biophys-
ical properties of the membrane (11). This contrasts with Gram-negative bacteria, where
the predominant fatty acids are straight-chain fatty acids (SCFAs) and the biophysical
properties of the membrane are determined by the degree of saturation (11). SCFA and
BCFA synthesis proceeds through the same multienzyme fatty acid synthesis (FAS-I)
pathway; however, the substrates that initiate the pathway differ. Acetyl-CoA serves as
the substrate for SCFA synthesis, whereas branched-chain acyl-CoA serves as the
substrate for BCFA synthesis (12). When initiated with branched-chain acyl-CoA sub-
strates, the pathway produces even-chain anteiso-FAs derived from lle, even-chain
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FIG 1 Integration of the BCAA biosynthetic pathway with cellular metabolism. Metabolites highlighted in blue are connected to BCAA biosynthesis

iso-FAs derived from Leu, and odd-chain iso-FAs derived from Val. Regulation of the

ratio of iso to anteiso fatty acids and/or SCFA to BCFA facilitates adaptation to
changes in temperature, pH, salinity, and CO

(13-20). The positioning of the
methyl group on the acyl chain of anteiso-FAs disrupts close packing of membrane
lipids, promoting a more fluid membrane. This property is critical to adaptation to
growth at low temperatures, during which the anteiso-FA (namely, a15:0) content
is increased (13, 17,

18, 20-22). Thus, the importance of BCAAs for bacterial
physiology stems from their integration with central metabolism, their requirement

for protein synthesis, and their requirement for environmental adaptation via BCFA
synthesis in Gram-positive bacteria
BCAAs AS INDICATORS OF CELLULAR METABOLIC STATUS

In addition to their physiological roles, the BCAAs are effectors of the global
transcriptional regulators leucine-responsive regulatory protein (Lrp) in Gram-negative
bacteria and CodY in Gram-positive bacteria (23, 24). These global regulators coordi-
nate the response to nutrient availability and regulate metabolic reprogramming to
sustain growth upon nutrient exhaustion, as exemplified by the characteristic meta-
bolic shift to stationary phase under laboratory growth conditions (Fig. 2). This transi-
tion coincides with accumulation of (p)ppGpp, a metabolite synthesized from GTP
during the stringent response, a response provoked by amino acid starvation (25)

Lrp is a highly conserved transcriptional regulator in enteric bacteria and regulates
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FIG 2 Involvement of BCAAs in the regulatory response to amino acid deprivation. Exponential growth
is associated with nutrient consumption and subsequent depletion. Amino acid depletion triggers the
synthesis of ppGpp from GTP, correlating with the entrance to stationary phase. Accumulation of ppGpp
induces Irp expression in Gram-negative bacteria. (i) Leu binds to Lrp, genes involved in amino acid
synthesis and transport are activated, and genes involved in amino acid catabolism are repressed. (ii)
Depletion of GTP and BCAAs trigger a decrease in CodY DNA-binding activity in Gram-positive bacteria,
and CodY target genes involved in amino acid biosynthesis and transport are expressed. (iii) BCAAs
promote the hydrolysis activity of the enzyme that converts ppGpp to GTP, limiting either induction of
Irp expression or inactivation of CodY.

gene expression upon entry into stationary phase (23). Lrp DNA-binding activity is
enhanced, antagonized, or not affected by Leu availability, depending on the target
gene, and binding can lead to either transcriptional repression or activation (26). Its
target genes include those involved in glutamate, glutamine, BCAA, and serine bio-
synthesis, glycine degradation, BCAA and oligopeptide transport, and pilus formation
(26). CodY, a conserved transcriptional regulator in low-GC Gram-positive bacteria (i.e.,
Firmicutes), senses the metabolic status of the cell to promote adaptation to nutrient
limitation (27, 28). CodY is activated through direct interaction with BCAAs and GTP
(27-30), with the exception of Lactococcus lactis and Streptococcus pneumoniae, where
CodyY responds to only BCAAs (31-33). In its active state, CodY binds to DNA, typically
leading to transcriptional repression, although direct activation has been observed
involving an unknown mechanism (34, 35). Thus, in general, CodY target genes are
repressed during rapid growth and expressed upon nutrient deprivation. CodY regu-
lates metabolic genes involved in amino acid synthesis, purine biosynthesis, sugar and
amino acid transport, and the Krebs cycle (31, 36-39), as well as, in some species,
sporulation (27, 40-42) and biofilm formation (43-45). CodY also regulates virulence
gene expression in Gram-positive pathogens, including Bacillus anthracis (46-48),
Bacillus cereus (43, 49-51), Clostridium difficile (40, 52, 53), Clostridium perfringens (41, 54,
55), Listeria monocytogenes (35, 39, 56, 57), Staphylococcus aureus (5, 37, 38, 58-60),
S. pneumoniae (32), and Streptococcus pyogenes (45, 61-63). The role of CodY as a
regulator of metabolism and virulence has been comprehensively reviewed elsewhere;
thus, readers are directed to several recent reviews for more information (6, 24, 64, 65).

The accumulation of (p)ppGpp and consequential depletion of GTP impact the
regulatory responses of Lrp and CodY, respectively, thereby linking these regulators to
the stringent response (Fig. 2). Accumulation of (p)ppGpp induces Irp expression, and

September/October 2018 Volume 9 Issue 5 €01188-18

mBio’

mbio.asm.org 4


https://mbio.asm.org

Minireview

depletion of GTP decreases CodY DNA-binding activity (27-30, 66). In Betaproteobac-
teria and Gammaproteobacteria, the relative levels of (p)ppGpp and GTP are controlled
by the synthetase RelA, which converts GTP to (p)ppGpp, and the hydrolase SpoT,
which reverses the reaction (67). In other genera, a single bifunctional enzyme, RSH
(RelA/SpoT homologue [or Rel]), interconverts (p)ppGpp and GTP (67). Recently, BCAAs
were found to regulate the accumulation of (p)ppGpp (68). In Alphaproteobacteria, Val
and lle bind and activate the domain of the RSH that is responsible for hydrolyzing
(p)ppGpp to GTP (68). Thus, the stringent response is countered under conditions of
high BCAAs and promoted under conditions of BCAA limitation. This regulatory mech-
anism might also occur in other bacteria, as Val binds to the RelA enzyme in Gamma-
proteobacteria and Leu binds to the RSH enzyme in Gram-positive bacteria (68). Thus,
BCAAs influence Lrp and CodY regulatory responses directly by binding and regulating
their DNA-binding activity, and indirectly by regulating (p)ppGpp hydrolysis to GTP.

An emerging role for isoleucine in regulating Gram-positive environmental
adaptation. Historically, all three BCAAs have been considered equal CodY effectors.
Indeed, all three bind to CodY and activate its DNA-binding activity (29, 30, 69, 70), and
yet, some studies have observed a stronger effect of lle on CodY DNA-binding activity
than either Leu or Val (31, 71-73). A predominant role for lle in regulating CodY activity
during growth has also emerged. Depletion of lle and not Leu or Val relieves repression
of CodY-regulated genes in B. subtilis (29), L. monocytogenes (57), and S. aureus (38, 69).
Furthermore, as CodY target genes tend to comprise metabolic pathways, such as
amino acid biosynthesis, the levels of lle in the growth medium consequentially impact
growth rate. Addition of excess lle to the growth medium impairs growth of L. lactis
(71), Streptococcus mutans (73), and S. aureus (38), whereas lle depletion has the
opposite effect. S. aureus growth is significantly impaired in media lacking Leu; how-
ever, its growth is restored upon simultaneous lle and Leu depletion (69). An S. mutans
mutant that is unable to synthesize (p)ppGpp (i.e., mimicking a strain with constitu-
tively active CodY) is not able to grow in media lacking Leu or Val, but is able to grow
in media lacking lle, Leu, and Val (74). These growth restoration phenotypes are most
likely CodY dependent, requiring lle depletion to relieve CodY repression of amino acid
biosynthesis. Given that the results of DNA-binding assays are influenced by the conditions
tested (i.e, pH or salt [75]), the growth assays are likely a more accurate representation of
intracellular conditions. As such, this would suggest that, inside the cell, lle is the predom-
inant BCAA to affect CodY activity. When considered in the context of Gram-positive
pathogens, in which CodY also regulates virulence gene expression, this suggests that lle
could serve as a host metabolic cue. Indeed, lle availability influences virulence gene
expression in L. monocytogenes and S. aureus (discussed in more detail below) (38, 57, 69,
76). These advances have renewed interest in the factors that influence intracellular
availability of lle (and BCAAs in general) to better understand how pathogens scavenge
BCAAs and where in the host they encounter BCAA limitation.

FACTORS THAT INFLUENCE INTRACELLULAR BCAA AVAILABILITY

BCAA biosynthesis. BCAAs are synthesized through a conserved pathway in Gram-
negative and Gram-positive bacteria (Fig. 1), with the exception of the BCAA auxo-
trophs Erysipelothrix rhusiopathiae, Mycoplasma spp., Ureaplasma spp., Peptostreptococ-
cus anaerobius, Streptococcus pyogenes, and Streptococcus agalactiae (1). For detailed
biochemical descriptions of each of the biosynthetic enzymes and regulation of their
activity, readers are directed to a recent review by Amorim Franco and Blanchard (77).

The Leu biosynthetic genes are typically clustered in an operon (leuABCD) that may
be either separate from the ilv genes or organized in a single ilv-leu operon, depending
on the species. Several mechanisms of transcriptional regulation of these genes have
been described, many involving transcriptional repression in response to BCAA avail-
ability. In Gram-negative bacteria, this is primarily mediated by attenuation. The
attenuator region precedes the operon and is transcribed with the biosynthetic operon.
It encodes a small BCAA-rich peptide, and as such, its rate of translation is determined
by BCAA availability. When BCAA levels are high, the peptide is readily translated,
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allowing for a terminator secondary structure to form, which terminates transcription.
When BCAA levels are low, the peptide is translated slowly, promoting an antitermi-
nator secondary structure to form, allowing transcription to proceed. In Escherichia coli,
the expression of many of the BCAA biosynthetic genes (organized as ilvGMEDA,
leuABCD, ilvC, ilvIH, and ilvBN) is controlled by attenuation. The ilvGMEDA operon is
preceded by a 32-amino-acid (aa) peptide that contains 15 BCAAs (78, 79), ilvBN is
preceded by a 32-aa peptide with 11 BCAAs (80), and the leuABCD operon is preceded
by a 28-aa peptide containing 4 Leu (81). Attenuation is also the primary mechanism of
regulating the leu operon in Salmonella enterica serovar Typhimurium (82, 83) and
putative leader peptides and terminator hairpins are found upstream of BCAA biosyn-
thesis genes across various Gram-negative species (84), suggesting that BCAA-
dependent attenuation is a conserved mechanism. The biosynthetic genes in E. coli are
also regulated by Lrp, which binds to the ilviH and ilvG promoters in the absence of Leu
to activate and repress transcription, respectively (85-87).

In Gram-positive bacteria, multiple global regulators coordinate expression of the
BCAA biosynthetic operon in response to not only BCAA availability but also carbon
and nitrogen availability (88). In B. subtilis, the single ilv-leu operon is positively
regulated by the carbon catabolite protein A (CcpA) (88, 89), a global transcriptional
regulator that regulates carbon utilization in response to a preferred carbon source (90).
This positive regulation is antagonized by either TnrA, a regulator that responds to
nitrogen limitation, or CodY (91). Together, this allows for conservation of carbon and
nitrogen when exogenous BCAA sources are present. Additional fine-turning of ilv-leu
expression is mediated by a Leu-responsive T-box riboswitch (88, 92-94), as well as
mMRNA processing (95). CodY-dependent repression of BCAA biosynthesis is common
across Gram-positive bacteria (32, 37, 38, 51, 52, 56), whereas TnrA homologues are less
conserved (96). In contrast to the tRNA-mediated attenuation observed in B. subtilis,
recent experimental evidence implicates ribosome-mediated attenuation as an impor-
tant mechanism regulating BCAA biosynthesis in S. aureus and L. monocytogenes (69,
76). Furthermore, bioinformatics analysis of the leader sequence of the BCAA biosyn-
thetic genes in L. lactis (97), Corynebacterium glutamicum (98, 99), and Streptococcus
spp. (100) have revealed BCAA-rich peptides and terminator hairpins consistent with
attenuation, suggesting that ribosome-mediated attenuation is a common mechanism
controlling transcription of the BCAA biosynthetic operon in Gram-positive bacteria. In
S. aureus, an additional regulatory mechanism governing BCAA biosynthesis has been
described involving repression by the essential Gcp/YeaZ complex (101, 102). YeaZ
binds upstream of the ilv-leu operon, suggesting possible direct repression of the
operon (102), although the conditions that regulate its binding are currently unknown.

The BCAA auxotrophy paradox. Even in the presence of intact biosynthesis genes,
some Gram-positive bacteria synthesize little to no BCAAs in the absence of an
exogenous source, with some even being misclassified as auxotrophs. L. monocytogenes
synthesizes very little lle, Leu, and Val despite possessing intact and functional biosyn-
thetic genes (103, 104). Similarly, S. pneumoniae is unable to grow in a chemically
defined medium when lle, Leu, or Val is omitted (105). Streptococcus suis exhibits a Leu
auxotrophy despite possessing intact Leu biosynthesis genes and synthesizes moderate
levels of Val but no detectable Ile (106). Despite possessing an intact BCAA biosynthetic
operon, S. aureus exhibits a significant growth delay in the absence of Leu, and growth
in the absence of Val occurs only upon accumulation of suppressor mutations (69, 107).
One possible explanation for an observed “auxotrophy” could be the availability of
biosynthetic precursors. L. monocytogenes lacks a 2-oxoglutarate dehydrogenase en-
zyme and is therefore unable to derive oxaloacetate from the tricarboxylic acid (TCA)
cycle (Fig. 1). Instead, L. monocytogenes carboxylates pyruvate to form oxaloacetate in
environments where glucose is the sole carbon source (103). Shortage of this indirect
BCAA precursor might explain the limited amounts of BCAAs synthesized in this species
(103, 104). Another possible factor could be tight transcriptional repression of the
biosynthetic operon. S. aureus is able to grow in the absence of Val only upon selection
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TABLE 1 BCAA transporters

Organism Transporter Energy source Specificity? Reference(s)
Gram-negative bacteria
Chlamydia trachomatis LIV-Il (brnQ) PMF® ILV 156
Escherichia coli LIV-I (livKHMGF) ATP L 108-110, 157
LIV-I (livJHMGF)  ATP ILV
LIV-Il (brnQ) PMF LV
Francisella tularensis ileP PMF | 114
Pseudomonas aeruginosa LIV-I ATP ILV 158-162
LIV-Il (braB) PMF LV
LIV-II (braZ) PMF ILV
Salmonella Typhimurium LIV-I ATP ILV 111, 163-166
LIV-II (brnQ) PMF ILV
LIV-II PMF LV
Gram-positive bacteria
Bacillus subtilis bcaP PMF ILV 118
braB PMF LV
brnQ PMF LV
Corynebacterium glutamicum  brnQ PMF LV 122
Lactobacillus delbrueckii brnQ PMF ILV 121
Lactococcus lactis brnQ PMF ILV 116, 117
bcaP PMF ILV
Staphylococcus aureus brnQ1 PMF ILV 107, 119
brnQ2 PMF |
brnQ3 NA¢ NA
bcaP PMF ILV
Streptococcus pneumoniae livAJHMGF ATP ILV 120

al, isoleucine; L, leucine; V, valine.
bPMF, proton motive force.
°NA, not applicable.

of strains with mutations that relieve either CodY-dependent repression or attenuator-
dependent repression (69), indicating that the ilv-leu operon remains under tight
repressive control even in the absence of Val. Repression is relieved upon lle depletion
via CodY and to a lesser extent, upon Leu depletion via transcriptional attenuation (69).
Such tight control is also observed in L. monocytogenes, which also regulates BCAA
biosynthesis in response to lle via CodY-dependent repression and a BCAA-rich attenu-
ator peptide (76).

Specialized BCAA transporters. The repression of the BCAA biosynthetic genes in
response to BCAA availability allows for conservation of carbon and nitrogen when an
exogenous source can be acquired. Active transporters specific to BCAAs are common
across bacteria and require either ATP or the proton motive force to import BCAAs.
BCAA transporters in Gram-negative bacteria include the high-affinity LIV-l system and
the low-affinity LIV-Il and LIV-IIl systems (Table 1). LIV-I is an ATP-binding cassette (ABC)
transporter encoded by livJKHMGF (108). Two substrate binding proteins mediate BCAA
transport through this system; LIV-B (livJ), which can bind all three BCAAs, and LS-B
(livK), which is Leu specific (109, 110). LIV-II, also known as BrnQ, is a permease with 12
transmembrane helices and belongs to the major facilitator superfamily (MFS). LIV-III is
a permease homologous to LIV-II, with transport activity that is obviated only in a LIV-II
deficient background in Salmonella Typhimurium and Pseudomonas aeruginosa (111,
112). LIV-Il and LIV-IIl use energy from the proton motive force to couple BCAA
transport with Na* across an energy gradient (113). An additional MFS transporter
specific to lle transport and unique to Francisella tularensis has 12 transmembrane
helices and belongs to the phagosomal nutrient transporter family of MFS transporters
identified in Legionella pneumophila (114, 115).

BrnQ also functions as a BCAA transporter in Gram-positive bacteria, along with a
second nonhomologous permease, BcaP (Table 1). L. lactis acquires BCAAs via both
BcaP and BrnQ, with BcaP playing a more predominant role (116, 117). Similarly, BcaP
is the predominant transporter in B. subtilis, with two additional transporters, BrnQ and
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BraB (a BrnQ homologue), contributing to lle and Val uptake and an unidentified
transporter contributing to Leu uptake (118). In contrast, BrnQ1 serves as the predom-
inant transporter for S. aureus growth, with BcaP playing a secondary role (107).
S. aureus encodes two additional brnQ homologues: BrnQ2, an lle-dedicated trans-
porter, and BrnQ3, which has no observed BCAA transport function (107, 119). A LIV-I
system with a substrate binding protein able to bind BCAAs has been described in
S. pneumoniae, although no transport function has yet been ascribed to this system
(120). BrnQ also directs BCAA transport in Lactobacillus delbrueckii and C. glutamicum
(121, 122).

BCAAS AT THE CROSSROADS OF METABOLISM AND VIRULENCE

Mechanisms that support growth during infection. BCAA availability at various
infection sites remains undefined; however, both BCAA biosynthesis and transport have
been linked to promoting the virulence of pathogens during infection, suggesting that
pathogens encounter BCAA limitation in vivo (120, 123-129). Concentrations of BCAAs
have been estimated in some host environments relevant to pathogens. Levels of
BCAAs in the bloodstream range from 20 to 92 uM for lle, 40 to 250 uM for Leu, and
65 to 266 uM for Val (130). Human nasal secretions contain Leu levels in the range of
130 to 287 uM, Val levels in the range of 13 to 156 uM, and very little or no lle (131).
Indeed, some pathogens exploit these extracellular BCAA sources during infection.
S. aureus requires both the BrnQ1 and BcaP transporters for optimal fitness during
systemic infection and nasal colonization (107, 119). BCAA acquisition also likely
contributes to S. aureus lung infection, as transport genes are upregulated in a
pneumonia model (132). The contribution of BCAA biosynthesis to S. aureus growth in
vivo remains to be determined, although biosynthesis likely plays a role in maintaining
BCAA levels, as the biosynthetic genes are upregulated when S. aureus is grown in
blood, the lung environment, and in nasal secretions (131-133). In S. pneumoniae, BCAA
transport supports growth in a systemic infection model, pneumonia model, and
meningitis model, but not in a colonization model (120, 129), whereas BCAA biosyn-
thesis is required for invasion of host tissue following intranasal colonization, but is not
required for systemic infection (134). BCAA transport also contributes to growth of
Yersinia pestis during systemic infection (128). Despite some pathogens being able to
exploit extracellular BCAAs, some pathogens require BCAA biosynthesis for infection,
including Klebsiella pneumoniae, Neisseria meningitidis, and P. aeruginosa (123, 124,
135).

Intracellular pathogens face the challenge of direct competition with the host for
intracellular BCAAs since they are essential nutrients in humans. Indeed, several intra-
cellular pathogens, including Burkholderia pseudomallei, Mycobacterium bovis, Mycobac-
terium tuberculosis, and L. monocytogenes rely on BCAA biosynthesis for replication
inside host cells (136-140). Yet, some intracellular pathogens are auxotrophic for BCAAs
and therefore necessitate transporters to obtain BCAAs. The BCAA auxotroph Legionella
pneumophila requires the Val transporter PhtJ for intracellular growth (115, 141), and
pathogenic subspecies of Francisella, which have lost the capacity to synthesize BCAAs,
require the lle transporter lleP for intracellular replication and infection in vivo (114).
Interestingly, F. tularensis has been observed to induce a transient increase in cytosolic
BCAA concentrations following infection, suggesting that it might manipulate host
metabolism to support its own growth during infection (114).

If deprived of BCAAs, Gram-positive pathogens face challenges not only in support-
ing protein synthesis and growth, but also in maintaining the appropriate BCFA content
to protect against host defenses that target the bacterial membrane. A role for BCFA
synthesis in promoting resistance to host defenses is best highlighted in L. monocyto-
genes, where BCFAs comprise 75 to 98% of the membrane (13, 14, 16, 21, 142).
BCFA-deficient strains have increased susceptibility to antimicrobial peptide killing and
lysozyme digestion and decreased production of the virulence factor listeriolysin O
(143), all of which likely contribute to the decreased intracellular growth and virulence
of a strain deficient of BCFAs (143, 144). In S. aureus, BCFAs comprise 44 to 63% of the
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membrane and a BCFA-deficient strain exhibits reduced adherence to host cells and is
attenuated in vivo (107, 145, 146).

While these studies reveal that BCAA deprivation limits pathogen metabolism and
physiology in vivo, more research is needed to elucidate the relative importance of
biosynthesis versus acquisition in various host niches and how this source preference
might be regulated. One mechanism governing source preference involves positioning
of the gene in the hierarchy of the CodY regulon. The BCAA biosynthetic operon and
the transporter genes in B. subtilis are both controlled by CodY. CodY binds to a
15-nucleotide (nt) binding motif, AATTTTCWGAAAATT (71, 147), and nucleotide sub-
stitutions in the motif that deviate from the consensus sequence decrease the binding
affinity of CodY (147, 148). The binding strength of the motif thus correlates with the
extent of repression and dictates the positioning of the gene within the hierarchy of
graded target gene derepression (3). In B. subtilis, BCAA biosynthesis and transport are
derepressed at similar points along the spectrum of CodY activity (3), but in S. aureus,
in which this hierarchical response is also observed, the BCAA transporter brnQ2 is
derepressed upon modest decreases in CodY activity, whereas BCAA biosynthesis
remains repressed at this same level of CodY inactivation (5), suggesting that S. aureus
prioritizes nutrient scavenging upon modest nutrient depletion to prevent unnecessary
divergence of carbon and nitrogen to nutrient synthesis. The positioning of other
transcriptional regulators in the CodY hierarchy adds an additional layer of metabolic
fine-tuning. For example, CodY is a direct repressor of braB, a BCAA transporter in
B. subtilis, but it is a stronger repressor of scoC, which also represses braB expression.
braB expression is therefore optimal at intermediate levels of CodY activity, when
CodY-dependent braB repression is partially relieved, and scoC remains repressed (149).
Such precise sensitivity to CodY activity represents one way by which pathogens can
fine-tune the coordination of nutrient acquisition strategies.

BCAAs as host cues to regulate virulence. The predominant role of CodY as a
negative regulator of virulence and the hierarchical regulation of CodY target genes in
S. aureus is but one example of how pathogens respond to BCAA starvation and adapt
to their environment. In some pathogens, it has been shown that CodY can also
function as a positive regulator. Table 2 outlines the positive and/or negative regulatory
role of CodY on notable virulence factors in several Gram-positive pathogens. To fully
appreciate the complexity of pathogen-specific CodY responses, this section will con-
trast the predominant repressive role of CodY in S. aureus to the complex role of CodY
as both a positive and negative regulator of virulence in L. monocytogenes (summarized
in Fig. 3). The advancements made in these pathogens reveal that pathogen lifestyle
might have influenced the regulatory response coordinated in response to BCAA
availability.

In S. aureus, CodY binds to DNA under BCAA-replete conditions and primarily acts
as a repressor of virulence genes (5, 37, 38). CodY regulates approximately 5% of the
S. aureus genome, with the majority of its targets (85%) subject to repression by CodY
(37, 38). These targets include virulence genes, such as the capsule genes, a-hemolysin
and adhesion protein genes, as well as regulators of virulence gene expression,
including the agr locus and saeRS two-component system (60, 150). Most of the
virulence genes are directly repressed by CodY, whereas others, including the capsule
genes and hemolysin genes, are indirectly activated through agr (37, 38). The genes
activated by CodY, which fall into the categories of nucleotide transport/metabolism
and adhesion proteins, do not have a CodY binding sequence, suggesting an indirect
mechanism of regulation (37). The coordination of virulence gene expression with the
environment is crucial for S. aureus to limit unwanted host damage, as exemplified by
the hypervirulence of a codY mutant in a skin abscess and pneumonia model of
infection (59). To ensure the appropriate expression of virulence genes, the CodY
regulon is expressed as a hierarchy that depends on the extent of CodY activation and
therefore nutrient (e.g., lle) availability (Fig. 3) (5). The graded response prioritizes
expression of amino acid and peptide transport over synthesis upon modest nutrient
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TABLE 2 Regulation of virulence by CodY in Gram-positive pathogens

mBio’

Organism

Phenotype of codY mutant in vivo

Notable virulence gene regulation

Reference(s)

Staphylococcus aureus

Streptococcus pneumoniae

Bacillus anthracis

Clostridium perfringens
Type D
Type A

Bacillus cereus (F4810/72)

Clostridium difficile

Listeria monocytogenes

Streptococcus pyogenes

Hypervirulent in murine skin
abscess and pneumonia; no
effect on systemic infection

Reduced colonization; no effect on
systemic infection

Attenuated virulence in murine
toxinogenic model

NTa

Attenuated virulence in Galleria
mellonella infection model

NT

Attenuated virulence in murine
systemic infection model

NT

Indirect repression of delta-toxin/RNAIIl via
repression of agr activator; direct
repression of biofilm synthesis
(icaADBC), alpha-toxin (hla),
hyaluronidase (hysA), Panton-Valentine
leucocidin (lukSF-PV)

Direct activation of adhesion protein
choline-binding protein (pcpA)

Indirect activation of anthrax toxin
components (cya, lef, pagA) and direct
repression of S layer proteins (sap, eag)
via AtxA; activation of iron scavenging
systems

Direct and indirect activation of epsilon
toxin (ETX); repression of sporulation
Activation of sporulation and enterotoxin

(CPE)

Indirect activation of cytotoxin (cytK),
enterotoxin (nhe), and hemolysin (hb)
via direct activation of regulator plcR;
direct repression of cereulide
(cesPTABCD) and inhibitor
metalloprotease 1 (inhAT)

Indirect repression of toxin A (tcdA) and B
(tcdB) via direct repression of tcdR

Indirect activation of listeriolysin O (hyl)
via direct activation of regulator prfA;
direct activation of flagellar biosynthesis
and ActA

Indirect activation of surface proteins via
activation of regulator mga; activation
of regulators fasX and pel/sagA

37,59, 167, 168

32

46-48

41, 54

55

50

53

35, 39, 56, 57

61, 62

aNT, not tested.

limitation and reserves expression of hydrolytic enzyme and toxin production for more
severe nutrient limitation (Fig. 3) (5). Also within this spectrum are other virulence gene
regulators, including the agr and sae loci, which together form a regulatory cascade
that integrates several environmental cues, such as growth phase and host defenses (5,
150, 151). Together, the graded response and regulatory cascade are thought to
maximize nutrient acquisition while limiting host toxicity (5).

In contrast to S. aureus, CodY in L. monocytogenes can bind to DNA under both
BCAA-replete and BCAA-depleted conditions and can function as both a repressor and
activator (35, 39). CodY directly or indirectly regulates approximately 14% of L. mono-
cytogenes genes. Approximately 66% of these genes are upregulated in a codY mutant
compared to the wild-type strain when grown in nutrient-rich medium (i.e, BCAA
replete), consistent with the role of CodY as a repressor (Fig. 3) (39). The repressed
genes are primarily involved in nutrient metabolism and transport and stress responses
and include some virulence factors. The remaining 33% of differentially regulated genes
that are downregulated in a codY mutant revealed an underappreciated role for CodY
as an activator in this organism (39). The genes that are activated by CodY under these
conditions include the arginine biosynthesis pathway and flagellar biosynthesis genes.
Interestingly, CodY also acts as an activator under BCAA-depleted conditions, with
approximately 30% of differentially regulated genes downregulated in a codY mutant
compared to the wild-type strain when grown in BCAA-limited growth medium (Fig. 3).
Under BCAA-depleted conditions, CodY is a direct activator of prfA, a global virulence
gene regulator in L. monocytogenes (35). This leads to activation of PrfA-regulated
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FIG 3 CodY regulation of virulence genes in Staphylococcus aureus and Listeria monocytogenes. CodY functions primarily as a repressor in
S. aureus, and its target genes are repressed in the presence of lle and expressed as a hierarchy upon lle depletion (black line). Some target genes
are activated by CodY in S. aureus and are expressed in the presence of lle and repressed upon lle depletion (red line). In L. monocytogenes, CodY
functions as both an activator and a repressor under both high- and low-Ile conditions. Under high-lle conditions, CodY acts as an activator (red
line). CodY also functions as an activator under low-lle conditions (red line) and induces expression of virulence genes. Black lines indicate genes
that are repressed by CodY, and red lines indicate genes that are activated by CodY. The thickness of the line corresponds to the relative

proportion of genes in that category.

virulence factors, including listeriolysin O and the surface protein ActA, which are
important for intracellular replication and cell-to-cell spread, respectively (57, 152, 153).
Consequently, an L. monocytogenes codY mutant is impaired in motility and intracellular
replication (35, 39). The role of CodY during L. monocytogenes infection is more difficult
to discern, because although a codY mutant is attenuated in vivo in comparison to a
wild-type (WT) strain, implicating CodY as an activator of virulence, a codY mutation
rescues the virulence of a strain where CodY is constitutively active (i.e., a relA mutant),
also demonstrating its role as a repressor of virulence (35, 56). It is therefore challenging
to classify CodY as either a repressor or activator of virulence in this organism. Rather
its overall impact on virulence will depend on the resulting gene expression profile at
any given CodY activation state.

The advancements made in these pathogens highlight how BCAA (namely, lle)
limitation is linked to promoting virulence of both organisms but via distinct mecha-
nisms: that is, via CodY-dependent repression of virulence genes in S. aureus and
CodY-dependent activation and/or repression of virulence genes in L. monocytogenes
(5, 39). As such, virulence is significantly influenced by CodY activity, such that two
distinct lifestyles (i.e., nontoxic versus toxic for S. aureus and motile versus cytosolic
replication for L. monocytogenes) are displayed at either end of the spectrum of BCAA
concentrations, suggesting that even modest changes in intracellular lle concentrations
can have drastic consequences for virulence. It is not surprising, then, that two recent
studies have uncovered that both pathogens tightly regulate BCAA biosynthesis via a
shared mechanism resulting in a BCAA “auxotrophy” phenotype, which might allow
them to increase their capacity to respond to a wider range of BCAA levels to reduce
the likelihood of untimely virulence determinant expression (69, 76).

BCAA auxotrophy: a metabolic strategy to promote environmental adapta-
tion? As discussed in a previous section, both S. aureus and L. monocytogenes require
the addition of BCAAs to the growth medium to support growth due to minimal levels
of BCAA biosynthesis (69, 104, 107, 119). Two mechanisms of repression control this: (i)
lle-dependent CodY repression and (ii) a cis-acting BCAA-dependent attenuator (69, 76).
CodY represses the attenuator and the ilv-leu operon under high-lle conditions to limit
BCAA biosynthesis. As lle is depleted, repression is relieved; however, the attenuator
further regulates the levels of ilv-leu transcripts in response to Leu and lle availability in
S. aureus and all three BCAAs in L. monocytogenes (69, 76). This additional “checkpoint”
in repression is thought to delay the repletion of BCAAs, extending the range of BCAA
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starvation and therefore the range of CodY activation states. Indeed, an L. monocyto-
genes strain lacking the attenuator-dependent repression synthesizes more BCAAs and
exhibits reduced expression of the virulence gene regulator prfA in comparison to the
wild-type strain (76); that is to say, prompt repletion of BCAAs via endogenous synthesis
prevents the cells from reaching a state of BCAA deprivation necessary for CodY to bind
to the prfA promoter and activate its transcription. As discussed previously, several
Gram-positive bacteria display little to no BCAA biosynthesis, suggesting that this
might represent a metabolic strategy to better coordinate virulence gene expression in
response to nutritional cues in the environment.

CONCLUSIONS AND FUTURE DIRECTIONS

Recent advancements in the area of BCAA metabolism have identified the impor-
tance of BCAA acquisition and synthesis for pathogen growth in vivo and have revealed
that a pathogen'’s preferred strategy reflects its unique physiological needs and host
tissue preferences. An emerging theme is that regulation of nutrient source preference
is critical to maintaining tight control over intracellular concentrations of BCAAs and
ensures that pathogens are responsive to fluctuations in these levels and therefore are
able to initiate the appropriate adaptive response, which can have significant conse-
quences for virulence. Therefore, future studies should continue to focus on identifying
how each of these mechanisms influences intracellular pools of BCAAs. In Gram-
positive bacteria, this includes evaluating how manipulation of BCAA transporters
and/or biosynthesis influences intracellular levels of lle and, subsequently, CodY activ-
ity. In S. aureus, depletion of exogenous lle has a significant impact on CodY activity,
and therefore CodY target genes are derepressed in a strain lacking the lle transporter
BrnQ2 (69). Similarly, mutation of BCAA transporters in B. subtilis leads to a decrease in
CodY activation, although the sole contributions of each of the three transporters
remain to be determined (118). Levels of endogenous synthesis, too, impact CodY
activity in L. monocytogenes and B. subtilis (29, 76). In Gram-negative bacteria, the role
of BCAA deprivation in regulating virulence remains to be explored. Evidence in the
Gram-negative swine pathogen Actinobacillus pleuropneumoniae suggests the exis-
tence of a parallel response. A. pleuropneumoniae encounters BCAA limitation in the
porcine lung and requires BCAA biosynthesis for full virulence in this environment
(154). Furthermore, BCAA deprivation triggers upregulation of not only BCAA biosyn-
thesis, but also several genes that are upregulated during infection, some of which have
putative Lrp binding sites (155). This suggests that BCAA deprivation, sensed via Lrp,
might also act as an important environmental cue for Gram-negative pathogens. Future
studies will provide more insight into how pathogens obtain BCAAs and how they
regulate their intracellular levels to promote their survival and ability to cause disease.
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