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Abstract

Introduction: It is unclear how rates of white matter microstructural decline differ

between normal aging and abnormal aging.

Methods: Diffusion MRI data from several well-established longitudinal cohorts of

aging (Alzheimer’s Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal

Study of Aging [BLSA], Vanderbilt Memory & Aging Project [VMAP]) were free-water

corrected and harmonized. This dataset included 1723 participants (age at baseline:

72.8± 8.87 years, 49.5%male) and 4605 imaging sessions (follow-up time: 2.97± 2.09

years, follow-up range: 1–13 years, mean number of visits: 4.42± 1.98). Differences in

white matter microstructural decline in normal and abnormal agers was assessed.
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Results: While we found a global decline in white matter in normal/abnormal aging,

we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to

abnormal aging.

Conclusions:There is a prevalent role of whitemattermicrostructural decline in aging,

and future large-scale studies in this area may further refine our understanding of the

underlying neurodegenerative processes.
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HIGHLIGHTS

∙ Longitudinal data were free-water corrected and harmonized.

∙ Global effects of white matter decline were seen in normal and abnormal aging.

∙ The free-water metric wasmost vulnerable to abnormal aging.

∙ Cingulum free-water was themost vulnerable to abnormal aging.

1 INTRODUCTION

While white matter microstructural decline has been well-

characterized in normal aging,1–15 fewer studies have focused on

how these aging patterns differ in participants with neurodegenera-

tive disease (e.g., Alzheimer’s disease [AD]). Given that white matter

has been strongly implicated to play a role in the development of

AD,16,17 paired with recent evidence that apolipoprotein E-ε4 sta-

tus leads to cholesterol deposits in oligodendrocytes resulting in

demyelination,18 it is pivotal that large-scale studies determine which

white matter tracts aremost vulnerable to AD.

Prior literature has strongly implicated that participants with AD

exhibit globalwhitematter differences, with a pronouncedmicrostruc-

tural decline in the temporal lobe.4,14,19–25 Recent evidence, however,

has drastically enhanced our knowledge in this space.26,27 One cross-

sectional study quantified cholinergic pathway and cingulum bundle

microstructure along the AD continuum, and found these tracts were

vulnerable even at the earliest stages of disease (i.e., subjective cogni-

tive decline).26 A recently published longitudinal study of aging com-

pared rates of white matter microstructural decline between cogni-

tively unimpaired individuals with subsequent memory impairment,27

and found abnormal microstructure in the splenium of the corpus cal-

losum and inferior frontal occipital fasciculus. Together, these studies

suggest that there is widespread white matter vulnerability associ-

atedwith cognitive impairment andAD,with pronounced effects in the

limbic, association, and occipital transcallosal tracts.

Recently developed tractography templates have enhanced cover-

age and improve spatial specificity, whichmay further our understand-

ing of the aging brain.28–31 For example, we have created tractography

templates of the sensorimotor tracts, transcallosal projections, and

medial temporal lobe projections which have already demonstrated

utility in a variety of neurodegenerative disorders.16,30,31 Incorpo-

rating these spatially precise white matter tractography templates

will give us unparalleled insight into the patterns of white matter

microstructural decline that differ in normal aging and AD. In addition

to new tractography templates, advanced post-processing techniques

now allow for researchers to correct for well-known confounds, such

as partial volume, in diffusion MRI acquisitions.32,33 One technique,

developed by Pasternak et al., uses a bi-tensor model to character-

ize an extracellular component (i.e., the free-water [FW] component),

which reflects the amount of unrestricted water movement within a

voxel.32 This extracellular component is then removed from the image

and FW-corrected intracellular metrics can be quantified, including

FA (FAFWcorr), axial diffusivity (AxDFWcorr), radial diffusivity (RDFWcorr),

and mean diffusivity (MDFWcorr). This method has already been

used to study several neurodegenerative disorders, including chronic

stroke,34 essential tremor,35 parkinsonism,30,36–38 schizophrenia,39

and AD.16,40 With respect to normal aging, a recent study used FW

correction to evaluate a cohort of 212 participants ranging from 39 to

92 years.41 In this study, they found that the effect of normal aging

was mitigated in intracellular metrics after FW correction, suggest-

ing that these metrics are biased by the extracellular component and

could bedue to larger interstitial spaces and/or inflammation. They fur-

ther concluded that the aging effect on FW was consistent with the

anterior-posterior hypothesis, whereby anterior regions of the brain

had higher FW compared to posterior regions. There has yet to be a

large-scale analysis leveraging FW correction to understand the dif-

ferences in white matter microstructural decline between normal and

abnormal aging.

In the present study, we used single-shell diffusion MRI data from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Baltimore

Longitudinal Study of Aging (BLSA), and Vanderbilt Memory & Aging

Project (VMAP) cohorts. In total, this study used data from 1723

participants across 4605 imaging sessions. All diffusion MRI data
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were preprocessed with an identical pipeline and conventional and

FW-corrected microstructural values were quantified within 48 white

matter tracts spanning the association (n= 3), limbic (n= 7), projection

(n = 9), and transcallosal (n = 29) tracts. Given that there were differ-

ent scanners, sites, and protocols, we harmonized all microstructural

values using the Longitudinal ComBat technique and these harmonized

values were used to study the effect of aging on white matter. These

harmonized data were then used to: (1) determine how normal and

abnormal aging are associated with white matter microstructural

decline, (2) quantify the interaction between normal and abnormal

aging on white matter microstructural decline, and (3) investigate

which white matter tracts are most vulnerable to abnormal aging. We

hypothesized that limbic, prefrontal transcallosal, and occipital tran-

scallosal tracts would exhibit the greatest differential rates of white

matter microstructural decline between normal and abnormal aging.

2 METHODS

2.1 Study cohort

The present study used data from three well-established cohorts

of aging. The largest cohort was the neuroimaging substudy of the

BLSA42—behavioral assessment in this cohort began in 1994 and

included dementia-free participants aged 55–85 years. From 2006 to

2018, BLSA MRI data were collected on a 1.5T scanner, and in 2009

this cohort was expanded to include participants aged 20 and older

and 3T MRI data collection began on a single scanner. Data from

the BLSA cohort are available upon request by a proposal submis-

sion through the BLSA website (www.blsa.nih.gov). Another cohort

leveraged in this study was the well-known ADNI (adni.loni.usc.edu)

cohort43—this cohort was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial magnetic res-

onance imaging (MRI), positron emission tomography (PET), other

biologicalmarkers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impair-

ment (MCI) and early AD. The final cohort used in this study was

VMAP44—data collection for VMAP began in 2012 and includes par-

ticipants aged 60+ years who are considered cognitively unimpaired

or have mild cognitive impairment. Data from the VMAP cohort can

be accessed freely following data use approval (www.vmacdata.org).

Within each cohort, informed consent was provided by all partici-

pants and all studies were conducted in accord with the Declaration of

Helsinki. For each cohort, several demographic and clinical covariates

were required for inclusion, including age, sex, educational attainment,

race/ethnicity, apolipoprotein E (APOE) haplotype status (ε2, ε3, ε4),
and cognitive diagnosis (cognitively unimpaired [CU], mild cognitive

impairment [MCI], AD). Each cohort had its own inclusion/exclusion

criteria42–44—participants were included in this study if they had dif-

fusion MRI data, demographic/clinical data, were 50+ years old, and

passed neuroimaging QC procedures. Cognitive diagnosis across each

participant’s imaging sessions were evaluated to determine if they

RESEARCH INCONTEXT

Systematic Review: The authors used PubMed and Google

Scholar to review literature that used conventional and free-

water (FW)-corrected microstructural metrics to evaluate

normal and abnormal aging. Several studies have found dif-

ferential aging within several white matter tracts, but no

large-scale, multi-site study has been conducted.

Interpretation: Although conventional metrics are associ-

ated with both normal and abnormal aging, FW-corrected

metrics provided some of the most significant differences

between normal and abnormal aging. We found that the FW

metric itself—particularly within the cingulum bundle—was

vulnerable to abnormal aging.

Future Directions: Future studies leveraging conventional

and FW-corrected should pair thesemeasureswith biomark-

ers of disease (e.g., cerebrospinal fluid [CSF]-derived amy-

loidosis) to further our understanding of the biological

processes driving white matter decline in aging.

were “normal” or “abnormal” agers. In total, this study included 1723

participants across 4605 imaging sessions. Participants were con-

sidered normal agers if they had a CU diagnosis across all imaging

sessions, whereas participants with any non-CU diagnosis across any

imaging session were considered abnormal agers. Sample sizes, demo-

graphic information, and health characteristics for each cohort can be

found in Table 1, and parameters for each MRI acquisition included in

this study can be found in Table S1.

2.2 dMRI acquisition and preprocessing

All data were preprocessed using the PreQual pipeline, which is

an automated pipeline that corrects diffusion MRI data for distor-

tions/motion and eddy currents.45,46 The quality control PDFs which

are outputted by the PreQual pipeline were manually inspected, and

imaging sessions with poor quality were removed. Generally, imaging

sessionsweremostly removed due to inaccurate synthetic b0 creation,

inaccurate brain masking, and excessive motion. These data were

then inputted into DTIFIT to calculate conventional (i.e., uncorrected)

diffusion MRI metrics, including fractional anisotropy (FACONV), mean

diffusivity (MDCONV), axial diffusivity (AxDCONV), and radial diffusivity

(RDCONV). The preprocessed data were also inputted into MATLAB

code to calculate free-water (FW) corrected metrics,32 including

FW-corrected fractional anisotropy (FAFWcorr), FW-corrected mean

diffusivity (MDFWcorr), FW-corrected axial diffusivity (AxDFWcorr),

and FW-corrected radial diffusivity (RDFWcorr).
32 A standard space

representation of these maps was created by non-linearly register-

ing the FACONV map to the FMRIB58_FA atlas using the Advanced

Normalization Tools (ANTs) package, in which we used symmetric

http://www.blsa.nih.gov
http://adni.loni.usc.edu
http://www.vmacdata.org
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TABLE 1 Demographic and health characteristics

Cohort

Measure ADNI BLSA VMAP p-Value

Cohort characteristics

No. of participants 706 721 296 –

Total no. of sessions 1,859 1,858 888 –

Average no. of visits 4.89 (2.41) 4.27 (1.84) 3.78 (0.54)

Longitudinal follow-up (yr)a 1.97 (1.85) 3.94 (2.13) 3.01 (1.47) <0.001

Demographics and health characteristics

Age at baseline (yr) 74.03 (7.72) 71.33 (10.21) 73.32 (7.26) <0.001

Sex (%male) 51.42 44.24 57.77 <0.001

Education (yr) 16.29 (2.62) 17.02 (2.38) 15.81 (2.68) <0.001

Race (%Non-HispanicWhite) 91.64 65.74 92.91 <0.001

APOE-ε4 (% positive) 42.21 26.91 35.81 <0.001

APOE-ε2 (% positive) 8.92 17.06 15.20 <0.001

Cognitive status at baseline (% cognitively unimpaired) 46.74 98.34 56.76 <0.001

Longitudinal cognitive status (normal/abnormal) 395/311 676/45 168/128 <0.001

Note: Values denoted asmean (standard deviation) or frequency.

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE-ε2, apolipoprotein ε2; APOE-ε4, apolipoprotein ε4; BLSA, Baltimore Longitudinal

Study of Aging; VMAP, Vanderbilt Memory &Aging Project; yr, years.
aIn participants with at least two visits.

(A) Tractography Templates used in Study

(B) Tract Microstructure Quantification and Harmonization

Association Motor TC Occipital TCProjection

Prefrontal TC Parietal TCLimbic

Longitudinal ComBat
Harmonization

F IGURE 1 Tractography templates used in this study. (A) Forty-eight white matter tractography templates were used to evaluate aging and
these tracts can be grouped into seven different tract-types, including association, projection, motor transcallosal (TC), occipital TC, limbic,
prefrontal TC, and parietal TC tracts. (B) Longitudinal ComBat harmonization was conducted on all imaging features to harmonize across all site×
scanner× protocol combinations—raw and harmonized cingulum FWvalues are shown and colored by each site× scanner× protocol combination



HARCHER ET AL. 5 of 13

normalization and linear interpolation.47 The warp obtained from this

registration was then applied to all other microstructural maps. A final

step to exclude imaging sessions with poor data quality was conducted

by removing individuals with consistently large age-regressed outliers

in white matter tract microstructural values. All sample sizes reported

in themanuscript have accounted for excluded participants.

2.3 White matter tractography templates

All tractography templates used in this study were drawn from

existing resources16,28–31,48 and are available in a publicly available

GitHub repository (https://github.com/VUMC-VMAC/Tractography_

Templates). In total, this study used 48whitematter tractography tem-

plates (Figure 1A) which can be grouped into seven different tract

types, including association (n = 3), limbic (n = 7), projection (n = 9),

motor transcallosal (TC) (n= 6), occipital TC (n= 6), parietal TC (n= 5),

and prefrontal TC (n= 12) tracts.

2.4 Diffusion MRI data harmonization

A region of interest approach was used to calculate mean conven-

tional (FACONV, MDCONV, AxDCONV, RDCONV) and FW-corrected (FW,

FAFWcorr, MDFWcorr, AxDFWcorr, RDFWcorr) microstructure within all

tractography templates for each participant, resulting in 432 unique

values for each imaging session. These values were subsequently har-

monized using the Longitudinal ComBat technique in R (version 4.1.0).49

In the Longitudinal ComBat harmonization, a batch variable which con-

trolled for all site × scanner × protocol combinations were used. We

also used several covariates to control for between-scanner, between-

protocol, and between-cohort effects, including mean-centered age,

mean-centered age squared, education, race/ethnicity, diagnosis at

baseline, APOE-ε4 positivity, APOE-ε2 positivity, the interaction of age

and aging type (i.e., normal, abnormal), and the interaction of mean-

centered age and aging type. Leveraging the Longitudinal ComBat har-

monization technique, we were also able to model the random effects

of aging for each participant (i.e., ∼1+age|participant). Figure 1B

illustrates the raw and harmonized values for cingulum FW. The har-

monized values were then scaled by their standard deviation and used

in all subsequent statistical analyses.

2.5 Statistical analyses

All statistical analyses were performed in R (version 4.1.0), and age

was mean-centered prior to analysis. First, stratified (normal aging

or abnormal aging) linear mixed effects (LME) regression analysis

was conducted on all nine diffusion MRI metrics to determine the

effect of aging within the white matter tractography templates. Fixed

effects in stratified models included age, age squared, education, sex,

race/ethnicity, APOE-ε4 positivity, and APOE-ε2 positivity. Random

effects included intercept and age. Separate LMEs were created for all

nine metrics across all 48 white matter tracts, resulting in 432 mod-

els. For stratified models, the effect of aging was evaluated by focusing

on the statistics from the age term. Following stratified analysis, simi-

lar LMEs were built for the entire cohort, adding age × cognitive status

and age2 × cognitive status interaction terms as well as all lower-

order terms. For the interaction analysis, we focused on the statistics

from the age × cognitive status term. Significance was set a prior as

α = 0.05 and correction for multiple comparisons was made using the

false discovery ratemethod.

Follow-up bootstrapped (n = 1000 for each microstructural mea-

sure × tract combination) LME analyses were also conducted to

determine which microstructural measures were most vulnerable to

abnormal aging. For each microstructural variable, a base LME model

covaried for age, age,2 education, sex, race/ethnicity, APOE-ε4 posi-

tivity, and APOE-ε2 positivity, whereas a more comprehensive model

included the previous covariates plus age × cognitive status and age2 ×

cognitive status interaction terms and all lower order terms. Marginal

variance (i.e., the variance of the fixed effects) was pulled from all

respectivemodels, and differences between the comprehensivemodel

and base model were quantified. A repeated measures analysis of

variance (ANOVA) was then conducted to compare the effect of

microstructure on difference in marginal variance, using each of the

tracts as a pairwise variable. Follow-up one-way ANOVAs were then

conducted for eachmicrostructural variable to determine which tracts

had the most significant differences in marginal variance between

models.

3 RESULTS

3.1 White matter decline in normal and abnormal
aging

The effects of normal aging on conventional and FW-corrected met-

rics are shown in the heatmap in Figure 2 and relevant statistics

for all normal aging effects can be found in Table S2. As shown in

Figure 2, there was a near global effect of normal aging on white

matter microstructure. Tracts which were most sensitive to aging

included the fornix (Figure 2A), TC inferior frontal gyrus (IFG) pars

opercularis (Figure 2B), caudate to middle frontal (Figure 2C), and

TC middle frontal gyrus (Figure 2D) tracts. The effects of abnor-

mal aging on conventional and FW-corrected metrics are shown

in the heatmap in Figure 3 and relevant statistics for all abnor-

mal aging effects can be found in Table S3. As shown in Figure 3,

there was a near global effect of abnormal aging on white mat-

ter microstructure, and the top involved tracts included the inferior

frontal occipital fasciculus (IFOF) (Figure3A), caudate tomiddle frontal

(Figure 3B), fornix (Figure 3C), and TC IFG pars opercularis (Figure 3D)

tracts.

https://github.com/VUMC-VMAC/Tractography_Templates
https://github.com/VUMC-VMAC/Tractography_Templates
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F IGURE 2 The effect of normal aging onwhite matter microstructure. Linear mixed effects (LME) regression was conducted for each
conventional (MDCONV, FACONV, AxDCONV, RDCONV) and FW-correctedmeasure (FW,MDFWcorr, FAFWcorr, AxDFWcorr, RDFWcorr) to determine the
association of normal aging with white matter microstructure. The heatmap, grouped by tract-type, illustrates the t-value for each independent
LME regression. Blocksmarkedwith an asterisk represent associations meeting the pFDR< 0.05 threshold. Examples for the normal aging effect
on white matter microstructure are shown for the fornix (A), transcallosal IFG pars opercularis (B), caudate tomiddle frontal gyrus (C), and
transcallosal middle frontal gyrus (D) tracts
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F IGURE 3 The effect of abnormal aging onwhite matter microstructure. Linear mixed effects (LME) regression was conducted for each
conventional (MDCONV, FACONV, AxDCONV, RDCONV) and FW-correctedmeasure (FW,MDFWcorr, FAFWcorr, AxDFWcorr, RDFWcorr) to determine the
association of abnormal aging with white matter microstructure. The heatmap, grouped by tract-type, illustrates the t-value for each independent
LME regression. Blocksmarkedwith an asterisk represent associations meeting the pFDR< 0.05 threshold. Examples for the abnormal aging
effect on white matter microstructure are shown for the inferior frontal occipital fasciculus (A), caudate tomiddle frontal (B), fornix (C), and
transcallosal inferior frontal gyrus (IFG) pars opercularis (D) tracts
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F IGURE 4 Differential changes in white matter microstructure in normal aging versus cognitively impaired groups. Linear mixed effects (LME)
regression was conducted for each conventional (MDCONV, FACONV, AxDCONV, RDCONV) and FW-correctedmeasure (FW,MDFWcorr, FAFWcorr,
AxDFWcorr, RDFWcorr) to quantify the age× cognitive status interaction effect. The heatmap, grouped by tract-type, illustrates the t-value for each
independent LME regression. Blocksmarkedwith an asterisk represent associations meeting the pFDR< 0.05 threshold. Examples for the age×
cognitive status interaction effect on white matter microstructure are shown for the inferior frontal occipital fasciculus (A), transcallosal IFG pars
orbitalis (B), fornix (C), and transcallosal angular gyrus (D) tracts

3.2 Differential white matter decline in normal
and abnormal aging

The interactions between normal and abnormal aging on conventional

and FW-corrected metrics are shown in the heatmap in Figure 4

and all relevant statistics can be found in Table S4. Several of the

top interactions are illustrated in Figures 4A-D, including IFOF FW

(β = −3.63 × 10−3, pFDR = 1.36 × 10−6, z = −5.59) in Figure 4A,

TC IFG pars orbitalis FW (β = −4.12 × 10−3, pFDR = 1.53 × 10−7,

z = −6.07) in Figure 4B, fornix FAFWcorr (β = −1.36 × 10−3,

pFDR = 3.93 × 10−8, z = −6.39) in Figure 4C, and TC angular

gyrus FW (β = −4.30 × 10−3, pFDR = 6.02 × 10−7, z = −5.78) in

Figure 4D.

3.3 Bootstrapped analysis to determine white
matter microstructural measures most vulnerable to
abnormal aging

A bootstrapped analysis was conducted to determine the microstruc-

tural measures and tract most vulnerable to abnormal aging. A

repeated measures ANOVA, controlling for tract, was significant

(p< 0.05), and post-hoc analyses found that the FWmeasurewasmost

sensitive to abnormal aging. Figure 5A illustrates themeanΔR2 for FW

within all tracts. Figure 5B shows the mean and standard error of the

bootstrapped ΔR2 for all tracts for the FW measure. An ANOVA was

conducted to determine if there were significant differences in ΔR2for

each tract and results were significant (p < 0.05). Post-hoc analyses
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F IGURE 5 FWvulnerability to abnormal aging. MeanΔR2 between the “normal aging” model (i.e., only age and covariates) and “abnormal
aging” (i.e., includes abnormal aging covariates) models for FW is shown on all white matter tract templates (A), and a bar chart summarizes the
mean and standard deviation for all bootstrapped differences betweenmodels (B). Base and comprehensivemodel marginal R2 values are shown
for the six most significant tracts
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were conducted to determine which tracts were most vulnerable to

abnormal aging, and we found that the cingulum bundle was most vul-

nerable. Illustrations of the top six vulnerable tracts to abnormal aging

are shown in Figure 5C. All pairwise comparisons for FW can be found

in Table S5.

4 DISCUSSION

We used a longitudinal, multi-site set of cohorts to examine the rela-

tionship of normal and abnormal aging with white matter microstruc-

tural decline. Specifically, we conducted robust preprocessing in 1723

participants across 4605 imaging sessions to create conventional

and FW corrected dMRI maps and averages were pulled from 48

well-established tractography templates. These white matter tract

microstructural values were subsequently harmonized using the Lon-

gitudinal ComBat toolkit and used to: (1) evaluate the effects of nor-

mal/abnormal aging on white matter microstructural decline, (2) quan-

tify differential magnitudes of white matter microstructural decline in

the normal versus the abnormal aging groups, and (3) conduct robust

bootstrapping analysis to determine which tracts are most vulner-

able in abnormal aging. Our analyses replicated prior studies on a

much larger scale, and we demonstrated that normal/abnormal aging

is associated with global white matter decline. Moreover, we found

that abnormal aging is associated with steeper rates of white matter

decline, particularly within the temporal lobe (e.g., cingulum bundle).

Through bootstrapped analysis, we found that the FW measure is the

most sensitive measure to abnormal aging.

4.1 White matter microstructural decline in
normal aging

The present study provides novel findings to a long-standing line of

research focusing on the relationship between normal aging (n= 1155)

andwhitemattermicrostructural decline.1–15 Using both conventional

and FW corrected dMRI metrics in conjunction with spatially precise

white matter tractography templates, we found global associations

with normal aging. We found that the most pronounced effects were

within prefrontal transcallosal, prefrontal projection, and limbic tracts.

For instance, we found that normal aging was associated with pro-

nounced microstructural abnormalities in the fornix, transcallosal IFG

parsopercularis, caudate tomiddle frontal gyrus, and transcallosalmid-

dle frontal gyrus tracts. These results corroborate prior studies which

suggest that the prefrontal tracts projecting from the genu of the cor-

pus callosum are sensitive to aging.7,8,10,50 Moreover, this adds further

support to the “last-in-first-out” paradigm, which suggests that tracts

which take the longest to develop are the ones which are most vulner-

able to age-related processes.15 Prior studies have also shown that the

association tracts, such as the IFOF, are involved in the aging process.

For example, Cox et al. demonstrated that the older age was associ-

ated with lower white matter microstructural values in the association

tracts.51 Importantly, we replicate these findings and demonstrate that

IFOF FW is the most significantly associated microstructural met-

ric with normal aging. Nevertheless, the effect sizes in many of the

prefrontal transcallosal, prefrontal projection, and limbic tracts were

stronger than the association tracts.

4.2 White matter microstructural decline in
abnormal aging

While several prior publications have evaluatednormal aging, far fewer

studies have leveraged large-scale dMRI data to quantify the effects of

abnormal aging and white matter microstructural decline. In our study

of participants with cognitive impairment (n = 568), we found global

associations between aging and white matter microstructural decline,

with the association, limbic, prefrontal projection, and prefrontal tran-

scallosal tracts having the most sensitive associations. The most sen-

sitive association in the analysis of the cognitively impaired subgroup

was for IFOF FW, in which aging was associated with higher IFOF FW.

While longitudinal studies ofwhitematter in cognitively impaired sam-

ples are sparse, our results are comparable to cross-sectional studies of

white matter microstructure along the AD continuum, which suggest

that posterior, temporal, and prefrontal tracts are most involved in AD

white matter microstructural decline.4,14,19–25

4.3 Differences between normal and abnormal
aging

Although main effects of normal and abnormal aging on white matter

microstructural decline are fundamental to our understanding of the

aging process, it is essential to understand how aging differs between

participants who do and do not progress along the spectrum of cog-

nitive impairment. Our interaction analyses found that several white

matter microstructural metrics interact with normal and abnormal

aging groups, with strong effects in the IFOF, transcallosal IFG pars

orbitalis, fornix, and transcallosal angular gyrus. The strongest inter-

action was found for fornix FAFWcorr, in which abnormal agers had a

lower overall FAFWcorr earlier in age. In this analysis, we found that

FW was especially sensitive to detecting interactions between nor-

mal and abnormal agers. Strong FW interactions were found for the

IFOF, transcallosal IFG pars orbitalis, and transcallosal angular gyrus.

These findings are consistent with a prior study demonstrating that

IFOF has more rapid decline (i.e., decrease in FACONV) in individuals

with subsequent cognitive impairment compared to normal agers.27

We corroborate these findings while simultaneously demonstrating

that the FW metric may be more sensitive than FACONV. Further,

this is the first study to demonstrate—in a comprehensive multi-site

cohort—that abnormal agers have differential patterns ofwhitematter

microstructural decline.

To further understand the vulnerability of white matter microstruc-

ture to abnormal aging, bootstrapping analyses were conducted, in

which we compared the marginal R2 in a model only covarying for age

with amodel covarying for age and cognitive status (normal/abnormal).
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From this analysis, we found that the FW measure is the most vulner-

able to abnormal aging. Post-hoc pairwise t-tests were conducted to

determinewhich tractsweremost vulnerable to abnormal aging for the

FWmetric, in which we found that limbic tracts were most vulnerable.

When comparing limbic tracts, we found that the cingulum bundle was

the most vulnerable, followed closely by the transcallosal inferior tem-

poral gyrus, fornix, and inferior longitudinal fasciculus. Together, our

results suggest that FW—and more specifically FW within the limbic

tracts—should be further studied to enhance our knowledge into the

differences in normal and abnormal aging.

4.4 Strengths/weaknesses

The current study has several strengths, including a harmonizedmulti-

site diffusionMRI cohort which far exceeds the sample size in any pre-

vious single-shell FW study on aging (number of participants = 1723;

number of imaging sessions: 4605). A major novelty of this study

is that we have used 48 recently developed, freely accessible trac-

tography templates spanning the association, limbic, projection, and

transcallosal tracts (https://github.com/VUMC-VMAC/Tractography_

Templates). While our bootstrapped analyses suggest that FW is the

most sensitive measure to abnormal aging, conventional dMRI mea-

sures also showed high sensitivity to abnormal aging. Therefore, the

use of this measure may not be necessary if the goal is classifica-

tion of abnormal aging; however, if the goal is to understand which

biological mechanisms are associated with abnormal aging, FW cor-

rection may provide additional insight. Despite these strengths, this

study comprised participants who were predominantly well-educated,

non-Hispanic White individuals. We also did not pair our neuroimag-

ing analyses with any biomarkers, therefore limiting our ability to tie

age-related neurodegeneration to specific biologic pathways. Future

studies which use comparable sample sizes and incorporate biomark-

ers of white mater neurodegeneration (e.g., neurofilament light) and

astrocytosis may further enhance our understanding of the biology

underpinning the white matter microstructural changes seen in aging.

Although this is a diffusion MRI focused study, merging in measures

from structural MRI, such as whole brain, white matter hyperinten-

sity, lacune, and microbleed volume would provide additional insight

into the neurobiological processes potentially driving diffusion MRI

microstructure values in aging. Future work conducting large-scale,

multi-modal studies will allow us to better inform our diffusion MRI

analyses. Another limitation of this study is the quantification of a

single microstructural value per tract per imaging session. Consider-

ing the fluctuation of tract microstructure within white matter tracts,

more precise slice-wise analyses may offer more robust associations

with normal and abnormal aging. Finally, the present study used a

single-shell FW correction technique, which may be inferior to other

multi-shell techniques (e.g., neurite orientation dispersion and density

imaging [NODDI]). Our approach, however, allowed us to evaluate FW-

corrected data in thousands of datapoints which would not have been

possible with the NODDI technique.32 Given that multi-shell diffusion

MRI acquisition is now more commonplace in research studies, future

work could focus on harmonizing large-scalemulti-shell data to further

our understanding of the role of white matter neurodegeneration in

aging.

In conclusion, this multi-site longitudinal study provides strong evi-

dence that normal and abnormal aging are both associated with white

matter microstructural decline, and that the limbic tracts are most

affected in abnormal aging. Therefore, we suggest that FW correc-

tion be conducted when using single-shell diffusion MRI acquisition

scans to evaluate aging. Future large-scale analyses should pair dMRI

metrics with biomarkers of disease to help further understand the bio-

logical processes associatedwith whitematter microstructural decline

in abnormal aging.
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