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MOTIVATION Transcriptomics is powerful for compound screening in systems pharmacology but may not
capture a comprehensive picture of biological processes. Proteomics, on the other hand, may provide a
more complete view of molecular function by measuring changes in protein expression and post-transla-
tional modifications, but it is expensive, and limited proteomics coverage introduces the problem of signif-
icant missing data. To address these problems, we developed TransPro, a deep learning model that pre-
dicts chemical proteomics profiles for uncharacterized cell lines using transcriptomics data and explicitly
models the information transmission from RNAs to proteins.
SUMMARY
Drug-induced phenotypes result from biomolecular interactions across various levels of a biological
system. Characterization of pharmacological actions therefore requires integration of multi-omics data.
Proteomics profiles, which may more directly reflect disease mechanisms and biomarkers than transcrip-
tomics, have not been widely exploited due to data scarcity and frequent missing values. A computational
method for inferring drug-induced proteome patterns would therefore enable progress in systems pharma-
cology. To predict the proteome profiles and corresponding phenotypes of an uncharacterized cell or tissue
type that has been disturbed by an uncharacterized chemical, we developed an end-to-end deep learning
framework: TransPro. TransPro hierarchically integrated multi-omics data, in line with the central dogma
of molecular biology. Our in-depth assessments of TransPro’s predictions of anti-cancer drug sensitivity
and drug adverse reactions reveal that TransPro’s accuracy is on par with that of experimental data.
Hence, TransPro may facilitate the imputation of proteomics data and compound screening in systems
pharmacology.
INTRODUCTION

Given the high cost and low success rate of the conventional

drug discovery process, systems pharmacology has emerged

as a new drug discovery paradigm.1,2 Several recent studies

have demonstrated the potential of systems pharmacology in

tackling complex diseases such as Alzheimer’s disease3,4 and

cancers.5 Chemical-induced omics profiling (e.g., transcriptom-

ics) is a potentially powerful assay readout for systems pharma-

cology-oriented compound screening6,7 because it can provide

an unbiased assessment of the drug’s therapeutic effect on dis-

ease molecular phenotypes and critical information on the drug

mode of actions. A great deal of effort has been devoted to col-

lecting, annotating, and predicting chemical-induced transcrip-
Cell R
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tomics profiles.8–10 However, RNA expression alone may not

capture a comprehensive picture of biological processes.

Because molecular functions mainly manifest at a protein level,

a proteomics profile may be better at characterizing and predict-

ing cellular and organismal phenotypes than a transcriptomics

profile.11 For example, the AVIL gene has been identified as a

bona fida oncogene for glionoma.12 Although there is a signifi-

cant difference in the protein expression of AVIL and its interact-

ing genes between patients with glioma and controls, there is no

detectable difference in the RNA expression of these genes.

Additionally, the dysregulation of post-translational modifica-

tions (e.g., phosphorylation and epigenetics) of proteins is a

common molecular etiology of many diseases.13,14 Such molec-

ular events cannot be easily detected and are poorly correlated
eports Methods 3, 100452, April 24, 2023 ª 2023 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:lxie@iscb.org
https://doi.org/10.1016/j.crmeth.2023.100452
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2023.100452&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
with RNA expression. The experimental approach to proteomics

is more expensive and time consuming than that of transcrip-

tomics. As a result, few chemical-perturbed proteomics data

are available.11 Furthermore, there are significant missing values

in the proteomics data.15 Thus, a machine learning method for

predicting chemical-perturbed proteomics will overcome the

technical limitations of proteomics experiments, thereby offering

new opportunities for systems pharmacology-driven drug dis-

covery and precision medicine.

The machine learning prediction of chemical-perturbed cell-

specific proteomics is challenging due to the scarcity of prote-

omics data. Integration of abundant transcriptomics data is a

natural solution to impute missing proteomics data and predict

unseen proteomics profiles of a novel cell line that neither has

a measured proteomics profile nor is similar to cells with charac-

terized proteomics when perturbed by novel chemicals that have

different chemical structures from those already tested in a cell

line model. Many methods have been developed to integrate

multiple heterogeneous omics data from diverse sources.16

However, most state-of-the-art techniques are unidirectional

and horizontal. They ignore underlying biological relationships

between omics datasets that reflect the hierarchical organization

of a biological system. Ideally, the integrated genomics, tran-

scriptomics, and proteomics data should represent the informa-

tion flow from DNAs to RNAs to proteins.17

We have developed a deep learning model, TransPro, to

address the challenges in the predictive modeling of cell-specific

chemical proteomics for systems pharmacology. TransPro pre-

dicts cell line proteomics profiles after chemical perturbation

when only unperturbed transcriptomic data are available.

TransPro utilizes the transcriptomics data and transfers the

knowledge learned from gene expressions to protein expressions

following the central dogma ofmolecular biology. Specifically, we

propose a hierarchical multi-omics integration approach that

explicitly models the information transmission from RNAs to pro-

teins. In the rigorous benchmark studies, TransPro significantly

outperforms all baseline models. Furthermore, when using the

predicted proteomics profiles by TransPro as features to predict

cellular phenotypes of drug sensitivity and organism-level

adverse drug reactions, it is more accurate than using experi-

mental transcriptomics and proteomics data, suggesting that

TransPro is a valuable tool for real-world applications.

RESULTS

Overview of TransPro
The proposed TransPro is an end-to-end multi-task deep

learning model that learns a generalizable representation of

proteomics perturbations and their downstream effects (drug

potency and toxicity). In this study, we will refer to ‘‘novel cell

lines’’ that do not have a measured proteomics profile available

and ‘‘novel chemicals,’’ which do not have similar chemical

structures to those that have been tested in a cell line model.

We formulated the problem for predicting chemical-induced pro-

teomics profiles as a multi-output regression task, the problem

of predicting side effects as a multi-output classification task,

and the problem of predicting drug response (IC50) as a regres-

sion task, respectively. The inputs of TransPro include basal
2 Cell Reports Methods 3, 100452, April 24, 2023
transcriptomics expressions as cell line features and chemical

structural information. As illustrated in Figure 1, TransPro firstly

compresses the transcriptomics profile into an embedding vec-

tor. We expect that the information contained in the latent space

of transcriptomics can be further translated into the latent space

of proteomics in a low-dimensional space through a neural

network, termed a transmitter. TransPro uses a graph neural

network (GNN) network to acquire chemical embeddings for

the purpose of extracting chemical structural features, which is

a more expressive method of chemical representation learning

according to recent research,18–20 followed by a module for

generating chemical-specific difference vectors that represent

the difference between basal cell transcriptomics embedding

and perturbed transcriptomics embedding induced by the

chemical. A multi-head attention network is used to merge the

embeddings of chemicals and cells and simulate chemical-

gene interactions.21 A transmitter later transfers the transcrip-

tomics hidden state to the proteomics hidden state. Finally, a

domain-specific decoder extracts the chemically induced hid-

den state from the embedding vector and encodes it in a low-

dimensional space for both perturbed proteomics prediction

and transcriptomics prediction. To predict adverse drug reac-

tions, a multiple-layer perceptron (MLP) classifier is concate-

nated to the pre-trained proteomics hidden state. Similarly,

another MLP regressor is concatenated to the pre-trained prote-

omics hidden state to predict anti-cancer drug sensitivity. See

STAR Methods for details.

We assessed the performance of the TransPro model under

three scenarios as shown in Figure 1B: (1) an in-distribution

(ID) setting by random splits, (2) an out-of-distribution (OOD)

setting for cell lines, and (3) an OOD setting for new drugs. In

the ID setting of the random split, there were similar cell lines

and drugs in the training/validation data to unseen testing

data. This is a trivial situation. In contrast, the setting of OOD

cell lines and OOD drugs means that the cell lines or drugs in

the training set were significantly different from those unseen

data in the validation/testing set. They would evaluate the perfor-

mance of TransPro under the real-world scenario with the distri-

bution shift. It notes that all measured protein expressions in a

cell line perturbed by a drug were considered unseen in the

testing and validation data. It is different from a conventional

imputation approach, which only masks a portion of proteins in

a perturbed proteomics profile as unseen for testing or validation

and uses the remaining ones for training.

TransPro outperforms baseline models and other
chemical feature representations
We compared TransPro with several baseline models, including

k-nearest neighbor (k-NN), random forest, and vanilla neural net-

works. Furthermore, we assessed how well the GNN chemical

representation in the original TransPro performed compared

with alternative chemical feature representations including neu-

ral fingerprints22 and ECFPs (extended-connectivity finger-

prints)23 when other components remained unchanged. Note

that we reported the performance of ECFP6 as the main result,

and the performance of ECFP4 can be found in Table S3. There

is no significant difference between the performance of ECFP6

and that of ECFP4.



Figure 1. TransPro architecture and its performance evaluation
(A) TransPromodel consists of sevenmajor components: (1) a cell line encoder compresses basal transcriptomics to a low-dimensional vector. (2) A graph neural

network (GNN) extracts the chemical embeddings. (3) A DNN for chemical-specific differential embedding generation. (4) A multi-head attention module to learn

the interaction between the cell line features and the chemical features. (5) Two domain-specific decoders for transcriptomics and proteomics perturbation

predictions, respectively. (6) A transmitter transfers the chemical-induced cell line features from transcriptomics latent space to proteomics latent space. (7) Task-

specific classifiers/regressors for drug-induced phenotypes. Trans, Transcriptomics; Prot, proteomics.

(B) Three scenarios to evaluate TransPro performances. (1) In-distribution (ID) by the random split, where the testing data may be similar to the training and

validation data. (2) Out-of-distribution (OOD) cell split, where the cell lines in testing data are significantly different from those in the training and validation data. (3)

OOD chemical split, where the chemical structures in the testing data are significantly different from those in training and validation data. In the testing and

validation data, no proteins in each proteomics profile are used for the training. Missing values in the testing and validation data are predicted.
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TransPro outperforms baseline models and other

chemical feature representations in the ID setting

We applied 3-fold cross-validation on the random split data to

evaluate TransPro. Roughly 450 samples were in each fold.
The result is shown in Figure 2A. TransPro outperforms all

the baseline models when evaluated by both Pearson correla-

tion and Spearman’s correlation, with Pearson correlations of

8.4%, 8.4%, 12.5%, 21.5%, and 32.6% higher than ECFPs,
Cell Reports Methods 3, 100452, April 24, 2023 3



Figure 2. Performance comparison of Trans-

Pro with baseline models

(A–C) Comparisons of TransPro with different

chemical feature representation methods (left

panel) and baseline models (right panel) in the (A) ID

setting, (B) OOD cell setting, and (C) OOD chemical

setting. The stars flag levels of statistical signifi-

cance. If a p value is less than 0.05, 0.01, and 0.001,

it is flagged with one star (*), 2 stars (**), and three

stars (***), respectively. The error bar in the figure

denotes the standard deviation.
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neural fingerprint, random forest, vanilla NN, and k-NN,

respectively.

TransPro outperforms baseline models and other

chemical feature representations in the OOD cell line

setting

In order to deploy an OOD cell line setting, we ensured that

the model was tested on the new cell line data that were
4 Cell Reports Methods 3, 100452, April 24, 2023
significantly different from the cell lines

in the training/validation data. We

applied t-distributed stochastic neighbor

embedding (t-SNE) on the cell line

feature represented by the transcriptom-

ics gene expression profile and clustered

them into 3 folds manually. The cluster

information is detailed in Figure S1. We

applied leave-one-cluster-out 3-fold

cross-validation to assess the OOD

generalization abilities of TransPro for

the new cell lines. The result is repre-

sented in Figure 2B. TransPro signifi-

cantly outperforms all baseline models

in both Pearson correlation and Spear-

man’s correlation. When evaluated by

the Pearson correlation, the performance

gains over ECFPs, neural fingerprint,

random forest, vanilla NN, and k-NN are

17.9%, 26.8%, 22.6%, 128.5%, and

216.5%, respectively. It is not surprising

that the performance in the OOD setting

of cell lines was worse than that in the

ID setting of the random split, as shown

in Figure 2. It is common that a machine

learning model works well if training and

test sets of data have the same distribu-

tion, but the performance will drop under

the distribution shift.

TransPro outperforms baseline

models and other chemical feature

representations in theOODchemical

setting

A chemical scaffold split approach was

used to split the benchmark datasets for

the OOD chemical setting experiment.24

Measuring OOD generalization is critical

in molecular representation learning,
where distributional shifts are enormous and challenging to con-

trol for machine learning models. RDKit25 is used to capture the

Murcko scaffold of eachmolecule, and only compounds with the

same scaffold are grouped together. Randomly permuted

groups are added to the training, validation, and testing sets.

This technique assures that the testing set contains only com-

pounds with scaffolds that are distinct from those used in the
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training and validation sets. As a result, the scaffold split enables

a more precise assessment of the model’s ability to predict pro-

teomics perturbations by structurally distinct chemicals. As

shown in Figure 2C, TransPro consistently outperforms most of

the baselinemodels when evaluated by both Pearson correlation

and Spearman’s correlation, with Pearson correlations of up to

5.9%, 9.3%, 14.9%, and 32.5% higher than neural fingerprint,

random forest, vanilla NN, and k-NN, respectively. ECFPs

achieved relatively equivalent performance with TransPro on

the OOD chemical setting. Similar to the OOD cell line setting,

the performance in the OOD chemical setting dropped

compared with the random split setting due to the distribution

shift. More sophisticated techniques such as chemical structure

pre-training and semi-supervised learning26,27 are needed to

address the OOD challenge in the chemical space. Additionally,

note that one of the differences between GNN and ECFP chem-

ical representations is that GNN is fine-tuned but ECFP is fixed

during the downstream supervised training. It has been found

that the fine-tuning may distort the pre-trained features in a stan-

dard pre-training fine-tuning strategy used in this article andmay

deteriorate the OOD performance.28 The performance of

TransPro in the OOD chemical setting could be improved using

different training procedures, e.g., one proposed by Kumar

et al.28

In summary, TransPro outperformed or was comparable to all

baseline models in the OOD settings for both OOD cell lines and

OOD chemicals. Although the available transcriptomics and pro-

teomics data for the training were not large, the generalization

power of TransPro is reasonable, as suggested by training

curves in which the performance of testing was slightly better

than that of validation data (Figure S3).

Predicted proteomics profile has strong predictive
power for adverse drug reactions
Chemical transcriptomics profiles from the LINCS1000 are effec-

tive in predicting organismal phenotypes such as adverse drug

reactions.29 Recent studies have shown that chemical-induced

proteomics is more informative than chemical transcriptomics

for elucidating a drug’s mode of action and predicting cellular

drug responses.11 However, experimental proteomics data

contain a significant number of missing values and are presumed

to be suboptimal in terms of their predictive capacity for the

downstream task. To explore the potential power of chemical-

induced proteomics predictions, we conducted experiments to

see if our predicted proteomics profile was more effective than

experimental transcriptomics data and experimental proteomics

data for predicting adverse drug reactions (ADRs).

ADRs are classified using the Medical Dictionary for Regulato-

ry Activities (MedDRA) v.16.047’s preferred terms (PTs). We

gathered data from two ADR datasets: the off-label FDA Adverse

Event Reporting System (FAERS)30 and an on-label ADRs side-

effect resource (SIDER).31 We used a multi-label cross-entropy

loss function to construct a deep neural network (DNN) as the

classifier for this downstream task. For the first experiments,

we examined the ADR prediction performance when using the

experimentally determined LINCS1000 level-5 data and the pre-

dicted perturbed proteomics profile as features. We also clus-

tered the LINCS1000 data into low-confidence and high-confi-
dence data based on the Pearson correlation score between

bioduplicates. Samples having a score greater than 0.5 are

considered to be of high confidence; otherwise, they are low

confidence. As demonstrated in the previous section, we utilized

a chemical scaffold split to evaluate performance. We used the

macro average for both the AUROC (area under the curve

score-receiver operating characteristic) and AUPRC (area under

the curve score-precision recall) as the evaluation metrics. The

result is presented in Figures 3A and 3B. TransPro embedding

consistently outperforms experimental transcriptomics on both

metrics across two different datasets. In the FAERS low-confi-

dence dataset, the AUROC of TransPro embedding is 6% to

6.8% higher than the experimental data, and the AUPRC is

8.7% to 15.1% higher. In the FAERS high-confidence dataset,

the AUROC of TransPro embedding improves 7% to 7.1%

over the experimental transcriptomics, and AUPRC improves

26.3% to 31.8%. Similar trends were observed on the SIDER da-

taset:’’ the AUROC and AUPRC TransPro embeddings are

significantly superior to the experimental transcriptomics in

both high-confidence and low-confidence datasets.

In the second iteration of our study, to provide amore compre-

hensive evaluation, we incorporated the Cancer Perturbed Pro-

teomics Atlas (CPPA) dataset11 as the experimental proteomics

data into our analysis. However, this dataset was characterized

by a significant proportion of missing values, as shown in Fig-

ure S2. To address this issue, we employed imputation by the

mean value for these missing data points. Subsequent to this

process, we compared the predictive performance using the

experimental proteomics data with that obtained using

TransPro embeddings and experimental transcriptomics. To

facilitate a rigorous comparison, we employed the intersection

drugs of the LINCS1000 and CPPA datasets as our test drugs.

Given that various cell lines may be responsive to a given drug,

we selected the cell-drug pairs that had the highest evaluation

score for each tested drug. The final score was then calculated

as the mean of all tested drugs. To ensure the consistency of

our training data, we filtered transcriptomics data to match the

number of proteomics data points by selecting the most similar

compounds to those in the experimental proteomics dataset.

The results are shown in Figures 3C and 3D. The overall perfor-

mance is substantially suboptimal compared with the results in

Figures 3A and 3B, but TransPro embeddings still significantly

outperform both experimental transcriptomics and proteomics.

The inferior performance of the FAERS dataset to that of

SIDER data was potentially due to the reduced sample size re-

sulting from the intersection of experimental proteomics and

transcriptomics data. The poor performance of proteomics

data in all experiments is mainly due to missing values. These re-

sults suggest that a standard imputation technique is not

adequate for the downstream task of chemical proteomics

data. The proposed TransPro is robust for the chemical

proteomics imputation and harnesses the power of chemical

proteomics for drug discovery.

Predicted proteomics profile has strong predictive
power for anti-cancer drug sensitivity prediction
In addition to ADRs, another valuable readout for pheno-

type compound screening is drug sensitivity. To explore the
Cell Reports Methods 3, 100452, April 24, 2023 5



Figure 3. Model performance on the task of adverse drug reaction prediction
(A) AUROC of the side-effect prediction with all the drugs available in the experimental transcriptomics data.

(B) AUPRC of the side-effect prediction with all the drugs available in the experimental transcriptomics data.

(C) AUROC of the side-effect prediction with the shared drugs between the experimental transcriptomics and proteomics data.

(D) AUPRC of the side-effect prediction with the shared drugs between the experimental transcriptomics and proteomics data.

The error bar in the figure denotes the standard deviation.
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relationship between genomic biomarkers and various drug re-

sponses, a number of large-scale genomics datasets have

been generated with public access, for example Cancer Cell

Line Encyclopedia (CCLE)32 and Genomics of Drug Sensitivity

in Cancer (GDSC).33,34 The measurement of the drug sensitivity
Figure 4. Comparison of drug sensitivity prediction using the pre-

dictive proteomics profiles (Pert_Trans_emb) and the predictive

transcriptomics profiles (Pert_Prot_emb)
The error bar in the figure denotes the standard deviation.
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is recorded as an IC50 value. CCLE profiled the basal gene ex-

pressions of 1,305 cancer cell lines using RNA sequencing

(RNA-seq). We used the basal gene expression profiles of cell

lines in CCLE as features to predict the proteomics profiles

and transcriptomics profiles first and then used the learned rep-

resentations of these profiles to predict the drug sensitivity. An

end-to-end training pipeline was built on top of TransPro archi-

tecture for the transcriptomics and proteomics predictions by

using the drug sensitivity information to fine-tune the pre-trained

TransPro model. Technically, an additional DNN head was

added for this downstream task to either the transcriptomics

embedding or the proteomics embedding for evaluating the pre-

dictive power of the predicted transcriptomics profiles or of the

predictive proteomics profiles, respectively.

As shown in Figure 4, the perturbed proteomics embedding

outperforms the perturbed transcriptomics embedding by

2.3% on the Pearson correlation, 2.5% to 2.8% on the Spear-

man’s correlation, and 5.8% to 6% on root-mean-square error

(RMSE), respectively. This supports the hypothesis that the pro-

teomics profile may have stronger predictive power for anti-can-

cer drug sensitivity than the transcriptomics profile.11

TransPro has the potential to extract drug-target
information
We further evaluated if the TransPro-predicted chemical prote-

omics profile can detect the drug-target signals. The drug-target

information was extracted from ChEMBL26.35 The 838 drugs

with a single target were chosen, and the drugs were clustered

by the shared targets. The targets with multiple drugs were re-

tained, yielding a total of 172 clusters and 656 drug-target pairs.

When we used the Tanimoto score to measure in-cluster pair-

wise similarity between drugs, we found that 148 out of 172



Figure 5. Distribution comparison of in-clus-

ter and cross-cluster pairwise distances

In-cluster pairwise distance: the pairwise similarity

distribution of the modeled proteomics perturbation

from the drugs with the same target; cross-cluster

pairwise distance: the pairwise similarity distribution

of the modeled proteomics perturbation from the

drugs with the different targets.
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clusters had a score below 0.5, indicating that the majority of the

compounds were structurally distinct, even having the same

target. We paired each drug with a breast cancer cell line

MCF-7 to obtain the predictive proteomics perturbation by the

trained model. Noted that all the drugs from this task were

OOD drugs that were not included in the training data. We calcu-

lated Euclidean distances between the predicted proteomics

profiles of two drugs and generated two distance distributions:

one for drug pairs within the same cluster (in cluster) and another

for pairs across the cluster (cross-cluster), as shown in Figure 5.

The in-cluster drugs shared the same target; thus, their prote-

omics profiles should be similar. As expected, the distance dis-

tribution of in-cluster drug pairs was shifted to the left, closer to

zero than that of cross-cluster drug pairs that have a different

target. The two distributions were significantly different as deter-

mined by the Kolmogorov-Smirnov test (p = 7.886e�76). This

result suggests that the predicted proteomics profile from

TransPro is biologically meaningful.

Attention module and integration of transcriptomics
data contribute to the generalization of TransPro
Attentionmechanisms, in which an element of one set selectively

focuses on a subset of another set (cross-attention) or on its own

set (self-attention), are widely used in neural network-based

models and have been successfully applied to a variety of artifi-

cial intelligence tasks, including computer vision and natural lan-

guage processing (NLP). In this article, we propose using the

multi-head attention technique to quantify interactions between

cell and chemical features. Multi-head attention was proposed

for the first time in the transformer model, which delivers state-

of-the-art performance on a variety of NLP tasks.21 To determine

the role of attention, we performed an ablation study on TransPro

without the attention module and instead of using concatena-

tions between cell and chemical features. The result is shown

as TransPro w/o attention in Table 1 tested on three settings
Cell R
as aforementioned. In the ID setting, there

is no significant difference between the

model with attention and that without

attention. However, in both OOD chemical

and OOD cell settings, the use of attention

improves the performance of TransPro.

Thus, the attention contributes to the

OOD generalization of TransPro because

it allows the model to selectively focus on

relevant parts of the input rather than treat-

ing all of the input equally.

Similarly, the integration of perturbed

transcriptomics improved the performance
of TransPro in the OOD settings compared with using prote-

omics alone. As shown in Table 1, by removing the perturbed

transcriptomics data from the training of TransPro, the perfor-

mance of the resulting model (TransPro w/o perturbed transcrip-

tomics [PertTrans]) significantly dropped.

Applying both the attention module and PertTrans data

together offers a considerable improvement over using either

of them alone in the OOD cell line setting. When all components

of the model are combined, the Pearson correlation improves

by 2.1% to 3.8%, and the Spearman’s correlation improves

by 2.8%. Improvement also occurs in OOD cell settings, as

the Pearson correlation increases by 12.1% to 19.1%, and

the Spearman’s correlation increases by 6.6% to 19.3%.

Although adding neither of the two components improves per-

formance in the ID setting, it is worth noting that the task is less

challenging than in OOD chemical and OOD cell settings, and

even the model without the attention module and transcriptom-

ics data can achieve promising outcomes for the Pearson cor-

relation up to 0.714 and the Spearman’s correlation up

to 0.611.

DISCUSSION

In this article, we have developed a new computational platform,

TransPro, that hierarchically integrates multi-omics data for

systems pharmacology-oriented compound screening. To

our knowledge, TransPro is the first deep learning model for

predicting cell-specific chemical proteomics profiles perturbed

by unseen chemicals. Our benchmark studies have demon-

strated that the performance of TransPro is acceptable for

real-world applications in the OOD cell line and OOD chemical

settings. Thus, TransPro can be a potentially powerful tool

for systems pharmacology-driven phenotype screening. The

proposed biology-inspired multi-omics data integration frame-

work can be extended to integrate additional levels (e.g.,
eports Methods 3, 100452, April 24, 2023 7



Table 1. Ablation study of TransPro

Setting Method Pearson Spearman RMSE

OOD chemical TransPro w/o Attention and PertTransa 0.440 ± 0.004 0.333 ± 0.006 0.792 ± 0.020

TransPro w/o attention 0.450 ± 0.004 0.342 ± 0.004 0.772 ± 0.013

TransPro w/o PertTransa 0.440 ± 0.008 0.330 ± 0.007 0.777 ± 0.003

TransPro 0.460 ± 0.004 0.341 ± 0.004 0.754 ± 0.002

p value 0.001 0.049 0.041

OOD cell TransPro w/o attention and PertTransa 0.328 ± 0.029 0.224 ± 0.021 0.723 ± 0.004

TransPro w/o attention 0.346 ± 0.022 0.230 ± 0.024 0.684 ± 0.027

TransPro w/o PertTrans 0.368 ± 0.023 0.246 ± 0.021 0.684 ± 0.029

TransPro 0.378 ± 0.022 0.258 ± 0.017 0.688 ± 0.029

p value 0.039 0.045 0.053

ID chemical and cell TransPro w/o attention and PertTrans 0.681 ± 0.033 0.576 ± 0.035 0.593 ± 0.043

TransPro w/o attention 0.672 ± 0.034 0.568 ± 0.035 0.600 ± 0.05

TransPro w/o PertTrans 0.677 ± 0.030 0.574 ± 0.029 0.599 ± 0.043

TransPro 0.674 ± 0.025 0.568 ± 0.022 0.603 ± 0.045

p value 0.380 0.382 0.389

The p value stands for the p value of the t test between TransPro and (TransPro w/o attention and PertTrans). PertTrans, perturbed transcriptomics.
aThe value of the t test on the evaluation metrics between TransPro and its ablated model is less than 0.05.
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phosphoproteomics36) in a biological system for modeling geno-

type-phenotype associations.

Deep learning is a power horse for the success of TransPro.

Firstly, because it is often infeasible to perform a large-scale

compound screening with multi-omics readouts, computational

prediction is necessary. Secondly, the capability of end-to-end

training by deep learning makes it a powerful tool to model

multi-level information transmission (e.g., from DNA to RNA to

protein) and hierarchy organizations in biology (e.g., Gene

Ontology).17 Finally, advanced deep learning techniques make

it possible to integrate unlabeled, heterogeneous, biased, noisy,

and sparse omics data generated from diverse resources.37

Limitations of the study
Despite its promising results, there are several limitations of the

study that might be taken into consideration.

One limitation of TransPro is the ‘‘black box’’ nature of deep

learning. While deep learning methods have shown great poten-

tial for solving complex problems, they lack mechanistic insight

into the problem learned. Although methods exist to assess

feature importance,38 new methods are needed to interpret the

embeddings in the intermediate layer of a neural network, partic-

ularly with regard to proteomics features in TransPro.

Another limitation of TransPro is the challenge of training

an optimal model using multiple diverse data via multiple

stages for balancing the performance in both ID and OOD set-

tings. It remains an unsolved problem on the best pre-training

fine-tuning strategy for a specific problem.39 This is an impor-

tant area for future research, as it could help to improve

the generalizability of deep learning models in a range of

applications.

Finally, while TransPro attempts to model the underlying infor-

mation transmission in a biological system, it is only in a rudimen-

tary form. There is potential for improvement by encoding more

complex information such as context-dependent gene-gene in-
8 Cell Reports Methods 3, 100452, April 24, 2023
teractions and integrating additional omics data (e.g., DNA

methylations) in a deep learning system.
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Materials availability
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Data and code availability
d The data used in this study can be accessed at https://doi.org/10.5281/zenodo.7699298.41

d The source code can be accessed at https://github.com/AdorableYoyo/TransPro_a.42 DOIs are provided in the key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Data
Perturbed proteomics data

Through https://tcpaportal.org/cppa/#/download, 11 perturbed proteomics data were downloaded from the CPPA. The experiments

involve the use of 168 different drugs and 319 distinct cell lines. Quantitative proteomics analysis was performed using reverse-phase

protein arrays (RPPA). Each experiment has the incubation of cells with or without drug perturbation. Proteomics data were gathered

from 15492 samples. We used only cell proteomics data sets that had been induced by a single drug. This totals 13738 samples.

Proteomics data that were collected after a 24-hour incubation period was more useful according to previous studies.11 For those

drug-cell experiments that were measured at many separate time points, we kept only those that were analyzed after 24 hours. For

samples that were only tested for less than 24 hours, we retained data that were incubated for the longest period of time. This resulted

in a total of 8072 samples. We next filtered out control samples, cells, and drugs that were not relevant to the research, resulting in a

total of 2268 samples. After averaging the signatures, the total sample size was 1341, consisting of 57 drugs and 73 cell lines. The

initial antibody number was 549; we discarded those with a missing value of 100 percent and retained 512 proteins. Nonetheless, the

percentage of missing values remained at about 60% as shown in Figure S2.

Perturbed transcriptomics data

The perturbed transcriptomics data were gathered from the Library of Integrated Network-based Cellular Signatures (LINCS) proj-

ect.40 This project collects an induced gene expression profile for 94 cell lines and more than 50,000 perturbations. The data we

used were downloaded from https://github.com/njpipeorgan/L1000-bayesian. They are precomputed level 5 drug perturbed gene

expression profiles generated with a more accurate and robust Bayesian-based peak deconvoluted approach.43 As the 978 land-

marks genes are determined to be more insightful in the drug perturbation study, we only included the gene expression profile of

these 978 consensus signature genes. Furthermore, previous research had demonstrated that data quality influenced the predictive

potential of the data, we only kept the most reliable data, as assessed by average Pearson correlation (APC) scores. The

average Pearson correlation among biological replications was used to calculate the APC score. If the APC score for each
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drug-cell-dosage-time combination is higher, it means the aggregated data is more trustworthy. We chose samples with a dose level

of 10.0 mM, which produced 1427 (15 cell lines and 409 drugs) perturbations out of the 7121 total signatures.

Basal transcriptomics data

The basal transcriptomics dataset combines gene expression profiles of cell lines from CCLE,32 1305 cell line gene expression data

obtained as part of the CCLE project were downloaded from DepMap https://depmap.org/portal/download (DepMap Public 20Q3).

Adverse drug reaction prediction data

We applied two adverse drug response datasets for the adverse drug reaction prediction task. The on-label adverse drug responses

side effect resource (SIDER) dataset has 834 marketed drugs, 3,166 adverse drug response preferred terms, and 88,635 drug-ADR

associations.31 The off-label ADRs PharmGKBOffsides dataset from FDA adverse event report system (FAERS) has 684 drugs, 9,405

ADR terms, and 26,0238 drug-ADR associations.30 For the ADR terms, we also removed the ADR terms that had only less than 10

drugs. The ADR terms used in SIDER and FAERSwere labeled with the preferred terms fromMedDRA v16.0.44 For a fair comparison

between different input features, a subset of drugs was selected for the model training and testing, as shown in Table S2.

Anti-cancer drug sensitivity prediction data

CCLE32 contains the basal gene expressions of 1305 cancer cell lines using RNA-seq. We selected the cell lines with drug sensitivity

information available from GDSC phase 1 and phase 2,33,34 as well as the 978 landmark genes from LINCS project,40 resulting in 680

cell lines and 370 chemicals in total for the following experiments. GDSC data can be downloaded from https://www.cancerrxgene.

org/downloads/bulk_download, the version we used in this study was v8.2. The measurement in the experiments was the Z score

which represents the Z score of the LNðIC50Þ (x) comparing it to the mean (m) and standard deviation (q2) of the LNðIC50Þ values
for the drug in question over all cell lines treated.

Baseline models
Neural fingerprints

Instead of applying Graph Isomorphism Networks (GINs) as the chemical embedding network as in TransPro, we built a baseline

model with the original GCN for getting chemical neural fingerprints as the chemical features as demonstrated in this work.22 The

GCN takes a graph structure of a chemical compound as input and uses convolutional operations to update vector representations

for each node (atom) in the graph (chemical compound). The chemical fingerprint is composed of the sum of the vectors of each node

and then passed to the drug-specific DNN in Figure 1A. Except for the absence of the attention module and perturbed transcriptom-

ics training, the rest of the model is essentially equal to Trans-Pro.

k-NN

Similar to TransPro, the k-NN model’s input is a numerical representation of the chemical and cell line, but instead of data-driven

representations for compounds using GNN, we use predetermined chemical fingerprints from PubChem45 that are encoded as

binary (bit) vectors that represent the presence or absence of particular substructures in chemicals, they are calculated with the

Chemistry Development Kit.46 In our settings, we experimented with deepChem fingerprints which have lengths (i.e. number of sub-

structures) of 881. A perturbed proteomics profile is derived for an OOD chemical compound/cell line by averaging the proteomics

perturbations of its nearest neighbors in the training set in the same setting. We experimented with varying the number of neighbor-

hoods in the training set from five to fifteen, as well as with other measures of similarity, including cosine, correlation, Jaccard, and

euclidean distance to report the best performance. The model was implemented using the Python Scikit-Learn library.

Random forest regressor

Random forest is an additional baseline that we used in our studies. It is a reliable bagging method (ensemble) that may be used to

solve problems in both regression and classification. As with k-NN, it accepts predetermined fingerprints as chemical representa-

tions and cell lines, trains a large number of decision trees, weights the input features, and outputs the average of the individual trees’

predictions of proteomics perturbation for a new chemical compound/cell line. We also experimented with different tree numbers

during training in order to report the final findings with proper variance. Python Scikit-Learn was also used to build the model.

Vanilla neural network

Vanilla neural network is a simple two-layer fully connected neural network with a ReLu activation function, and it receives the same

input as the baseline models discussed in k-NN and random forest. We explored a variety of hyper-parameter searches in order to

obtain optimal performance. Likewise, we utilized the Scikit-Learn to implement this method.

TransPro modules
Graph Neural Network

The cell transcriptomics profile is compressed to a low-dimensional vector the encoder module. To build a drug-specific diff vector

from the drug, the diff vector generation layer Edrug � diff is employed. The drug-specific diff vector, we presume, represents the

vector difference between the basal cell transcriptomics hidden vector and the perturbed transcriptomics hidden vector due to drug-

induing. The difference vector in transcriptomics latent space is predicted using the drug graph neural network and the following

feed-forward network. We are primarily interested in Graph Isomorphism Networks (GINs),18 thus, the architecture of the backbone

GNNFigure 1A is a five-layer GINwith 512 and 256 hidden units forMLPs in each layer,20more implementation details can be found in

Table S1.
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where N (v) is a set of nodes adjacent to v, and e = (v, v) represents the self-loop edge. Note that we eliminated the ReLU from the

above equation or the last layer, i.e., k = K, so that hkv can take negative values. This is critical for pre-training methods based on the

dot product, such as Context Prediction and Edge Prediction, because the dot product of two vectors would otherwise always be

positive. The graph-level representation hG is computed by averaging the last layer’s node embeddings, i.e.

hG = MEAN
�
hK
v

��v ˛ G
�

(Equation 2)

We utilized RDKit to extract information about the drug’s atoms and bonds from its SMILES string [16]. Then, using a feedforward

neural network, the output hG was used to construct the drug-specific diff vector.

Zdiff = fDNNðhGÞ (Equation 3)
Cell line encoder and domain-specific decoders
We experimented with an encoder and decoder that were both fully connected to two-layer MLPs with one hidden layer followed by

dropout. The activation function is ReLU, we allocate E to the encoder, and Dtrans, Dprot to the decoders for transcriptomics pertur-

bation and proteomics perturbation, respectively. It is worth noting that we did not add an activation function to the last layer because

the prediction output was continuous.

Multi-head attention for drug-gene interaction network

We utilized a multi-head attention technique to quantify interactions between cell and chemical features, as illustrated in the Fig-

ure S4. In principle, each element of a set may be represented as a collection of three vectors: query, key, and value. A module

for individual attention performs the mapping of queries and sets of key-value pairs to an output matrix.

AttentionðQ;K;VÞ = softmax

�
QKTffiffiffiffiffi
dk

p
�
V (Equation 4)

where Q, K, and V are corresponding matrices (sets) of queries, keys, and values, T is a transposition operation, and dk is a scaling

factor. Given a N-dimensional vector Q of chemical embedding and a M-dimensional vector K of cell line embedding, a NxM weight

matrix will be trained to assign the importance of genes perturbed by the chemical. Another M-dimensional V of the cell line will be

modified by the learned weight. By concatenating several individual attentionmodules, multi-head attention focuses on different rep-

resentation sub-spaces. The drug-induced shifted hidden vector was calculated with the following equation:

Zdrug� induced = Zdiff +AttentionðEðxbasal� transÞ;Zdiff Þ (Equation 5)

where xbasal� trans is the basal transcriptomics. The drug-induced hidden vector is then decompressed from transcriptomics latent

space to transcriptomics profile with the Dtrans:

y0pert� trans = Dtrans

�
Zdrug� induced

�
(Equation 6)
Transmitter
The transmitter is a simple MLP to bridge the information between transcriptomics latent space and proteomics latent space. The

drug-induced hidden vector is decompressed from transcriptomics latent space to proteomics profile with the Transmitter and

Dprot :

y0pert�prot = Dprot

�
Transmitter

�
Zdrug� induced

��
(Equation 7)
Adverse drug reactions prediction
The side effect prediction network is a three-layer feed-forward neural network with a ReLU activation function that took the cell line

generated from the hidden space TransmitterðZdrug� inducedÞ as the input as follows:

Yside� effect = W2

�
ReLU

�
W1Transmitter

�
Zdrug� induced

�
+ b1

��
+b2 (Equation 8)
Anti-cancer drug sensitivity prediction
We first trained the model with the proteomics/transcriptomics perturbation task. An additional DNN head with a three-layer feed-

forward and a ReLU activation function was connected to either the pre-trained chemical-induced transcriptomics hidden state

or chemical-induced proteomics hidden state in Figure 1. The final output variable was IC50 values of anti-cancer drug sensitivity.

During the training stage, we kept all the previous modules unfrozen so the gradient descent would propagate all the way back to the

beginning to achieve end-to-end training. We evaluated the performance with 3-fold cross-validation.

When the network was connected to the perturbed proteomics latent space TransmitterðZdrug� inducedÞ, the object function was

YIC50�w�pert�prot� emb = W2

�
ReLU

�
W1Transmitter

�
Zdrug� induced

�
+ b1

��
+b2 (Equation 9)
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When the network was connected to the perturbed transcriptomics latent space Zdrug� induced, the object function was

YIC50�w�pert� trans� emb = W2

�
ReLU

�
W1

�
Zdrug� induced

�
+ b1

��
+b2 (Equation 10)
Model training
TransPro model training harbors two major training tasks, perturbed transcriptomics prediction and perturbed proteomics predic-

tion. Both tasks share the GNN drug embedding network, the cell encoder, and the Multi-head attention interaction network. It

was worth mentioning that the perturbed transcriptomics data was always retrained in the training dataset because we mainly

focused on the task of perturbed proteomics prediction for the model evaluation. The detailed training procedure is in Algorithm 1.
Algorithm 1. TransPro procedure

Input: fxðiÞtransg
ntrans

i = 1 ;fxðiÞprotg
nprot

i = 1

Require: ntraining, number of training epochs

1: for epoch = 1 to ntraining do

2: for fxtransginfxðiÞtransg
n trans

i = 1 do

3: Update E;Edrugdiff
;Attention;Dtrans with Ltranspert

4: end for

5: for fxprotg in fxðiÞprotg
nprot

i = 1
do

6: Update E;Edrugdiff
;Attention; transmitter;Dprot with Lprotpert

7: end for
Loss function

When calculating the perturbed proteomics reconstruction loss, wemasked out all the missing values in the labeled data and applied

weighted mean square error as our main loss function between predictive proteomics and ground truth labels. Both nprot and

ypert�prot excluded the missing values in order to calculate the final loss. Similarly, we excluded missing data from our evaluation

procedure.

Lprot =
1

nprot

Xnprot
i = 1

k
�
ypert�prot � y0pert�prot

	���j22 (Equation 11)

The perturbed transcriptomics prediction loss function is a regular mean square error loss as follows:

Ltrans =
1

ntrans

Xntrans
i = 1

k
�
ypert� trans � y0pert� trans

	���j22 (Equation 12)
QUANTIFICATION AND STATISTICAL ANALYSIS

Performance evaluation
Throughout the experiments, we focused on Pearson correlation and Spearman correlation as evaluation metrics for expression pro-

file prediction and anti-cancer drug sensitivity prediction. Correlation scores for assessing the relationship between ground truth and

predicted gene expression data have been shown to be more effective than error measures in comparison to microarray data anal-

ysis. We used both correlation coefficients to evaluate the performance of TransPro due to the different information theymay provide

for downstream tasks. When comparing predicted and true gene expression values, Pearson correlation is preferable to Spearman’s

correlation. Spearman correlation is better suited for comparing gene expression rankings, which offers further practical information

for drug sensitivity prediction such as the ranking of IC50.

AUROC and AUPRC were the measurements we used to evaluate the multi-labeled binary classifier for the adverse drug

reactions prediction, and we used the macro average for both. Although ROC-AUC is a widely used statistic to evaluate a classifier’s

performance, ROC curves give a more optimistic impression of the model, particularly when working with an imbalanced dataset.47

Because only true positive rate and false-positive rate are taken into account in the ROC, using a ROC curve with an

imbalanced dataset is misleading and may result in an incorrect evaluation of the model.48 They are independent of the distribution

of classes.49
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