
CBE—Life Sciences Education • 21:ar43, 1–13, Fall 2022 21:ar43, 1

ARTICLE

ABSTRACT
Quantitative and computational skills are required of 21st-century biologists. While 
biology student abilities and attitudes toward math have been studied extensively, less 
is known about corresponding attitudes toward computer science (CS). It is important 
to understand how students perceive math and CS subjects and whether those percep-
tions are linked or operate contradictorily to determine instructional best practices. This 
study 1) determined biology students’ perceptions of math and CS in biological contexts, 
2) measured the linkage of those perceptions, and 3) examined additional factors affecting 
attitudes. Students (N = 272) were surveyed using the original and a CS-adapted version 
of the Math-Biology Values Instrument to determine interest, perceived utility, and per-
ceived costs toward math and CS in biological contexts. Mixed-effects models were used 
to determine correlations between task values and investigate effects of exposure to top-
ics and demographic factors. Math and CS values exhibited positive correlations, but utility 
and cost were more negative for CS, possibly due to less exposure to CS before college, 
and overall attitudes were influenced by CS background and gender. Given these find-
ings, we make educational recommendations for CS and math exposure early, often, and 
embedded in the biology curriculum.

INTRODUCTION
Biological sciences are growing increasingly reliant on quantitative and computational 
skills (Luscombe et al., 2001; Hood, 2003; National Research Council, 2003; Kelling 
et al., 2009; Markowetz, 2017), particularly in modeling, analyzing, and managing 
large data sets (American Assocation for the Advancement of Science [AAAS], 2011). 
Developing the necessary data analysis skills builds upon math and computer science 
(CS) skills, linking these skill sets by their utility (Knuth, 1974). However, many 
undergraduate curricula still lack substantial and integrative quantitative and compu-
tational instruction (AAAS, 2011), which can lead to inadequate preparation for 
post-undergraduate plans (e.g., graduate school, industry positions), and more 
extremely, basic analytical errors among scientists (Thiese et al., 2015). As student 
perceptions of a topic often dictate performance, understanding how students view 
these concepts is necessary to successfully incorporate them into curricula.

Expectancy-value theory can be a framework to help understand student attitudes 
and behavior. In short, students are more motivated to participate in tasks when they 
both value and are confident that they can complete said tasks (Wigfield and Cambria, 
2010). In this theory, how students value a task is determined by interest (interest and 
enjoyment in task), utility (usefulness of task for future), and cost (negative aspects of 
the task; Wigfield and Eccles, 2000). These values are shaped by social influences and 
previous events to impact motivational beliefs toward future tasks, which ultimately 
manifest in observable behaviors, such as willingness to engage in tasks, effort, per-
sistence, and performance. While one may simultaneously hold interest, utility, and 
cost values, they may be very different and can be independently shaped (Wigfield 
and Eccles, 2000). Thus, understanding these parameters and how they may differ 
relative to one another and task type helps to predict student behavior.
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Previous research has shown that students with higher inter-
est and perceived utility and lower perceived costs are more 
likely to choose to study math and CS (Hembree, 1990; Lapan 
et al., 1996; Gainor and Lent, 1998; Miller and Bichsel, 2004; 
Maltese and Tai, 2011; Andrews and Aikens, 2018). Studies 
have also shown that demographic factors (such as gender, eth-
nicity, and course background) can modulate these values in 
important ways, particularly with respect to decreased engage-
ment predictors for marginalized groups (Eccles et al., 1993; 
Harackiewicz et al., 2016; Witherspoon et al., 2016; Andrews 
and Aikens, 2018), which poses complex challenges when aim-
ing to both modernize and diversify science.

Negative perceptions about math and CS, present at times 
even before instruction (Colon-Berlingeri and Burrowes, 2011; 
Thompson et al., 2013), could hamper even the best attempts 
to incorporate math and CS instruction into undergraduate 
biology curricula. Worse yet, these perceptions can be com-
pounded by the (lack of) required technical and pedagogical 
expertise of instructors and exacerbated in students with weak 
mathematical backgrounds in secondary school (Matthews 
et al., 2009). Thus, even as we improve instructor and student 
preparation for such course work, understanding attitudes 
about math and CS and their interrelatedness is critical in 
determining to what degree historic perceptions may be shifting 
(or perhaps may be overestimated; Thompson et al. 2013) and 
finding best practices to approach teaching such material. Fully 
understanding how students perceive both math and CS and 
whether those perceptions are linked or operate contradictorily 
can shape pedagogical approaches to instruction, including 
how, what, and when to present information and skill-building 
practice to best prepare undergraduate biology students.

Several studies have investigated biology students’ atti-
tudes toward math. In recent years, Andrews and Aikens 
(2018) found that biology students somewhat agreed that 
using math in biology was interesting and agreed that math 
was useful for biology (utility), but also agreed that using 
math in biology had associated costs. Not surprisingly, they 
also determined that students who had higher interest and 
perceived utility and lower perceived costs were more likely to 
take biology courses that included math, specifically modeling 
and statistics (Andrews and Aikens, 2018). Other research has 
also indicated that students generally believe math is import-
ant in biology, but either had positive attitudes (“satisfying”) 
or negative attitudes (“frustrating”) about math (Wachsmuth 
et al., 2017). Both studies’ results are promising in showing 
that biology students are not as uniformly math averse as has 
been thought. Despite this knowledge with respect to math in 
biological contexts, comparable studies do not exist elucidat-
ing biology students’ views on CS, despite its prevalence in 
modern biology. Several surveys for studying CS attitudes 
have been developed (Wiebe et al., 2003; Hoegh and Moskal, 
2009; Dorn and Elliott Tew, 2015; Bockmon et al., 2020), but 
largely focus on attitude differences between genders and sec-
ondary school students, and none have been used specifically 
for undergraduate biology students. Research for incorporat-
ing computational thinking into general science, technology, 
engineering, and mathematics (STEM) has shown that includ-
ing such concepts helps to build relationships between sub-
jects and provide practical skills important for students’ careers 
(Weintrop et al., 2016).

Current curricular methods to teach math and CS in biology 
to undergraduates can generally be categorized into three 
groups: 1) teaching a math/CS course with biology examples 
incorporated (e.g., Aikens et al., 2021), 2) incorporating math/
CS into biology courses (e.g., Metz, 2008; Dodds et al., 2010; 
Colon-Berlingeri and Burrowes, 2011; Schuchardt and Schunn, 
2016; Dewey et al., 2020; Williams et al., 2021), or 3) more 
complex and extensive curricular changes (e.g., Depelteau 
et al., 2010; Usher et al., 2010). Incorporating biology examples 
into math courses, such as calculus, increases students per-
ceived utility and feelings of competence in math (Aikens et al., 
2021; Williams et al., 2021). However, as courses in other 
departments are not typically under biology faculty control, a 
common approach is to instead actively incorporate math/CS 
into biology courses (core lectures and labs), such as in the 
development of population disease models or programming 
statistics to test biological hypotheses. Incorporation of math/
CS skills has previously been demonstrated to be effective in 
increasing knowledge and career relevance of mathematics 
(here, specifically statistics; Metz, 2008; Colon-Berlingeri and 
Burrowes, 2011) and knowledge retention in future classes 
(Metz, 2008). However, research has indicated that students 
still struggle with linking biological and mathematical, particu-
larly statistical, concepts (Colon-Berlingeri and Burrowes, 
2011), which may indicate broader curricular change is neces-
sary. For CS specifically, evidence has shown that incorporation 
of CS does not hamper the learning of biological concepts 
(Dodds et al., 2010), but it is unclear how students perceive 
such approaches and how attitudes around math and CS may 
interact in response to direct instruction, independent of the 
potential to increase biology students’ skills in math and CS.

Despite the intrinsic link between math and CS (Knuth, 
1974) and their dual importance to modern science, students’ 
views about math and CS have not been studied together in the 
context of undergraduate biology. When looking to K–12 litera-
ture, we know that elementary school students who are more 
proficient at math have an easier time learning CS concepts 
(Salac et al., 2020) and that math ability is linked to perfor-
mance in college-level CS classes (Fan and Li, 2002), but we 
know little about how abilities and attitudes about math relate 
to CS attitudes, and whether these links are applicable for both 
biology undergraduates and biology contexts. This is concern-
ing, as often (and increasingly) biologically relevant mathemat-
ics, like statistics, is taught through coding (Weissgerber et al., 
2016). Research has shown that teaching elementary school 
students to code leads to increased mathematical thinking skills 
(Miller, 2019), and while this has not been tested on college 
students in biology, a similar effect on older students is likely.

In this study, students from a large southeastern R1 univer-
sity were surveyed in a pre–post design about their attitudes 
surrounding math and CS in biological contexts. The survey 
contained both the original Math-Biology Values Instrument 
(MBVI; Andrews et al., 2017) and a version adapted for CS. 
These versions are based on the “value” side of Eccles’s Expec-
tancy-value theory (Eccles et al., 1983; Wigfield and Eccles, 
1992, 2000). This study aims to explore three questions: 
1) What are biology students’ attitudes toward both math and 
CS (which has been comparatively understudied)? 2) How do 
factors related to student exposure to math and CS and demo-
graphics modulate attitudes? 3) Is there a link between students’ 
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attitudes about math and CS? We predict that answers to corre-
sponding questions for math and CS will be positively cor-
related, leading to a better understanding of students’ attitudes 
toward math and CS and new approaches for incorporating 
these skills into undergraduate curricula.

METHODS
Setting
Under an approved Institutional Review Board protocol 
(H17449), data were collected over the Fall 2019, Spring 2020, 
and Fall 2020 semesters in two different courses at a large 
southeastern R1 institution. The participants were undergradu-
ate students enrolled in one of two biology courses that incor-
porated math and CS (Table 1). These students had successfully 
completed at least one semester of introductory biology before 
taking these courses.

Courses
Students were surveyed during one of two different courses: an 
introductory lecture course on basic statistical techniques and 
hypothesis testing in biology (hereafter “Biostats Lecture”) and 
a lab that uses data analysis (statistics in R) to help students 
understand ecology (hereafter “Ecology Lab”; Table 1). Biostats 
Lecture was taught during Fall 2019 (in person) and during 
Spring 2020 (transitioned online midsemester). Ecology Lab 

was taught during Spring 2020 (transitioned online midsemes-
ter) and during Fall 2020 (synchronous online). Both courses 
have been historically surveyed in prior semesters using the 
MBVI and showed comparable MBVI responses in the current 
study. The courses are both one of several optional courses 
within the curriculum satisfying a quantitative requirement 
(Biostats Lecture) or core lab (Ecology Lab) requirement, and 
both may be taken by students of all years but are typically 
taken in the second year (Ecology Lab) or third year (Biostats 
Lecture) of the 4-year BS degree. The registration descriptions 
of both courses contain statistics as the math used in the course, 
and this is the primary form of explicit math, as it applies to 
biology that the students encounter in their degree. The CS 
skills most consistently reinforced in biology curriculum and 
directly addressed in these specific courses refer to Weintrop 
et al.’s. (2016) taxonomic term of “Data Practices” (e.g., collect-
ing, analyzing, and visualizing data) and “Computational Prob-
lem Solving Practices” (e.g., programming, trouble-shooting, 
and debugging).

Data Collection and Study Design
Pre and Post Surveys. We conducted a pre/postsemester 
survey (Supplemental Files 1 and 2) to determine students’ 
attitudes toward math and CS in biological contexts. We used 
this to determine baseline correlations of affect for math and 

TABLE 1. Course descriptions and disclosed demographic information of study subjectsa 

Class
Biostats Lecture  

Fall 2019 (N = 64)
Biostats Lecture  

Spring 2020 (N = 89)
Ecology Lab  

Spring 2020 (N = 42)
Ecology Lab  

Fall 2020 (N = 77)

Mode In person In person to online 
midsemester

In person to online 
midsemester

Synchronous online

Gender
 Male % 18.18% 21.92% 35.48% 23.88%
 Female % 80.00% 76.71% 64.52% 76.12%
 Non-binary % 1.81% 1.37% N/A N/A

Racial/ethic demographicsb

 White % 45.45% 38.73% 51.61% 44.12%
 Asian and Asian American % 40.00% 41.10% 29.03% 35.29%

PEER % 14.55% 17.81% 19.35% 20.59%

Course description Introductory lecture course on probability distributions 
and statistical testing, using techniques commonly 
applied in biology research. In-class activities are 
split between lectures, which introduce general 
concepts and outline formal steps for solving 
statistical problems, and independent and small-
group exercises. All class activities are conducted 
using the statistical programming language R.

This laboratory skills–building course addresses 
populations, communities, and ecosystems. 
Students will practice the scientific method and its 
application to ecological principles and will hone 
skills in both statistical data analysis and commu-
nication with scientific and lay audiences. Weekly 
laboratory activities involve both a course-based 
undergraduate research project and weekly data 
analysis and visualization practice (individual and 
in groups) to build specific analytical skills as they 
relate to a given area of ecology. All class activities 
are conducted using the statistical programming 
language R.

Contact hours 1.5 hours (3 hours total) twice weekly 3 hours (single meeting) once weekly
Primary modes of assessment 

(scaled to percent for 
comparison)

In-class exercises (30%)
Tests (50%)
Homework assignments in R (20%)

In-class exercises (∼23%)
Lab report (subsections, full reports) (∼42%)
Lay summary video/presentation (∼8%)
Homework (R analyses and data collection) (∼27%)

aPercentages are based on number of students who answered the question.
bRacial and ethnic minorities include students identifying as Black, Pacific Islander, Native American, Indigenous Peoples, Hispanic or Latino, and two or more races.
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computing and biological contexts and whether the correlation 
changed after experiencing a course that included math and 
computing in a biological context. The pre and post surveys 
were given at the beginning and end (respectively) of a 15-week 
semester. The survey had two parts: part 1 assessed their value 
for math in biological contexts from the MBVI (Andrews et al., 
2017) and part 2 modified the MBVI questions replacing “math” 
with “computer science” to assess value for computer science in 
biological contexts. Both surveys were assessed using confirma-
tory factor analysis (shown in Supplemental Methods and 
Results, Files 3–5) to confirm correct factor structure of our 
modified surveys.

To help assess the instrument for this population and under-
stand how students view the substitution of CS, a group of 150 
students (N = 89 enrolled in Ecology Lab, N = 61 enrolled in 
Biostats Lecture) were asked how they define “math” and “com-
puter science.” While these groups did not differ appreciably by 
course, consistent with the original MBVI, students viewed 
mathematics broadly, collectively defining mathematics with a 
mix of topics, primarily as statistics (39.3%), but also algebra 
(23.9%), calculus (23.5%), and arithmetic (13.3%). When con-
sulted about how they would define computer science, students 
also had broad definitions, which fit into Weintrop et al.’s 
(2016) taxonomy of computational thinking as follows: model-
ing and simulation (finding and testing solutions; assessing 
computational models; 30.5%), data practices (collecting, ana-
lyzing, and visualizing data; 29.9%), computational prob-
lem-solving practices (programming, trouble-shooting, and 
debugging; 27.3%), and systems-thinking practices (under-
standing complex relationships; 12.2%). Thus, just as for math, 
students use a broad umbrella to conceptualize computer sci-
ence, even beyond the activities privileged in the courses in 
which they are surveyed.

The Likert-style survey questions were all assessed on a scale 
of 1 (strongly disagree) to 7 (strongly agree). Survey questions 
represented three Task Value categories (interest, utility, and 
cost) from Andrews et al. (2017) and were asked twice: once 
for math and once for CS (see Table 2). An overall task value 
score was generated for each of the three value categories by 
averaging the response values for each question in that value 
category. Any duplicate students (e.g., students who took the 
survey in two classes) or students who did not complete both 
the pre and post surveys in either class were removed from the 
data set before all analyses (final N = 272). Additional informa-
tion collected from students on the post survey included gen-
der, race, grade point average, and previous experience with 
math and CS.

Survey Analysis
Data Summary. Average, SD, and median were calculated for 
each overall task value score. Box plots were created in R (v. 
4.1.0; R Core Team 2019) using the ggplot2 package (Wick-
ham, 2016). To test for significant differences between students’ 
scores for math and CS within the three task values (interest, 
utility, cost), a paired Wilcoxon signed-rank test was performed 
in R. Additionally, a Levene’s test was performed using the car 
package (Fox and Weisberg, 2019) to determine whether signif-
icant differences existed in the variances of math and CS scores 
within each overall task value (interest, utility, cost). The r 
effect size statistic was calculated for each comparison using 

the rcompanion package (Mangiafico, 2022). Values less than 
0.3 are considered small effects, values between 0.3 and 0.5 are 
moderate effects, and values exceeding 0.5 are large effects 
(Mangiafico, 2022).

Tests for Exposure and Demographic Effects. Additionally, 
Wilcoxon rank-sum tests or Kruskal-Wallis tests were used to 
determine whether significant differences existed between fac-
tors involving students’ exposure to math or CS or demographic 
factors. Effect sizes were calculated for all comparisons using 
either r effect size statistic in the rcompanion package (Mangiaf-
ico, 2022) for Wilcoxon rank-sum tests or the kruskal_effsize 
function in the rstatix package (Kassambara, 2021) for Krus-
kal-Wallis tests. Values less than 0.06 are considered small effects, 
values between 0.06 and 0.14 are moderate effects, and values 
greater than 0.14 are large effects for Kruskal-Wallis effect sizes.

Except for the pre versus post survey comparisons, these tests 
were run on only student post scores. A Kruskal-Wallis test was 
used to determine whether CS background had a significant 
effect on students’ attitude scores. CS background was placed 
into categories based on whether the students had no experi-
ence, intro-level experience (only one or two basic classes), or 
advanced knowledge (objected-oriented computing, algo-
rithms, machine learning, three or more languages, etc.). Fif-
teen percent of students had advanced CS background, with the 
most common courses completed being object-oriented comput-
ing. The majority, 68% of students, had an intro level-back-
ground, having taken a basic procedural programming course to 
learn a language (e.g., Python). The last 17% of students had no 
CS background at all. A Wilcoxon rank-sum test was used to 
determine whether students’ scores were significantly different 
depending on whether the student was completing the pre or 
post survey or the course (Biostats Lecture or Ecology Lab) in 
which the student was enrolled. A Wilcoxon rank-sum test was 
also performed on post survey scores to distinguish differences 
in gender (men or women; nonbinary and transgender identi-
ties were excluded due to small sample size). A Kruskal-Wallis 
test was also performed for race using three categories: White 
students, Asian and Asian-American students, and PEER (per-
sons excluded because of ethnicity or race) students (Asai, 
2020). Post hoc tests were performed when the global Krus-
kal-Wallis test was significant using a Dunn test for multiple 
comparisons from the FSA package (Ogle et al., 2021). All tests 
were performed separately for math and CS on the averaged 
overall task value score and repeated individually for each 
course (Biostats Lecture and Ecology Lab; Supplemental File 6).

Robust Linear Mixed-Effects Models. Robust linear mixed- 
effects models (rlmer(); Koller 2016) were used in this study to 
determine the relationship between students’ attitudes about 
math and CS. Robust linear mixed-effects models were chosen 
to deal with nonnormality and heteroskedasticity in residuals. 
These were chosen over traditional linear mixed-effects models 
with transformed data to make data interpretation easier, as 
robust linear mixed-effects models weight the residuals and 
have the same effect as a transformation. The full model tested 
for each overall task value score included the CS survey response 
for each task value (interest, utility, cost): CS ∼ Math + (1|Stu-
dentID) + (1|Class), where CS is the CS survey responses and 
math is the math survey responses. The random effects of 
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student ID (each individual student) and class (an individual 
instance of a single course taught in a single semester) are pres-
ent to control for nonindependence of sampling across pre- and 
post-surveys and multiple classes and semesters. As Akaike 
information criterion cannot be used on robust linear mixed-ef-
fects models, the model was reduced by removing random 
slopes and intercepts that accounted for no variance in the 
model or random slopes that had a correlation of 1 or 0. The 
effects package (Fox, 2003; Fox and Weisberg, 2019) in R was 
used with ggplot2 (Wickham, 2016) to plot the regression lines 
for the subscore of each value (interest, utility, cost) and ques-
tion for robust linear mixed-effects effects models and general-
ized linear mixed models.

Model Metrics. The p values are not calculated for robust lin-
ear mixed-effects models, as degrees of freedom cannot be cal-
culated accurately; therefore, slopes were considered significant 
when t > 1.96 (Luke, 2017). Marginal and conditional R2 values 
were calculated for robust linear mixed-effects models using the 
equations from Nakagawa and Schielzeth (2013). Marginal R2 
represents the variance explained by fixed effects only, while 
conditional R2 represents the variance explained by both the 
fixed and random effects in the model (Nakagawa and Schiel-
zeth, 2013; Nakagawa et al., 2017; Johnson, 2014). Variance 
values required for the R2 calculation were extracted from the 
model using the insight package (Lüdecke et al., 2019).

RESULTS
What Are Biology Students’ Attitudes toward Both Math 
and CS?
Interest. Students could respond on a scale from strongly dis-
agree (1) to strongly agree (7) with the general statement, “It is 
interesting to use to understand Biology,” where the blank rep-
resents math or CS (specific questions used for interest in Table 
2). For both math and CS, scores were seen at every value in the 
range, with an average score of 5.08 ± 1.60 SD for math and an 
average score of 4.87 ± 2.04 SD for CS (Table 2). Students’ 
math interest scores were higher than students’ CS interest 

scores. A Wilcoxon signed-rank test indicated that this differ-
ence was significant (T = 3202, p < 0.01); however, the effect 
size was small (r = 0.14). CS scores were more variable than 
math scores, F(1, 257) = 15.10, p < 0.001 (Figure 1).

Utility. Students could respond on a scale from strongly dis-
agree (1) to strongly agree (7) with the general statement, 
“It is useful to use in Biology,” where the blank represents 
either math or CS (specific questions used for utility in Table 
2). For both math and CS, scores were seen at every value in 
the range, with an average score of 5.67 ± 1.36 SD for math 
and an average score of 4.67 ± 1.92 SD for CS (Table 2). CS 
scores were significantly lower than the scores for math 
based on a Wilcoxon signed-rank test (T = 5471.5, p < 0.001) 
with a small effect size (r = 0.11). As for interest, CS scores 
were more variable than math scores, F(1, 276) = 17.90, p < 
0.001 (Figure 1).

Cost. Students could respond on a scale from strongly dis-
agree (1) to strongly agree (7) with the general statement, “It 
is costly to use in Biology,” where the blank represents either 
math or CS (specific questions for cost in Table 2). For both 
math and CS, scores were seen at every value in the range, 
with an average score of 4.73 ± 1.84 SD for math and an aver-
age score of 5.14 ± 1.81 SD for CS (Table 2). A Wilcoxon 
signed-rank test indicated that students perceived significantly 
higher costs for CS than math (T = 2008.5, p < 0.001). The 
effect size for cost was large (r = 0.70). In contrast to results 
for interest and utility, variances of the math and CS cost 
scores were not significantly different between math and CS, 
F(1, 280) = 0.006, p = 0.94 (Figure 1).

How Do Factors Related to Student Exposure to Math 
and CS and Demographics Modulate Attitudes?
Interest. There were significant differences, as determined by a 
Kruskal-Wallis test, in students’ interest scores based on degree 
of CS background for CS scores, H(2) = 7.04, p < 0.05, effect 
size = 0.04 (Figure 2B), but not for math scores, H(2) = 4.77, 

TABLE 2. Average of responses to survey questionsa 

Question Math average ± SD CS average ± SD

Interest
 Int2 Using math/CS to understand biology intrigues/would intrigue me 5.22 ± 1.50 4.94 ± 1.90
 Int6 It is/would be fun to use math/CS to understand biology. 5.05 ± 1.60 4.90 ± 2.06
 Int7 Using math/CS to understand biology appeals/would appeal to me. 5.00 ± 1.66 4.76 ± 2.13
 Int8 Using math/CS to understand biology is/would be interesting to me. 5.05 ± 1.64 4.87 ± 2.08

Utility
 Uty3 Math/CS is valuable for me for my life science career. 5.65 ± 1.35 4.71 ± 1.95
 Uty4 It is important for me to be able to do math/CS for my career in the life sciences. 5.71 ± 1.35 4.61 ± 1.99
 Uty5 An understanding of math/CS is essential for me for my life science career. 5.65 ± 1.41 4.47 ± 1.90
 Uty6 Math/CS will be useful to me in my life science career. 5.74 ± 1.33 4.89 ± 1.84

Cost
 Cst6 I have/would have to work harder for a biology course that incorporates math/CS than for 

one that does not.
5.19 ± 1.71 5.49 ± 1.65

 Cst7 I worry/would worry about getting worse grades in a biology course that incorporates 
math/CS than one that does not.

4.73 ± 1.90 5.04 ± 1.90

 Cst8 Taking a biology course that incorporates math/CS intimidates/would intimidate me. 4.27 ± 1.90 4.91 ± 1.89
aQuestions are numbered as in the original survey instrument from Andrews et al. (2017). Int, interest; Uty, utility; Cst, cost.
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Figure 3A). Advanced CS students saw sig-
nificantly higher utility in using CS in biol-
ogy than students with intro knowledge (z 
= 3.16, adjusted p < 0.01) and students 
with no CS experience (z = 2.33, adjusted 
p < 0.05) based on a Dunn post hoc test. A 
Wilcoxon rank-sum test showed that Ecol-
ogy Lab students saw significant higher 
utility in using math in biology than stu-
dents in Biostats Lecture (W(NEcology Lab = 
64, NBiostats Lecture = 76) = 1817, p < 0.01, 
effect size = 0.22; Supplemental File 7) 
but did not see significant difference in 
CS’s utility (W(NEcology Lab = 64, NBiostats Lecture = 
74) = 2192, p = 0.45, effect size = 0.06; 
Supplemental File 7). As for interest, expo-
sure over the duration of a course (pre vs. 
post survey) did not cause differences in 
the students’ utility scores based on a Wil-
coxon rank-sum test (math: W(NPre = 140, 
NPost = 140) = 10,622, p = 0.21, effect size 
= 0.08; CS: W(NPre = 138, NPost = 138) = 
10024, p = 0.45, effect size = 0.05; Supple-
mental 8). A Wilcoxon rank-sum test 
showed a significant effect of gender on 
students’ CS (W(NMen = 31, NWomen = 107) = 
2220, p < 0.01, effect size = 0.25; Figure 

3D), but not their math scores (W(NMen = 32, NWomen = 104) = 
1963.5, p = 0.12, effect size = 0.13; Figure 3C), with men seeing 
higher utility in CS than women. Race had no significant effect 
on math (H(2) = 1.04, p = 0.59, effect size = 0.007; Figure 3E) 
or CS (H(2) = 1.48, p = 0.48, effect size = 0.004; Figure 3, E and 
F) interest scores.

Cost. CS background had a significant effect on both math and 
CS cost scores based on a Kruskal-Wallis test (math: H(2) = 
7.29, p < 0.05, effect size = 0.04; CS: H(2) = 16.17, p < 0.001, 
effect size = 0.10; Figure 4, A and B). Advanced students per-
ceived lower cost than students with no CS experience (math: z 
= 2.47, adjusted p < 0.05; CS: z = 3.88, adjusted p < 0.001). 
Based on a Dunn post hoc test, students with intro CS experi-
ence also perceived lower costs than students with no CS expe-
rience (math: z = 2.33, adjusted p < 0.05; CS: z = 3.14, adjusted 
p < 0.01). Additionally, intro students perceived lower costs 
than students with no experience (math: z = 2.47, p < 0.05; CS: 
z = 3.14, p < 0.01). A Wilcoxon rank-sum test showed that Ecol-
ogy Lab students perceived higher costs for including math 
(W(NEcology Lab = 65, NBiostats Lecture = 76) = 1927, p < 0.05, effect size 
= 0.19) and CS (W(NEcology Lab = 65, NBiostats Lecture = 76) = 1862, p < 
0.05, effect size = 0.21) components in their biology courses 
than students in the Biostats Lecture (Supplemental File 7). 
Again, there was no difference (math: W(NPre = 141, NPost = 141) 
= 10,017, p = 0.91, effect size = 0.007; CS: W(NPre = 141, NPost = 
141) = 9485, p = 0 0.50, effect size = 0.04; Supplemental File 8) 
based on a Wilcoxon rank-sum test in students’ cost scores 
before versus after taking either class (pre vs. post survey). 
Gender also had a significant effect on cost scores based on a 
Wilcoxon rank-sum test, but only for CS (W(NMen = 32, NWomen = 
107) = 1286.5, p < 0.05, effect size = 0.18; Figure 4D), 
with men perceiving fewer costs than women, and not math 

p = 0.09, effect size = 0.02 (Figure 2A). Advanced students had 
taken at least two CS courses, including one on advanced topics 
(e.g., object-oriented programing or machine learning) or knew 
three or more CS languages as reported in the survey. A Dunn 
post hoc test showed that students with advanced CS knowl-
edge reported significantly higher interest for both CS com-
pared with students who had taken a single CS course on basics 
with intro knowledge (z = 2.42, adjusted p < 0.05) and students 
with no background in CS (z = 2.44, adjusted p < 0.05). How-
ever, Wilcoxon rank-sum tests indicated no significant differ-
ences in students’ interest scores between the two courses (Bio-
stats Lecture and Ecology Lab) in which they encountered both 
math and CS in biological contexts (math: W(NEcology Lab = 76, 
NBiostats Lecture = 76) = 2305, p = 0.49, effect size = 0.06; CS: 
W(NEcology Lab = 43, NBiostats Lecture = 75) = 1690, p = 0.66, effect size 
= 0.04; Supplemental File 7), nor did scores did differ after 
exposure to those topics within each course as shown by pre 
and post survey scores (math: W(NPre = 141, NPost = 141) = 
10,238, p = 0.66, effect size = 0.03; CS: W(NPre = 118, NPost = 
118) = 7886, p = 0.075, effect size = 0.12; Supplemental File 8). 
Additionally, there was a significant effect of gender on stu-
dents’ math scores (W(NMen = 31, NWomen = 107) = 2268, p < 
0.01, effect size = 0.24; Figure 2C) according to a Wilcoxon 
rank-sum test, but not on their CS scores (W(NMen = 26, NWomen = 
90) = 1450.5, p = 0.06, effect size = 0.17; Figure 2D). Race had 
no significant effect (math: H(2) = 0.53, p = 0.77, effect size = 
0.01; Figure 2E; CS: (H(2) = 2.45, p = 0.29, effect size = 0.003; 
Figure 2F) on student interest scores.

Utility. A Kruskal-Wallis test showed a significant effect of stu-
dent’s CS background on students’ CS utility scores (H(2) = 
10.01, p < 0.01, effect size = 0.06; Figure 2B), but not their 
math utility scores (H(2) = 3.63, p = 0.16, effect size 0.01, 

FIGURE 1. Students have more interest, see more utility in, and perceive lower costs for 
math in biological contexts over CS. Questions are scaled from 1 (strongly disagree) to 7 
(strongly agree) based on a Likert scale. The dots signify outliers (± 1.5 * interquartile range).
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(W(NMen = 32, NWomen = 107) = 1697, p = 0 0.94, effect size = 
0.006; Figure 4C). Race, however, had no significant effect on 
students’ math cost scores (H(2) = 1.31, p = 0.52, effect size = 
0.005; Figure 3E) or CS (H(2) = 2.23, p = 0.33, effect size = 
0.002; Figure 4, E and F).

Is There a Link between Students’ Attitudes about Math 
and CS?
We examined how student values (interest, utility, and cost) in 
math and CS were correlated using robust linear mixed-effects 
models. Each model contained the fixed effects of a single value 
(either interest, utility, or cost) in math and the corresponding 
value in CS, and the random effects of student ID, class (one 
instance of a course in a single semester). Overall task value 
scores were calculated by averaging the answers from the indi-
vidual questions (Table 2).

Interest. For interest in the subject, math and CS overall task 
value scores were strongly positively correlated (conditional R2 
= 0.75; Figure 5A), with a significant positive slope of 0.66 (t = 
5.41 > 1.96; Table 3).

Utility. Utility scores for math and CS were strongly positively 
correlated (conditional R2 = 0.83) for the utility overall task 
value score (Figure 5B), with a significant positive slope of 0.69 
(t = 3.09 > 1.96; Table 3).

Cost. The perceived costs overall task value scores for math 
and CS were strongly positively correlated (conditional R2 = 
0.74; Figure 5C), with a significant positive slope of 0.44 (t = 
15.49 > 1.96; Table 3).

DISCUSSION
Quantitative and computational skills are increasingly useful in 
the life sciences, but expectancy-value theory predicts that stu-
dents’ value toward these topics will determine whether and 
how they engage (Wigfield and Cambria, 2010). In particular, 
higher interest and utility but lower costs predict higher likeli-
hoods that a student would choose to study math and CS 
(Hembree, 1990; Lapan et al., 1996; Gainor and Lent, 1998; 
Miller and Bichsel, 2004; Maltese and Tai, 2011; Andrews and 
Aikens, 2018). Biology students at an R1 research university who 
were surveyed about their opinions on math and CS in biological 

FIGURE 2. Effects of student exposure and demographics on students interest scores. (A, B) Students with advanced CS experience show 
significantly higher interest in using CS in biology than students with intro or no CS experience. CS experience has no significant effect on 
math scores. (C, D) There is no significant effect of gender on interest for either math or CS. (E, F) There is no significant effect of race on 
interest for either math or CS. Questions are scaled from 1 (strongly disagree) to 7 (strongly agree) based on a Likert scale. The dots on the 
plot signify outliers (± 1.5 * interquartile range). Within a subplot, asterisk indicate significant differences. Significance levels are * < 0.05, 
** < 0.01, *** < 0.001.
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contexts showed variable but generally positive attitudes in 
terms of interest (somewhat agreed) and utility (agreed to some-
what agreed); however, they also perceived costs (somewhat 
agreed). These results are consistent with prior studies on math 
using the same survey (Andrews and Aikens, 2018) and other 
instruments (Wachsmuth et al., 2017). This study establishes the 
first documentation of undergraduate values of CS in biological 
contexts. Specifically, we show that students show less interest in 
using CS in biology and perceive CS as having higher costs and 
lower utility than math, although values between math and CS 
are positively correlated across all three categories (interest, util-
ity, and cost). Differences in utility might be the most meaningful 
to consider, as they had the largest effect size. These scores may 
represent a best-case scenario, as they arise from a sample of 
students at a STEM-oriented technology university, but nonethe-
less, the data still indicate that biology students may not be as 
averse to math and CS as commonly assumed.

Students Show More Variable Interest and Utility Values 
for CS
Students’ scores for interest and utility of using CS in biological 
contexts were significantly more variable than for math, which 
likely points to more variability in knowledge and experience 
with computer science. CS has not been widely integrated into 

secondary school curricula (Computer Science Teachers Associ-
ation, 2019) or college course work. However, students regu-
larly take classes devoted only to math throughout their school-
ing, and those courses typically share common/consistent 
standards and instructional practices with explicit teacher cre-
dentialing in the subject. While states are increasingly introduc-
ing CS standards (Computer Science Teachers Association, 
2019), course work, resources, and teacher supports (Blum and 
Cortina, 2007; Ericson et al., 2007; Hart et al., 2008; Ni et al., 
2011; Schulte et al., 2012; Dengel, 2017; Reding and Dorn, 
2017), there remains a lack of teachers qualified to teach CS, 
especially at the Advanced Placement level (Ericson et al., 
2007). Thus, large variability exists in the CS knowledge, skills, 
and experiences students bring with them to college. As college 
educators “inherit” these students, an important practice would 
be to intentionally assess student backgrounds at the beginning 
of courses requiring CS and consider 1) supplemental material 
for students who are not performing at the desired level and 2) 
intentionally grouping students by comfort and skill with CS.

Instructors Should Prioritize Engaging Students Directly in 
Math and CS in Biological Contexts
Positive correlations between students’ attitudes about math 
and CS indicate that individual students tend to view both 

FIGURE 3. Effects of student exposure and demographics on student utility scores. (A, B) Students with advanced CS experience perceive 
significantly higher utility in using CS in biology than students with intro or no CS experience. CS experience has no significant effect on 
math scores. (C, D) Men perceive significantly higher utility in using CS in biology than women, but there is no significant effect for math. 
(E, F) There is no significant effect of race on utility for either math or CS. Questions are scaled from 1 (strongly disagree) to 7 (strongly 
agree) based on a Likert scale. The dots on the plot signify outliers (± 1.5 * interquartile range). Within a subplot, asterisk indicate significant 
differences. Significance levels are * < 0.05, ** < 0.01, *** < 0.001.
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subjects similarly. This correlation is strongest for utility, fol-
lowed by interest, then cost. These positive correlations were 
expected, given the intrinsic link between math and CS (Knuth, 
1974), but point to the usefulness of teaching these subjects 
together. Guzman et al., (2019) studied how incorporating 
homework assignments in R (vs. JMP, a plug-and-chug statisti-
cal software) into a biostatistics class increased positive emo-
tions toward the class. Students using R were more motivated 
in the class and were excited to learn a valuable skill (Guzman 
et al., 2019). This suggests that teaching math and CS concur-
rently can help increase biology students’ enjoyment and under-
standing of both subjects and highlight their applicability to 
real-world problems.

Biology Departments and Curriculum Designers Should 
Consider Combining Math and CS Instruction versus 
Separate Course Work
Departments shape undergraduate education by helping to 
determine which content, courses, and sequence classes 
should be taken by students for their degrees. Biology depart-
ments may help students to take and see relevance in math 

and CS by offering at least one combined math-CS–based 
biology course, rather than relying on student skill develop-
ment through course work offered separately through math 
and CS departments. This can be achieved in several ways by 
1) changing current courses to include math and CS; 2) cre-
ating new courses combining math, CS, and biological topics 
more meaningfully; or 3) thoroughly incorporating math and 
CS throughout the curriculum. When possible, the biology 
courses created to combine these skills should be informed by 
math and CS educational frameworks (e.g., Portnoff, 2020) 
and/or codeveloped with extradepartmental faculty. This 
approach need not require students take additional course 
work (often a barrier for students; Dodds et al., 2010), but 
could merely modify existing requirements to better suit the 
computational skill development needs of biology students.

If values are predictive of performance, then teaching 
these subjects together may increase student understanding 
of both subjects (as seen in McMaster et al., 2007; Wiede-
mann et al., 2020). Previous approaches to develop courses 
that combine biology with math (Aikens et al., 2021) and 
CS (Dodds et al., 2010) have had success; specifically, these 

FIGURE 4. Effects of student exposure and demographics on student cost scores. (A, B) Students with no CS experience perceive signifi-
cantly higher costs for using both math and CS in biology than students with introductory and advanced CS experience. (C, D) Men 
perceive significantly lower costs for using CS in biology than women, but there is no significant effect for math. (E, F) There is no signifi-
cant effect of race on costs for either math or CS. Questions are scaled from 1 (strongly disagree) to 7 (strongly agree) based on a Likert 
scale. The dots on the plot signify outliers (± 1.5 * interquartile range). Within a subplot, asterisk indicate significant differences. Signifi-
cance levels are * < 0.05, ** < 0.01, *** < 0.001.



21:ar43, 10  CBE—Life Sciences Education • 21:ar43, Fall 2022

A. M. Caughman and E. G. Weigel

studies demonstrated the ability to increase perceived utility 
for students, which is predictive of taking further course work 
(Andrews and Aikens, 2018). Thus, if combined course work 
is pursued, to increase student engagement in future courses 
and develop meaningful skills, it should occur early in the 
curriculum and any elective or prerequisite structures should 
be carefully considered, especially if they serve more as a bar-
rier to students than to ensure their preparation for the 
course.

Prior and Repeated Exposure Matters for Increasing the 
Value of Math and CS in Biological Contexts
While it is likely easier to add a single course than alter an 
entire curriculum, we wish to stress that experience gained in 
one course is not likely to have immediate, positive effect on 
students’ values. We found no significant change across the 
semester in values for the courses we examined, which suggests 
that integrated, repeated practice across courses, rather than a 
single course approach, may be necessary to impact task values 
more demonstrably. Students may simply need to spend a spe-

cific amount of time on a subject before they learn it adequately 
(Fredrick and Walberg, 1980) and change values (see Downing 
and Finlay, 2021). This can easily and meaningfully be accom-
plished with several courses over the length of a degree rather 
than as a stand-alone course.

Because students in this study differed widely in their CS 
background (advanced: 15%; intro: 68%; no experience: 17%), 
we were able to correlate increases in experience with increases 
in utility and decreases in perceived cost, particularly for stu-
dents who were in the advanced category. Similar correlations 
have been found with increasing number of math courses 
(Simpkins et al., 2006; Andrews and Aikens 2018). While it is 
harder to disentangle whether the students with CS back-
grounds had inherently higher baseline values or whether 
experience in those courses increased scores, gaining CS expe-
rience likely influences task values within at least a subset of 
students. These findings suggest that potentially requiring 
math and CS courses earlier in biology curricula (particularly 
for CS, which may be more unfamiliar to students) could lead 
to a reduction in perceived costs and potentially an increase in 

FIGURE 5. Scatterplot of overall value scores for (A) interest, (B) utility, and (C) cost with linear regression line based on linear mixed-ef-
fects model. The x-axis represents the sum of student responses for each question within a value for math. The y-axis represents the sum 
of student responses for each question within a value for CS. Shaded area represents 95% confidence intervals. Overall task value scores 
are calculated by averaging the values within a category (interest, utility, and cost).
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interest and the ability to take further biology courses that use 
math and CS.

Biologically Based Math and CS Instruction Must Be Aware 
of Diverse Learners and How to Support Them
In addition to exposure, we found demographic characteristics 
influence students’ scores, consistent with prior studies 
(Harackiewicz et al., 2016; Witherspoon et al., 2016; Aikens 
and Andrews, 2018). Gender was the most impactful demo-
graphic factor on value scores: men exhibited more positive 
scores (more interest in math, more perceived utility in CS, and 
fewer perceived costs in CS) than women students. Our results 
here are consistent with those reported in Andrews and Aikens 
(2018) for the original MBVI study, as well as other studies out-
side biology for both math (Hyde et al., 1990) and CS (Baser, 
2013). While women do not differ in ability compared with 
men (Hyde and Linn, 2006; Williams and Ceci, 2007; Halpern 
et al., 2007), confidence in their abilities and anxiety levels dif-
fer between men and women and seem to drive student 
achievement and attitudes toward math (Else-Quest and Mineo, 
2013; Baser, 2013).

Our study showed no significant differences in value scores 
based on race, which mirrors results from similar studies 
(Andrews and Aikens 2018). This may be due to underlying 
population demographic differences or unexamined interac-
tions between race, ethnicity, and social class, which have pre-
viously been shown to affect student achievement in introduc-
tory science courses (Harackiewicz et al., 2016). Additionally, 
broad categories, like PEER students, which included Black stu-
dents, Hispanic students, and students of multiple ethnicities in 
this study, are not nuanced enough and may mask differences 
between individual ethnicities. While categorically similar, the 
specifics of ethnic and racial categories are often functionally 
different between studies (Hunt and Megyesi 2008) and are 
complicated by cultural identity of individuals, making compar-
isons between studies difficult. Future studies should examine 
more about student identity, not only race or ethnicity, but other 
potential factors, such as career aspirations, and their impact on 
such scores.

Limitations and Future Directions
While we were able to examine course work in multiple classes 
over a few semesters and modalities, these data are still derived 
from a single R1 institute with a strong STEM culture, which 
may limit the overall applicability of the findings to other insti-
tutions. Additionally, our sample sizes are small, especially 
within the CS background, gender, and ethnicity comparisons. 

Small effect sizes were seen in many of the analyses preformed 
but are likely highly variable due to our small sample size. 
Future work should directly examine the impact of the suggested 
curricular and course interventions on student task values and 
performance in other institutional settings and particularly on 
groups underserved by current practices.
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