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Abstract

The importance of the role of fibroblasts in cancer microenvironment is well-recognized.

However, the relationship between fibroblasts and asbestos-induced lung cancer remains

underexplored. To investigate the effect of the asbestos-related microenvironment on lung

cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media

derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and

crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbes-

tos-exposed lung fibroblast media were monitored using a real-time cell analysis system.

Proliferation and migration of A549 cells increased in the presence of media derived from

asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung

fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cul-

tured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and

migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts

was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other

stressors, such as hydrogen peroxide and UV radiation didn’t show as similar effect as

asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array

identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer

cells, to be specifically produced in higher amounts by the three types of asbestos-exposed

lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that

interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung

cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by

amphibole asbestos (amosite and crocidolite).

Introduction

Lung cancer, one of the respiratory diseases caused by asbestos inhalation, is estimated to

cause higher annual deaths than other asbestos-related diseases. Asbestos-induced lung cancer

is further aggravated by pulmonary fibrosis, which provides a favorable environment for lung
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cancer development [1]. Indeed, radiographic and histological evidence shows that most

patients with lung cancer employed in the asbestos cement and asbestos insulation industries

were affected by pulmonary fibrosis. These reports demonstrated that excessive asbestos can

act as a lung carcinogen because of its fibrogenicity [2].

Fibroblasts, the end effector cells of fibrosis in fibrotic lungs, are embedded within the inter-

stitium of all epithelial tissues and play important roles in organogenesis, wound healing,

inflammation, and fibrosis [3]. In particular, fibroblasts that have acquired an activated pheno-

type (activated fibroblasts and cancer-associated fibroblasts), characterized by the expression

of α-smooth-muscle actin (α-SMA) and secretion of increased amounts of extracellular matrix

(ECM) components and growth factors such as transforming growth factors-β (TGF-β), pro-

mote tumor growth and progression. These types of fibroblasts are often referred to as myofi-

broblasts because of the expression of α-SMA, a myofibroblast marker [4].

Asbestos fibers deposited in interstitial spaces are phagocytosed by macrophages and epi-

thelial cells [5, 6], which subsequently alter the morphology and biochemistry of fibroblasts

during fibrogenesis [7]. As myofibroblasts are the predominant sources of collagen and fibro-

genic cytokines in fibrotic lesions, previous studies showing that direct exposure of lung fibro-

blasts to asbestos increases deposition of collagen or ECM constituents, including

hydroxyproline [8], have postulated that asbestos-treated lung fibroblasts have the potential to

activate or differentiate into myofibroblasts and consequently cause fibrosis [9].

These fibroblasts also continually modify their interactions with the lung microenvironment

and are capable of supporting the dynamic complexity of tumor microenvironment [10]. For

example, the secretory functions of activated fibroblasts positively mediate proliferation, survival,

and metastasis of cancer cells via cell-cell contact or paracrine/exocrine signaling at the second-

ary tumor growth or metastatic sites [4]. Also, activated fibroblasts promote angiogenesis, which

indirectly affects the migratory and invasive properties of cancer cells [11]. Therefore, activated

fibroblasts or myofibroblasts are accepted niches for understanding the mechanisms of asbestos-

induced lung cancers as they can act as physical supporting elements as well as regulatory com-

ponents [12] for cancer growth and metastasis [13] in the lung microenvironment [14].

Despite the possibility that the asbestos-induced microenvironment might increase the

growth and metastatic potential of lung cancer [15], a detailed mechanism correlating carcino-

genesis with the recruitment of asbestos-exposed fibroblasts, myofibroblasts, or fibrosis is still

being unraveled. To better understand the kinetics of the process via which asbestos-exposed

lung fibroblasts affect lung cancer development, we treated lung cancer cells with asbestos-

exposed fibroblast-derived media. Real-time cell analysis (RTCA) platforms, which are cur-

rently being used [16] for their real-time and label-free analytical ability, can assess cell growth

and migratory kinetics. This system can recognize the attachment of adherent cells as electrode

impedance and measure cellular response, including proliferation and migration in physiolog-

ically relevant conditions.

The purpose of this study was to investigate the effects of different types of asbestos-exposed

lung fibroblasts on lung cancer cells. Using the RTCA system, we assessed the response of lung

cancer cells to media derived from lung fibroblasts exposed to three representative types of

asbestos, chrysotile, amosite, and crocidolite. We also demonstrated that common cytokines

were responsible for the stimulation by asbestos-exposed lung fibroblast-derived media.

Materials and methods

Asbestos samples

Three types of Union Internationale Contre le Cancer (UICC) standard asbestos (chrysotile

#02701-AB, amosite #02703-AB and crocidolite #02704-AB) were purchased from SPI supplies
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(West Chester, PA USA). The samples were suspended in deionized water (18.2 MO�cm,

Direct-Q, Millipore, Billerica, MA, USA, #ZR0Q00800) and sonicated in an ultrasonic cleaner

(BRANSON 8510, Branson, Danbury, CT, USA, #B8510E-MTH) for 2 h.

Asbestos morphology

The shapes of the fibers were determined using scanning electron microscopy (SEM: Gemini-

SEM 300, Carl Zeiss, Oberkochen, Germany) as shown in S1 Fig. The sample was Au-coated

using sputter-coater Quorum Q150R S (Quorum Technologies Ltd., Lewes, UK) prior to SEM

observation.

Asbestos crystallinity

The crystalline information (S2 Fig) of asbestos was obtained using the solid residues and an

X-ray diffractometer (XRD: D2 PHASER, Bruker Corp., Billerica, MA, USA) equipped with a

CuKα radiation source of λ = 0.15418 nm (10 mA and 30 kV). The data were obtained by scan-

ning the 2θ region between 7˚ and 80˚ at a scan rate of 1.0˚/min.

Cell culture

Human lung cancer cell lines (NCI-H358, ATCC1 CRL-5807, lung bronchioloalveolar carci-

noma; Calu-3, ATCC1HTB-55, lung adenocarcinoma; A549, ATCC1 CCL-185, lung ade-

nocarcinoma) and IMR-90 human lung fibroblast cell lines (ATCC1 CCL-186) were

obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA). IMR-90

and Calu-3 cells were cultured in Eagle’s minimal essential medium (EMEM), NCI-H358 cells

in Roswell Park Memorial Institute (RPMI)-1640 medium, and A549 cells in F-12K medium

supplemented with 10% fetal bovine serum (FBS, WelGENE Inc., Deagu, South Korea) and

100 U/mL penicillin-streptomycin (WelGENE Inc.) in a humidified incubator set at 37˚C with

5% CO2. Subsequently, NCI-H358 and A549 cells were cultured in EMEM to match the

medium used for IMR-90 cells. We performed cytotoxicity and cell viability assays as well as

real-time cell monitoring for 120 hours to observed the effects of exposure to 50 mg/L chryso-

tile, 50 mg/L crocidolite, and 50 mg/L amosite on IMR-90 making IMR-90 being cytostatic,

and decided to use 50mg/L as our experimental concentration for all types of asbestos [17].

The study was approved by the institutional review board of Yeouido St. Mary’s Hospital

(Korea; approval number SC19ZNSI0015) and was in accordance with the relevant legislation.

Confocal laser microscope

We used a confocal laser microscope to observe how lung fibroblasts gained myofibroblastic

features by expressing increased cytoplasmic actin filaments. Briefly, IMR-90 cells (50,000

cells/well) were plated in four-well chamber slides (#154526; Thermo Fisher Scientific™, Wal-

tham, MA, USA) and treated with 50 mg/L chrysotile, amosite, or crocidolite for 1, 12, and 24

hours. After incubation, the cells were treated with 200 nmol/L MitoTracker™ Red (Molecular

Probes/Invitrogen, Carlsbad, CA, USA) for 25 min at 37˚C and 5% CO2, fixed using the

Image-iT1 fixation/permeabilization kit (Molecular Probes), washed three times with PBS,

and non-specific sites were blocked with PBS containing 2 g/L bovine serum albumin for 60

min at 25˚C. Cells were then stained with 200 μL of 3× Dulbecco’s PBS (DPBS) containing

5 μL of Alexa Fluor1 488 phalloidin (200 units/mL in methanol; Molecular Probes) for 20 min

and washed with DPBS; nuclei were counterstained with NucBlue1 Fixed Cell ReadyProbes1

Reagent (R37606; Molecular Probes/Invitrogen). The slides were covered with coverslips and

cells were observed and photographed under a confocal laser scanning microscope (LSM 710;
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Carl Zeiss, Jena, Germany). Images were processed using the Image Examiner software (Carl

Zeiss). Confocal laser microscopy showed an increase in actin filaments with preserved mito-

chondrial activity in IMR-90 cells after 24 hours of exposure to each asbestos fiber. After 48

hours of exposure to asbestos fibers, IMR-90 cells showed increased actin filaments but

decreased or clumped mitochondrial activity (S3 Fig). Hence, we decided to measure the effect

on IMR-90 cells with myofibroblastic features after 12 hours of exposure to asbestos fibers.

Asbestos-exposed cell-derived media

For preparing the media of asbestos-exposed lung fibroblast and cancer cells, 50,000 cells/mL

of lung cancer cells and IMR-90 cells were seeded into 0.4 μm transwell polycarbonate mem-

branes (costar 3401, Corning, West Chester, PA, USA), and cultured for 24 h with or without

50 mg/L of the three types of asbestos (chrysotile, amosite, and crocidolite). Then, the media

were aspirated from the wells and used in experiments mentioned in the following sections.

Cell proliferation

Cell proliferation was analyzed in real-time using the commercially available impedance-based

xCELLigence System (Roche Applied Science, Mannheim, Germany) in E-plates 16 (ACEA

Biosciences, Inc) according to the manufacturer’s instructions. The background signal of the

culture medium was the first set up in an E-plate 16. Lung cancer cells were seeded in E-plates

per the cell number obtained after titration in lung fibroblast cell-derived media (S4 Fig); the

cell numbers were 10,000 cells/well for NCI-H358, 40,000 cells/well for Calu-3, and 4,000 cells/

well for A549. The signal was measured every 15 min, starting immediately after the seeding.

Twenty-four hours after seeding, the culture media were removed and replaced with the asbes-

tos-exposed lung fibroblast-derived media and asbestos-exposed lung cancer cell-derived

media. Cell groups directly exposed to asbestos were also included. Normalized cell index

(NCI) was calculated by dividing every CI at any given time by CI at the normalized point.

The experiment was performed in triplicate or quadruplet.

Cell migration

The migration characteristics of the A549 lung cancer cell line was investigated by installing

CIM-plate 16 in RTCA, which allowed migration of cells toward the chemoattractant side

through the microporous wall membrane. Media from IMR-90 and A549 cells and 50 mg/L of

asbestos-exposed IMR-90 and A549 cells were added to the lower chamber (LC) of the CIM-

plate 16. Media (EMEM) with or without 50 mg/L of asbestos were also placed in the LC. Two-

hour serum-starved A549 cells were plated on the upper chamber (UC) of the CIM-plate 16 at

a density of 20,000 cells/well with serum-free media. The effects of the tested media on A549

cells that pass through the electrodes from the UC to the LC are shown as CI values. This

experiment lasted for 24 h.

Assessing cell proliferation after H2O2 and UV treatment

Preliminary experiments were conducted on CellTiter-Glo to determine the treatment condi-

tions for hydrogen peroxide (H2O2, Duksan Pure Chemicals, Gyeonggi-do, Korea) and UV

radiation (UV crosslinker. Fisher Biotech, Pittsburgh, PA, USA) such that survival rates similar

to those of IMR-90 cells exposed to 50 mg/L asbestos for 24 h were obtained (S5 Fig). IMR-90

cells were plated on a 24-well plate at a density of 50,000 cells/mL. After incubation, the cells

were covered with DPBS and exposed to 1 mM H2O2 for 3 h or 25 J/m2 UV radiation. The

damaged cells were immediately incubated in fresh media for 24 h. To monitor cell response
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using RTCA, NCI-H358 (10,000 cells/well), Calu-3 (40,000 cells/well), and A549 (4,000 cells/

well) cells were seeded on E-plate 16. Following 24 h, the media were removed and replaced

with EMEM, IMR-90 cell-derived media, and media derived from IMR-90 cells treated with

H2O2 and UV.

Analysis of secretome content

Asbestos-exposed IMR-90 cell-derived media were obtained by collecting the targeted medium

as described above. The presence of common cytokines and chemokines (interleukin (IL)-1α,

IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17A, and granulocyte-macrophage

colony-stimulating factor (GM-CSF)) in the media was determined using the Multi-Analyte

ELISArray kit (#MEH-0006A, Qiagen). Briefly, the collected cell culture supernatants were

placed on the kit’s plate and incubated for 2 h at room temperature. After washing the mem-

brane to remove unbound protein, biotinylated detection antibodies were added to bind to the

analyte. After incubating at room temperature for 1 h and washing, an avidin-horseradish per-

oxidase conjugate was added and incubated for 30 min at room temperature. A colorimetric

substrate solution that can directly measure the amount of protein present in the sample was

added and incubated for 15 min, followed by addition of the stop solution and measurement

of absorbance at 570 and 450 nm using an ELISA reader (Power wave XS, BioTek, VT, USA).

Statistical analysis

Statistical analysis was performed using the one-way analysis of variance for more than three

samples and Student’s t-test for comparison of two samples (SPSS.v21 Statistical Package, SPSS

Inc., Chicago, IL, USA). Data were analyzed as mean ± standard deviation (SD) of at least

three independent experiments. Probability (P) values < 0.05 were considered significant.

Results

Dynamic real-time cellular profiles of asbestos-exposed lung fibroblast-

derived media in lung cancer cells

Real-time electronic cell sensor arrays were used to monitor the behavior of lung cancer cells

in the presence of media derived from asbestos-exposed IMR-90 lung fibroblast cells. Various

types of media were designed: IMRM (IMR-90 cells-derived media), IMRM-C (50 mg/L chrys-

otile-exposed IMR-90 cells-derived media), IMRM-A (50 mg/L amosite-exposed IMR-90

cells-derived media), and IMRM-D (50 mg/L crocidolite-exposed IMR-90 cells-derived

media). In the same manner, media from three types of lung cancer cells have been abbreviated

as follows: NCI-H358; NCIM (NCI-H358 cells-derived media), NCIM-C (50 mg/L chrysotile-

exposed NCI-H358 cells-derived media), NCIM-A (50 mg/L amosite-exposed NCI-H358

cells-derived media), NCIM-D (50 mg/L crocidolite-exposed NCI-H358 cells-derived media),

Calu-3; CALM (Calu-3 cells-derived media), CALM-C (50 mg/L chrysotile-exposed Calu-3

cells-derived media), CALM-A (50 mg/L amosite-exposed Calu-3 cells-derived media),

CALM-D (50 mg/L crocidolite-exposed Calu-3 cells-derived media), A549; A549M (A549

cells-derived media), A549M-C (50 μg/mL chrysotile-exposed A549 cells-derived media),

A549M-A (50 mg/L amosite-exposed A549 cells-derived media), and A549M-D (50 mg/L cro-

cidolite-exposed A549 cells-derived media).

When NCI-H358, Calu-3, and A549 were exposed to IMRM, IMRM-C, IMRM-A, and

IMRM-D for 24 h in the experimental period, the growth of all three lung cancer cell lines

increased promptly. At any given time point, NCI-H358, Calu-3 and A549 cells incubated in

IMRM, IMRM-C, IMRM-A, and IMRM-D proliferated more than in those incubated with
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EMEM (P < 0.05, n = 4). Importantly, after approximately 30 h, cell growth was higher in

IMRM-C, IMRM-A, and IMRM-D than in IMRM (Fig 1A). On the other hand, when lung

cancer cells were grown in the presence of each lung cancer cell-derived media or asbestos-

exposed lung cancer cell-derived media, the lung cancer cells displayed no difference in growth

rates and did not proliferate compared to those grown in EMEM (Fig 1B). The growth of all

lung cancer cells was significantly inhibited when exposed directly to asbestos (Fig 1C)

(P< 0.05, n = 4). Statistical analysis of NCI value against the control (EMEM) indicated signif-

icant differences among various derived media at 96 h (NCI-H358 and Calu-3 cells) and 72 h

(A549 cells) (Fig 1D). These studies demonstrated that direct exposure of lung cancer cells to

asbestos induces cytotoxic effects, whereas the interaction between asbestos and lung fibro-

blasts favored the growth of lung cancer cells.

Monitoring cell migration behavior in real time

The rate of migration of lung cancer cells in the presence of media obtained from asbestos-

exposed lung fibroblasts was assessed (Fig 2). Fibroblasts were assessed the UC of CIM-plate

16, while the target media was placed in the LC of CIM-plate 16, and the migration of these

cells was monitored over 24 h. The optimal cell density for assessing cell migration was 20,000

cells/well for A549 cells; NCI-H358 and Calu-3 cells could not be used for migration assays

due to lack of migration affinity in the RTCA system (S6 Fig). The evolution of the CI value

with time, which indicated the migration rate of A549 cells, showed that the rate of migration

to IMRM was higher than that of EMEM (P < 0.05, n = 4). More importantly, A549 cells

migrate more rapidly toward IMRM-C, IMRM-A, and IMRM-D than to IMRM (P < 0.05,

n = 4) (Fig 2A and 2D). In contrast, A549M, A549M-C, A549M-A, A549M-D, and direct addi-

tion of asbestos in LC did not enhance migration over time (Fig 2B, 2C and 2D). These results

indicate the synergistic effect of the interaction between asbestos and lung fibroblast cells on

lung cancer cell migration.

Kinetics of lung cancer cell proliferation in the presence of media derived

from stress-induced lung fibroblasts

To compare the stress induced by asbestos with those induced by other stressors, two most

widely used stress inducers (H2O2 and UV radiation) were tested on lung cancer cells (Fig 3).

Media derived from IMR-90 cells following exposure to H2O2 and UV appeared to be less

potent in enhancing the growth of NCI-H358 (Fig 3A), Calu-3 (Fig 3B), and A549 (Fig 3C)

cells. The cultures were grown in media derived from H2O2- and UV-exposed IMR-90 cells

showed either similar growth rates compared to those of EMEM or lower values than those of

IMRM.

Analysis of cytokine profiles after asbestos exposure

We next investigated the cytokine profile of asbestos-exposed IMR-90 cells at the protein level

using an enzyme-linked immunosorbent assay (ELISA). Supernatants of IMR-90 cells treated

with or without 50 mg/L of asbestos for 24 h were prepared and used against a panel of 12

common cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17A, and

GM-CSF). Among the cytokines tested, IL-6 and IL-8 were considerably induced upon expo-

sure to IMRM-C, IMRM-A, and IMRM-D compared to IMRM (Fig 4). The cytokine analysis

revealed that although IMR-90 cells themselves secrete IL-6 and IL-8, asbestos exposure

induced even higher levels of both IL-6 and IL-8 than IMRM. Supernatants of IMR-90 cells

showed similar levels of IL-6 and IL-8 secretion for all types of asbestos tested.

Asbestos and lung cancer
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Discussion

Although the association between asbestos exposure and an increased risk of bronchogenic

carcinoma is indisputable [18], few studies have considered the effects of lung fibroblasts in

this process. Recent studies regarding tumor microenvironment clearly showed that activated

fibroblasts and myofibroblasts surrounding the cancer cells are associated with cancer growth

and metastasis [13, 19]. Therefore, lung fibroblasts, present at the active site of pulmonary

fibrosis in the interstitium where asbestos fibers embed, are as likely to be associated with lung

cancer development as asbestos itself [20]. Therefore, it is important to investigate the

Fig 1. RTCA traces showing the effect of three types of asbestos-related media on NCI-H358, Calu-3, A549 lung cancer cells. Following 24 h of

seeding, NCI-H358, Calu-3 cells, A549 cells were cultured with derived media from (A) IMRM, IMRM-C, IMRM-A, and IMRM-D, (B) NCIM,

NCIM-C, NCIM-A, NCIM-D, CALM, CALM-C, CALM-A, CALM-D, A549M, A549M-C, A549M-A, and A549M-D (C) direct exposure to 50 mg/L

of three types of asbestos (chrysotile, amosite, and crocidolite). Cells were also grown in EMEM normal medium. (D) Comparison of the percentage

difference in the mean NCI compared to control (EMEM) at 96 h. Error bars represent SD (n = 4). �P< 0.05, ��P< 0.01, ���P< 0.001 compared to

EMEM, and #P< 0.05, ##P< 0.01, ###P< 0.001 for comparisons between two groups.

https://doi.org/10.1371/journal.pone.0222160.g001

Fig 2. Monitoring the migration of A549 cells. Migration of A549 cells in various media were monitored for 24 h using the RTCA system.

Representative graph of migration of A549 cells towards (A) IMRM, IMRM-C, IMRM-A, IMRM-D, and EMEM, (B) A549M, A549M-C,

A549M-A, A549M-D, and EMEM, (C) chrysotile, amosite, crocidolite, and EMEM. (D) Comparison of calculated NCI values of migration in

all media at 24 h. Experiments were performed in quadruplet and presented as mean ± SD. Quantification of observed migration revealed

significance., ��P< 0.01 compared to EMEM and #P< 0.05, ##P< 0.01 compared to IMRM.

https://doi.org/10.1371/journal.pone.0222160.g002

Asbestos and lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0222160 September 6, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0222160.g001
https://doi.org/10.1371/journal.pone.0222160.g002
https://doi.org/10.1371/journal.pone.0222160


Asbestos and lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0222160 September 6, 2019 9 / 15

https://doi.org/10.1371/journal.pone.0222160


interactions between asbestos and lung fibroblasts and how is affects lung cancer cells to obtain

new insights regarding asbestos-induced lung cancer. There is a strong argument regarding

the relationship between asbestos exposure and lung cancer due to the distribution of the

related conditions. Asbestosis is primarily a disease of the lung periphery that is typically more

severe in the lower lobes, whereas asbestos-related bronchogenic carcinoma is a more central

process that commonly affects the upper lobes [21].

In this study, lung cancer cells were cultured with asbestos-exposed IMR-90 lung fibro-

blast-derived media to establish how paracrine signaling, which has a potential impact on

carcinogenesis despite the anatomic distance, play a role as asbestos related tumor microen-

vironment. A previous study used an experimental design similar to that of our study to

describe tumor microenvironment [22]. This experimental method allows to identify the

characteristics of the interaction between cancer cells and fibroblasts such as cancer prolif-

eration, promotion, and toxicity, analyze the genes involved using conditioned media in
vitro, and study the tumor microenvironment. This is a practical technique that serves as a

basis for studying the function of target genes, which may later affect the growth of cancer

cells in the tumor microenvironment.

We established an asbestos-induced lung microenvironment by culturing lung cancer cells

with media derived from asbestos-exposed IMR-90 lung fibroblast cells and monitored how

asbestos-exposed lung fibroblasts modify the proliferation and migratory properties of lung

cancer cells utilizing the RTCA system. RTCA overcomes the limitations of the endpoint assay

and facilitates measurement of cellular perturbation such as a number of attached cells and cell

morphology that respond to the environment in real-time. The concentration of asbestos was

Fig 3. Effects of media derived from H2O2 and UV-stressed lung fibroblasts on lung cancer cells. (A) RTCA

sensing profile of CI values over time for (A) NCI-H358, (B) Calu-3, and (C) A549 cells exposed to H2O2 or UV-

treated IMR-90 cell-derived media. The experiment was also conducted in EMEM and IMRM as controls. Data show

mean ± SD (n = 3).

https://doi.org/10.1371/journal.pone.0222160.g003

Fig 4. Asbestos-exposed IMR-90 cells show increased cytokine secretion. Cytokines in the supernatants of IMR-90 cells exposed or

unexposed to asbestos for 24 h were measured using ELISA. The results are expressed as mean ± SD after subtracting negative value from

each value. �P< 0.05, vs. IMRM group, n = 4.

https://doi.org/10.1371/journal.pone.0222160.g004
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set to ensure asbestos-related intracellular toxicity according to the results of a previous study

on the effect of various types of asbestos in cells [17].

IMR-90 lung fibroblast-derived media increased the growth of NCI-H358, Calu-3, and

A549 lung cancer cells compared to fresh EMEM with 10% FBS and 100 U/mL penicillin-

streptomycin. Previously published data on human dermal fibroblasts and human colon can-

cer cells indicated that fibroblasts possess the ability to stimulate the proliferation and migra-

tory properties of cancer cells [13, 23, 24]. However, more importantly, when lung cancer cells

were grown in the presence of media derived from asbestos-exposed lung fibroblast cells, all

the lung cancer cell lines exhibited increased growth rate than those grown in IMR-90 cell-

derived media (Fig 1). The characteristics of cellular and tissue reactions after a brief asbestos

exposure have been previously defined in vivo [25]. In that study, the authors observed that

inhaled asbestos fibers were almost exclusively located in the interstitium of the model rats. In

particular, the asbestos fibers were located in fibroblasts, and this was accompanied by

increased areas of myofibroblast/smooth muscle cell aggregates. Additional report on the

enhanced production of fibrous collagen in cultures of rabbit lung fibroblasts with 50 mg/L

asbestos indicate the fibrogenic potential of asbestos-exposed fibroblasts that may contribute

to the progression of pulmonary fibrosis [26]. In this way, activated fibroblasts and myofibro-

blasts, which are not eliminated by apoptosis, play crucial roles in promoting carcinogenesis

by secreting various factors [27].

In striking contrast, asbestos-exposed lung cancer cell-derived media did not enhance pro-

liferation of lung cancer cells and direct exposure of lung cancer cells to asbestos was cytotoxic.

This toxic effect has previously been reported as a part of the cellular response to asbestos-asso-

ciated lung cancers. Indeed, apoptosis of A549 cells was induced by chrysotile asbestos expo-

sure via the activation of c-Jun N-terminal kinase (JNK), which is linked to lung diseases [28].

Nevertheless, as signals from IMR-90 cells cultured with asbestos also provided an attractive

gradient for faster migration of A549 cells as well as the proliferation of lung cancer cells, direct

asbestos-lung fibroblast contact has implications in the pathophysiology of asbestos-induced

lung cancers. This result suggests that the effect of fibroblasts exposed to asbestos on cancer

cell migration is potentially synergistic, especially on A549 cells. Tumor progression not only

depends on the cells type but on aberrant mutations or gene dysregulation [29]. Therefore, it

would be interesting to study the timing of the effects of fibroblast-derived media on other cell

lines.

In addition, our observation that lung cancer cells rarely proliferate when cultured in the

presence of media from IMR-90 cells stressed by H2O2 and UV indicates that asbestos expo-

sure promotes the growth of lung cancer cells distinctively unlike the stimulation by other

stress inducers (Fig 3).

Previous studies have shown that cancer-associated fibroblasts (CAF) secrete a variety of

cytokines in and high levels of growth factors such as EGF, TGF-β, HGF, and FGF-2 into

CAF-conditioned media [30]. Thus, we selected the cytokine panel to identify the effects of

CAF-derived genes on cancer cells and analyzed and quantified the cytokines secreted to the

culture medium.

We, therefore, analyzed and quantified cytokines secreted in culture supernatants for fur-

ther understanding the underlying mechanism of action. The secreted cytokines were tethered,

biotinylated, and detected via a series of antigen-antibody reactions using the Multi-Analyte

ELISA array. Results demonstrated that the proinflammatory cytokines IL-6 and IL-8 were

markedly released from IMR-90 cells upon exposure to all three types of asbestos (Fig 4). Pro-

duction of IL-6 and IL-8 affect the growth and migration of lung cancer cells as it plays a

potential role in cancer development. For instance, several investigations have shown that

secretion of IL-6 induces survival and proliferation of cancer cells and accelerates tumor
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growth via paracrine [31] and autocrine signaling [32]. Furthermore, it functions as a mediator

that activates cancer cells against apoptosis via mitogen-activated protein kinase (MAPK) sig-

naling or signal transducer and activator of transcription (STAT) factor [33]. The activation of

jak2 / stat3 by IL-6 overexpression increased tumor initiation and affected the levels of many

kinases in A549 and CL1-5 lung cancer cells. Blockade of the IL-6 / JAK2 / STAT3 pathway

reduced the ability of A549 and CL1-5 cells to form tumors [34, 35]. IL-6 deficiency dimin-

ished the migration and invasion-promoting effects of adipose stromal cells as well as lung

cancer cells [36].

Therefore, blockade of IL-6 signaling may act as an effective treatment for lung cancer [31].

IL-8 is also released in response to various external factors. The various stimuli, including

inflammatory signals, biological species, and environmental stress enhance IL-8 production

via the NF-κB pathway [37]. It also activates MAPK p42/44 downstream signaling pathways,

resulting in the proliferation and survival of lung cancer cells [38]. In addition, IL-8 released

from lung fibroblasts acts as an angiogenic inducer and regulator of the survival and growth of

cancer cells [39, 40]. Taken together, the release of IL-6 and IL-8 from IMR-90 cells as a conse-

quence of asbestos exposure can be highlighted as one of the possible carcinogenesis. However,

more precise understanding of the molecular mechanism is required to understand whether

these factors induce the growth and migration of cancer cells or whether additional interac-

tions with other substances are also required [38].

Our observations also suggest that chrysotile asbestos, which is softer and less dangerous

than the amphibole asbestos (amosite and crocidolite), possesses pathogenic potential [41].

Previous studies have postulated that amphibole asbestos is durable and strong owing to its

structure, which includes a double chain of tetrahedral silicate with silica, whereas chrysotile

favorably dissolves in tissues because of the presence of magnesium on its exterior [42, 43].

Nonetheless, this study shows that interaction between chrysotile and lung fibroblasts in the

lung microenvironment might induce lung cancer development as much as amphibole

asbestos.

Molecular studies have shown that chrysotile-exposed-human mesothelial cells are more

adhesive to tissue culture dishes and express and release higher levels of TNF-α growth factors

than cells exposed to other asbestos [44]. Chrysotile is less toxic than crocidolite and amosite

but induces the expression of more inflammatory genes related to cancer progression [17].

Taken together, these results suggest that the interaction between chrysotile and lung fibro-

blasts in the tumor microenvironment can promote lung cancer development as much as the

exposure to amphibole asbestos (amosite and crocidolite).

Our study proposes a simplified model to identify the interactions between tumor and sur-

rounding cells and focusses on the characteristics of cancer and surrounding cells and the

genes associated with asbestos-exposed fibroblasts. Therefore, it should be noted that the com-

plexity of the critical microenvironment is excluded.

Conclusions

In summary, our study shows that the progression of asbestos-related lung cancer is substan-

tially associated with asbestos-exposed lung fibroblasts in vitro. Growth and migration of lung

cancer cells were obviously promoted in the presence of media derived from three types of

asbestos (chrysotile, amosite, and crocidolite)-exposed lung fibroblasts, which contained high

levels of IL-6 and IL-8. The limitation of this study is that the media is obtained by the rela-

tively acute response of lung fibroblast against asbestos fibers. Importantly, further study with

different settings including long term asbestos exposure, and various asbestos will give more

insight into the asbestos-related tumor microenvironment.

Asbestos and lung cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0222160 September 6, 2019 12 / 15

https://doi.org/10.1371/journal.pone.0222160


Supporting information

S1 Fig. SEM images of three types of asbestos. Chrysotile of serpentine group features bun-

dled fibrils. (A) Chrysotile (B) Amosite and (C) Crocidolite of amphiboles group are needle-

like in shape.

(TIF)

S2 Fig. X-ray diffraction (XRD) patterns of three types of asbestos. (A) Chrysotile, (B)

Amosite, and (C) Crocidolite. Their crystallographic information was identified using XRD

and checked using Joint Committee on Powder Diffraction Standards.

(TIF)

S3 Fig. Confocal laser microscopy of IMR-90 cells exposed to asbestos fibers. Cells were

treated with chrysotile, amosite, or crocidolite (50 mg/L) for the indicated times and stained to

visualize the mitochondria (red), filamentous actin (green), and nuclei (blue).

(TIFF)

S4 Fig. Optimizing lung cancer cell number. Lung cancer cells were seeded onto E-plate 16

from cell densities of 5,000 cells/well to 60,000 cells/well. Media derived from lung fibroblasts

were added. The optimum number of (A) NCI-H358 (B) Calu-3, and (C) A549 cells were

10,000 cells/well, 40,000 cells/well, and 4,000 cells/well, respectively.

(TIF)

S5 Fig. Viability of IMR-90 cells treated with asbestos, H2O2, and UV. ATP production of

viable cells was determined using the CellTiter-Glo luminescence assay (Promega, Southamp-

ton, UK). (A) Viability of IMR-90 cells exposed to 50 mg/L asbestos (chrysotile, amosite, and

crocidolite) for 24 h. (B) Viability of 24 h-cultured IMR-90 cells after exposure to 0.01, 0.1, 1,

and 10 mM H2O2 for 3 h. (C) Viability of 24 h-cultured IMR-90 cells after UV irradiation (10,

25, 50, and 100 J/m2).

(TIF)

S6 Fig. Titration of lung cancer cells for migration in RTCA. (A) NCI-H358 and (B) Calu-3

cells could not migrate toward CIM-plate 16. (C) A549 cells showed different rates of migra-

tion according to the cell seeding numbers.

(TIF)
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