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Abstract: Lung cancer is the second leading cause of cancer-related death worldwide. In recent
decades, investigators have found that microRNAs, a group of non-coding RNAs, are abnormally
expressed in lung cancer, and play important roles in the initiation and progression of lung cancer.
These microRNAs have been used as biomarkers and potential therapeutic targets of lung cancer.
Polyphenols are natural and bioactive chemicals that are synthesized by plants, and have promising
anticancer effects against several kinds of cancer, including lung cancer. Recent studies identified that
polyphenols exert their anticancer effects by regulating the expression levels of microRNAs in lung
cancer. Targeting microRNAs using polyphenols may provide a novel strategy for the prevention
and treatment of lung cancer. In this review, we reviewed the effects of polyphenols on oncogenic
and tumor-suppressive microRNAs in lung cancer. We also reviewed and discussed the potential
clinical application of polyphenol-regulated microRNAs in lung cancer treatment.

Keywords: polyphenol; lung cancer; microRNA

1. Introduction

Lung cancer originates from the bronchial mucosa or glands of the lung. Lung cancer
can be mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). Among all lung cancers, non-small cell lung cancer accounts for about 85–88%,
while small cell lung cancer accounts for about 12–15% [1]. According to the reports of
the World Health Organization, the incidence rate of lung cancer in 2020 was 22.4 cases
per 100,000 people, ranking second in terms of cancers; while the mortality rate of lung
cancer is as high as 18 cases per 100,000 people (https://www.wcrf.org/cancer-trends/
lung-cancer-statistics/ (accessed on 23 March 2022)). The existing treatment methods of
lung cancer are mainly surgery, chemotherapy, and radiotherapy. These treatment methods
have serious side effects and easily cause discomfort. Herb and plant derived-chemicals
have the characteristics of less toxicity and side effects, showing better therapeutic effects,
and can improve the quality of life of patients and weaken the deficiencies of existing
therapeutic drugs [2].
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Polyphenols are widely found in foods and beverages of plant origin (e.g., fruits, veg-
etables, spices, soybeans, nuts, tea, wine, etc.) [3,4]. Polyphenols are a group of plant com-
ponents, with multiple hydroxyl phenols existing in plants. They are important secondary
metabolites in plants and have a polyphenol structure. Polyphenols are mainly synthesized
from shikimic acid and malonic acid [5]. Polyphenols have physiological functions, having
roles in antioxidation, the prevention of cardiovascular disease, anticancer activities, and
the inhibition of microorganisms [6–14]. Polyphenols show cancer-preventive effects by reg-
ulating diverse signaling pathways or biological processes, including inducting apoptosis,
stimulating immune cell functions, and causing anti-inflammatory effects [15].

Over the past decade, the role of non-coding RNAs (ncRNAs) in carcinogenesis and
the use of ncRNAs as targets for tumor inhibition have been hot study topics. NcRNAs
are divided into three categories in terms of length: small non-coding RNAs of less than
50 nucleotides (nt), including microRNAs, siRNAs, and piRNAs; medium non-coding
RNAs of 50 nt to 500 nt, including rRNA, tRNA, snRNA, snoRNA, SLRNA, and SRPRNA;
long non-coding RNAs greater than 500 nt, including long non-coding RNAs without
a PolyA tail. NcRNAs can be transcribed from the genome, but they can perform their
biological functions at the RNA level without being translated into proteins [16]. At present,
studies have found that ncRNAs are involved in the occurrence and development of
a variety of cancers. microRNA, a 22-nucleotide RNA molecule, is an endogenous single-
stranded RNA that reduces gene expression through the RNA interference; that is, its own
target gene expression product [17]. More and more data are showing that the miRNAs
are involved in the progression of lung cancer [18]. This provides a new way to find more
effective drugs for the treatment of lung cancer.

Recent studies have shown that miRNAs are involved in polyphenol-induced car-
cinogenesis inhibition. Here, we reviewed the functions of polyphenols in oncogenic
and tumor-suppressive microRNAs in lung cancer. We also reviewed and discussed the
potential application of polyphenol-regulated microRNAs in lung cancer treatment.

2. Classification of Polyphenols

Polyphenols are a group of phenolic chemicals with a basic phenolic ring [19]. Ac-
cording to the strength of the phenolic ring, the polyphenols can be roughly divided
into five categories (Table 1) [20]. The first category is phenolic acids, including gallic
acid [21]. The second category is stilbenes, including resveratrol [22]. The third category is
flavonoids, including EGCG, quercetin, genistein, kaempferol, and baicalin [23]. The fourth
category is lignans, including honokiol [24]. The fifth category is curcuminoids, including
curcumin [25].

Table 1. Classification of polyphenols.

Classification Chemicals

Phenolic Acids Caffeic Acid Phenethyl Ester, Cucurbitacin B

Stilbenes Resveratrol

Flavonoids

EGCG, Skullcapflflavone I, Quercetin, Genistein, Kaempferol,
Baicalin, Radix Tetrastigma hemsleyani flavone, Apigenin, Soy

isoflavone genistein, Licochalcone A, Puerarin, Nobiletin, Grape
seed procyanidin, Hesperidin, Breviscapine, Nepeta cataria L.’s

extract, Luteolin, Orientin, Rhamnetin, Cirsiliol, Icaritin

Lignans Honokiol, Phyllanthus emblica L, Ailanthone

Curcuminoids Curcumin

3. Lung Cancer and microRNA

The occurrence of lung cancer is mainly the result of the interactions of environmental
factors and genetic factors. Recent studies have shown that in addition to the abnormal
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expression of some signal pathways and oncogenes, lung cancer is also associated with
an imbalance in microRNA expression [26].

The expression of miRNAs is complex. Some miRNAs are upregulated in tumors and
play a role similar to oncogenes, while some miRNAs are downregulated in tumors and
play the role of tumor suppressor genes. An abnormal miRNA molecule can affect the
expression of hundreds of miRNAs. When an miRNA regulates key genes, it will have
a great impact on the cell function [27]. In the pathogenesis and progression of SCLC and
NSCLC, some miRNAs have been speculated as oncogenes, tumor suppressor genes, and
cancer progression (Table 2 and Figure 1).

Table 2. Oncogenic and tumor-suppressive miRNAs in lung cancer.

miRNA Name Targets/Regulators Reference

Oncogenic
miRNAs

miR-224-5p Androgen receptor [28]

miR-93 LKB1/CDKN1A, PI3K/Akt [29]

miRNA-208a Akt/mTOR, p21 [30]

miR-221/miR-222 PTEN, TIMP3 [31]

miR-135b LATS2, beta-TrCP, NDR2 and LZTS1 [32,33]

miR-25-3p CDK2, cyclin E2, RGS3 [32,34]

miR-21-5p PDCD4, PTEN, Faslg, RhoB, HIF1α,
TPM1, Bcl-2L [35–37]

miR-17/92 Agaf-1, c-MYC, PTEN, p21 [37–39]

miR-31-5p TSP-1, RAS/MAPK signalling [37,40]

miR-224-5p LATS2, SMAD4, PPP2R2A [37,41]

miR-451 LKB1/AMPK [37,42,43]

Tumor
Suppressive

miRNAs

miR-143 KRAS [33,42,43]

miR-7-5p NOVA2 [44]

miR-199b ERK, Akt [44,45]

miR-449a MAP2K1 [45,46]

miR-183-5p p53 [46,47]

miR-483-3p FAK/ERK [47,48]

miR-125a-3p MTA1 [48,49]

miR-126, miR-182 Crk [49–51]

miR-200 EMT [50–52]

miR-181 Bcl-2 [32,52]

miR-34a-5p BCL-2, MYC, MET, MYCN, p53 [7,8,32]

miR-126-5p SLC7A5 [9,37]

miR-138-5p H2AX, ZEB2, CCND3 [10–12,37]

miR-34b-5p BCL-2, MYC, MET [13,37]

miR-let-7 family KRAS, MYC, HMGA2, CDC25A, CDK6,
cyclin D2 [14,37]

Notes: miR means mature miRNA; to distinguish miRNAs, numbers and letters were used; 5p and 3p mean the
mature miRNA comes from the 5′ and 3′ arms of the precursor miRNA, respectively.

In recent years, studies have shown that miR-224-5p induces the migration, invasion,
and proliferation of NSCLC [28]. Furthermore, miR-93 promotes NSCLC metastasis by
inhibiting LKB1/CDKN1A to activate the PI3K/Akt pathway [29]. Another miRNA with
tumor-promoting activity is miR-208a, which promotes the activation of Akt/mTOR in
NSCLC cells through p21, and then promotes the proliferation of tumor cells [30]. Addi-
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tionally, miR-221/miR-222 promotes cell migration through the target genes PTEN and
TIMP3 [31]. A recent study reported that miR-135b was upregulated in highly invasive
NSCLC, while miR-135b inhibited the growth and invasion of mouse lung tumors [32].
In SCLC and NSCLC, many miRNAs are speculated to have carcinogenic effects, such as
miR-25-3p, miR-21-5p, miR-17/92, miR-31-5p, and miR-224-5p [34–41].

Figure 1. Oncogenic and tumor-suppressive microRNAs in lung cancer. miRNAs act as cancer
promoters/inhibitors by targeting/regulating relevant proteins/pathways in lung cancer.

On the other hand, many miRNAs have a tumor-suppressive function in lung can-
cer. For example, miR-451 can inhibit the proliferation and migration of NSCLC cells by
regulating LKB1/AMPK [42,43]. Moreover, miR-143 inhibits cell growth by inhibiting
k-RAS translation [33], while miR-7-5p inhibits the tumor metastasis of non-small cell lung
cancer by targeting NOVA2 [44]. A recent study showed that miRNA-199b targeted ERK
and Akt signaling pathways and inhibited the proliferation and metastasis of NSCLC [45].
Moreover, miRNA-449a inhibits the invasion of NSCLC cells by inhibiting MAP2K1 [46],
while miR-183-5p inhibits p53, thereby promoting the metastasis of NSCLC [47]. Addi-
tionally, miR-483-3p can target integrin β3 to inhibit the FAK/ERK signaling pathway
and the invasion and migration of drug-resistant lung cancer cells [48]. Furthermore,
miR-125a-3p inhibits the proliferation and infiltration of non-small cell lung cancer cells by
downregulating MTA1 [49]. When the expression of miR-126 and mir-182 was upregulated,
the expression of Crk protein decreased, and the migration, infiltration and adhesion of
tumor cells were inhibited [50,51]. The high expression of miR-200 can inhibit the ability
of epithelial mesenchymal transformation, invasion and metastasis of metastatic lung
adenocarcinoma cells [52]. The experiment of NSCLC cell line A549 showed that upregu-
lating miR-181 could significantly inhibit cell growth, migration and induce apoptosis [53].
In addition, miR-181 inhibition was found to be associated with higher Bcl-2 levels [32].
miR-34a-5p, miR-126-5p, miR-138-5p, miR-34b-5p, miR-let-7 family, etc. in SCLC and
NSCLC were speculated to be miRNA suppressor [7–14,37].

4. The Role of Polyphenols in Lung Cancer by Targeting microRNAs

More and more data show that miRNA is involved in the progression of lung cancer.
It provides a new way to find more effective drugs for the treatment of lung cancer.
Recent studies have shown that polyphenols play a pharmacological role in lung cancer by
regulating miRNAs (Table 3 and Figure 2).
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Figure 2. Modulation of microRNA expression using polyphenols. Polyphenols inhibit the growth of
lung cancer by up- or downregulating related microRNAs.

4.1. Flavonoids

Epigalocatechin gallate (EGCG), the main component of green tea polyphenols, is
a catechin monomer isolated from tea [54]. Studies showed that the expression levels of miR-
212 were decreased and the expression of miR-155 were increased in EGCG-treated A549 by
regulating the MAPK signaling pathway, which in turn inhibited cancer cell proliferation
and migration [55]. Wang et al. found that EGCG, through the upregulation of HIF-1α
and the expression of mir-210, inhibited the growth of lung cancer cells [56]. At the same
time, EGCG can enhance the expression of has-miR-4855p, significantly inhibit the growth
of NSCLC cells, and induce apoptosis [57]. Another study showed that EGCG inhibited
cancer stem cell-like properties by upregulating the expression of miR-485 and reducing the
expression of CD44 [58]. Meanwhile, some studies have found that EGCG can inhibit the
expression of hsa-miR-98-5p and upregulate the expression of p53, thereby enhancing the
efficacy effects of cisplatin on A549 cells [59]. Skullcapflavone I is a natural product found in
Scutellaria baicalensis, Andrographis paniculata, and other organisms [60]. Skullcapflavone
I can downregulate the expression levels of miR-21, enhance the expression levels of PP2A
in A549 cells, and inhibit the proliferation of human lung cancer cells [61]. Quercetin is
a widely distributed flavonoid alcohol compound with a variety of biological activities
in plants [62]. Studies found that the expression level of miR-16 was upregulated with
quercetin treatment, in turn mediating the decrease in Claudin-2 expression and inhibiting
the invasion and migration of lung adenocarcinoma cells [55,63]. Genistein is a soybean
isoflavone and phytoestrogen with antitumor activity [64]. Genistein-treated A459 cells
showed decreased expression of miR-27a and increased expression of MET, which in turn
promoted the apoptosis of A459 cells [55].

Kaempferol is an organic compound with the chemical formula c15h10o6 and is
a flavonoid. After kaempferol treatment, the expression of mir-340 increased, the expression
of the target gene cyclin D1 decreased, and the expression of PTEN increased, which
inhibited proliferation and promoted the apoptosis of A549 cells [55]. Similarly, Han et al.
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found that the expression of mir-340 was upregulated, the level of PTEN increased, the
phosphorylated levels of PI3K and AKT were decreased, the proliferation of A549 cells was
inhibited, and the apoptosis and autophagy of A549 cells were increased after kaempferol
treatment compared with the control group [65]. Baicalin is a flavonoid extracted and
isolated from the dried roots of Scutellaria baicalensis Georgi, a dicotyledonous Labiatae
plant [66]. Recent studies found that the expression levels of miR-340-5p and the target
gene NET1 were increased after baicalin treatment, in turn inhibiting the proliferation and
invasiveness of A549 and H1299 cells [67]. Meanwhile, Baicalein inhibited cell growth
and increased the sensitivity of A549 and H460 cells to cisplatin through the miR-424-
3p-targeted PTEN/PI3K/AKT pathway [68]. The Radix Tetrastigma hemsleyani flavone
(RTHF) is extracted from a traditional Chinese medicinal herb T. hemsleyani [69]. The
increase in has-miR-410-3p in A549 cells caused by RTHF may play a role in the inhibition
of A549 cells via downregulating the expression of MMP14 and MMP16 [69]. Moreover,
the downregulation of miR-1303 by RTHF may occur through targeting CLDN18, GSK3β,
and SFRP1, thereby inhibiting the proliferation, migration, and invasion of A549 cells [70].
Apigenin mainly exists in Daphneceae, Verbenaceae, and Selaginellaceae plants, especially
in celery [71]. It was found that apigenin may induce apoptosis by upregulating miR-34a-5p
in A549 cells and downregulating SNAI1 [72].

The soy isoflavone genistein is usually present in genistein and daidzein. It is
a bioflavonoid in soybean products and other plants [73]. In NSCLC cells treated with
the soy isoflavone genistein, miR-873-5p inhibited cell proliferation, migration, and in-
vasion and increased apoptosis by regulating FOXM1 [74]. Licochalcone A (Lico A) is
a post chalcone isolated from the root of Glycyrrhiza uralensis, a plant from Xinjiang
Province in China [75]. It is reported that LiCo A can significantly promote the expression
of miR-144-3p, downregulate the expression levels of Nrf 2, and finally induce apoptosis in
lung cancer cells [76]. Chen et al. also found that Lico A can activate the unfolded protein
response (UPR) and induce autophagy in H292 cells, thereby inducing apoptosis [77].
Puerarin is a C-glycosyl compound and a hydroxyisoflavone [78]. Purerin inhibits the
expression of CCND1 by upregulating miR-342; inhibits cell viability, migration, invasion,
and the cell cycle process; and enhances the apoptosis of NSCLC cells [79]. Nobiletin
is a natural product found in Ageratum conyzoides and Viburnum tinus [80]. Sp et al.
found that nobiletin inhibited the expression of PD-L1 through the EGFR/JAK2/STAT3
signaling pathway, while the expression levels of STAT3 and PD-L1 were regulated by
miR-197, thereby enhancing the antitumor immunity [81]. Recent studies have shown
that the downregulation of miR-106b by grape seed procyanidin (GSE) induced the ex-
pression levels of tumor inhibition cycle-independent kinase inhibitor 1A (CDKN1A) and
p21, which further promotes the antitumor effect of GSE [82]. Another study found that
grape seed procyanidin significantly downregulated the expression of miR-19a and-19b in
tumor cells, increased the mRNA and protein levels of insulin-like growth factor II recep-
tor (IGF-2R) and phosphatase and tensin homologue (PTEN), and significantly inhibited
tumor growth [83].

Hesperidin is a flavanone glycoside, which is found in citrus fruits [84]. Hesperidin
can promote the apoptosis of lung cancer cells by increasing the expression of miR-132 and
reducing the expression of ZEB2, so as to inhibit the proliferation of lung cancer cells [85].
Breviscapine is found in Indian wood, perilla, and other organisms [86]. Zeng et al. found
that breviscapine enhanced the expression of miR-7, upregulated Bax/Bcl-2, and promoted
apoptosis [87]. It was found that Nepeta cataria L. extract can regulate the expression of
miR-126 and regulate the PI3K-Akt signaling pathway to perform the anticancer effect [88].
Luteolin is a natural product found in Cryptomeria japonica and Epimedium [89]. Luteolin
upregulates the expression of miR-34a-5p by targeting MDM4, inhibits tumorigenesis, and
induces the apoptosis of NSCLC cells [90]. Orientin is a C-glycosyl compound, and it
is believed that orientin regulates the expression of COX-2/PGE-2 in the A549 cell line
through miR-26b and miR-146a and reduces the proliferation, migration, and invasion
of A549 cells [91]. Rhamnetin is a natural product found in Liriodendron tulipifera and
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Albizia julibrissin [92]. Cirsiliol is a natural product found in Salvia lineata and Teu-
crium chamaedrys. Rhamnetin and Cirsiliol can inhibit the EMT of lung cancer cells
through the miR-34a-mediated downregulation of Notch-1 expression [93]. Icaritin exists
in Epimedium bicolor, Epimedium aculeatum, and Epimedium wushanese [94]. Icaritin
inhibits NSCLC cell proliferation by downregulating miR-10a, which could regulate the
expression of PTEN [95].

4.2. Phenolic Acids

Caffeic acid phenethyl ester (CAPE) is a natural product found in Euonymus ala-
tus and Alibertia macrophylla, and is the phenethyl alcohol ester of caffeic acid and
a bioactive component of honeybee hive propolis, with antineoplastic, cytoprotective, and
immunomodulating activities [96]. Mo et al. found that CAPE treatment downregulated
the expression of YAP1 and C-MYC, thereby inducing H446 cell apoptosis. Moreover, they
found that miR-3960 upregulated the expression of C-MYC and participated in CAPE-
induced SCLC cell apoptosis [97]. Cucurbitacin B is a cucurbitacin derived from the
hydrides of lanosterol [98]. Cucurbitacin B inhibits the proliferation and promotes the
apoptosis of lung cancer cells through the lncRNA XIST/miR-let-7c axis [99].

4.3. Stilbenes

Resveratrol, a non-flavonoid polyphenol organic compound, is an antitoxin produced
by many plants when stimulated [100]. In lung cancer cells treated with resveratrol, cell
proliferation was inhibited via the miR-622/k-Ras axis [101]. Moreover, resveratrol can also
inhibit the expression of FOXC2 and tumor activity by regulating the miR-520h-mediated
signal cascade [102]. Lu et al. found that resveratrol inhibited NSCLC cell proliferation
via miR-345- and miR-498-regulated MAPK/CFO and Akt/BCL2 signaling pathways by
directly targeting MAPK1 and PIK3R1, respectively, which increased the sensitivity of
NSCLC cells to gefitinib and induced apoptosis [103].

4.4. Lignans

Honokiol is found in Cryptomeria fortunei, star anise, and other organisms [104].
Honokiol inhibited the proliferation and migration of NSCLC cells and induced the apop-
tosis of NSCLC cells through miR-148a-5p and miR-148a-3p, probably by targeting ERBB3
and itga5 through the PI3K/Akt signaling pathway [105]. Treatment with Phyllanthus
emblica L (PEL) extract could effectively prevent precancerous lesions of lung cancer by
regulating the IL-1β/miR-101/LIN28B signaling pathway [106]. Ailanthone comes from
Ailanthus altissima, and can inhibit the proliferation of lung cancer cells and promote
the apoptosis and autophagy of lung cancer cells [107]. Hou et al. found that Ailanthone
induced the apoptosis and autophagy of lung cancer cells by upregulating the expression
of miR-195 [108].

4.5. Curcuminoids

Curcumin is a natural nutrient compound derived from long Jiang Huang (Jiang
Huang), and shows good pharmacological effects, including anti-inflammatory, neuropro-
tective, and antidiabetic effects [109]. Curcumin-induced miR-3305p upregulation in lung
cancer cells was inversely related to the metastasis of lung cancer cells and reduced their
invasion; meanwhile, curcumin upregulates miR-30c expression, which in turn reduces the
expression of MTA1 to improve the sensitivity of NSCLC cells to PTX chemotherapy [110].
Similarly, Zhan et al. found that the expression of miR-330-5p was significantly upreg-
ulated in lung cancer cells, and the antimigration effect of curcumin was mediated by
miR-330-5p [97]. Another study found that curcumin may inhibit lung cancer metastasis by
miR-34a-5p/miR-34c-5p/miR-302b-3p-lef1-ccnd1/Wnt1/MYC axis [111]. Liu et al. stud-
ied the effect of curcumin on the expression of miR-98 in lung cancer cells. They found
that the expression of miR-98 was upregulated by curcumin treatment and inhibited the
migration and invasion of lung cancer cells by inhibiting the expression of MMP2 and
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MMP9 induced by lin28a [112]. ATP1B1 (β1 subunit of Na+/K+-ATPase) is a target of
miR-192-5p [113]. It was found that curcumin promotes the apoptosis of NSCLC cells
through the p53-miR-192-5p/215-XIAP and PI3K/Akt signaling pathways [114,115]. More-
over, curcumin promoted an increase in miR-192-5p expression level in a dose-dependent
manner and with a decrease in c-MYC expression [113,116]. Finally, curcumin can inhibit
the proliferation, migration, invasion, and viability of NSCLC cells in a dose-dependent
manner [116]. Curcumin increases the sensitivity of paclitaxel-resistant NSCLC cells to
paclitaxel through a reduction in MTA1 mediated by miR-30 [117]. Curcumin can also
significantly downregulate the expression of miR-186* in A549/DDP cells and promote
the apoptosis of A549/DDP cells [118,119]. Wang et al. found that curcumin inhibited the
migration and invasion of NSCLC cells by upregulating miR-206 expression and by inhibit-
ing the PI3K/Akt/mTOR signaling pathway [120]. It was also found that the protein level
of PTEN, the putative target of miR-21, was significantly increased in curcumin-treated
A549 cells, showing antiproliferation and proapoptotic activities in NSCLC cells [121]. It
was found that curcumin inhibited the expression and activity of MMP-2 by upregulating
miR-874 in A549 cells. Curcumin can also upregulate miR-let7c and miR-101 in A549
cells [122]. Zeste homolog 2 was significantly downregulated when A549 cells overex-
pressed miRNA-let7c and miR-101 [122]. The study speculated that the effect of curcumin
on the miRNA may lead to the inhibition of the growth of lung cancer cells [122]. Curcumin
inhibits the growth of NSCLC by downregulating CIRC PRKCA, while PRKCA regulates
the expression of ITGB1 via miR-384 [123].
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Table 3. Modulation of microRNA expression by polyphenols.

Natural Compound ncRNA Targets/Regulators Cell Processes Reference

EGCG

miR-212 (↓),
miR-155 (↑),
mir-210 (↑),

has-miR-4855p (↑),
miR-485 (↑),

hsa-miR-98-5p (↓)

MAPK signaling pathway, HIF-1α,
CD44, p53

Inhibition of cell proliferation, migration, apoptosis
and growth of lung cancer cells, enhancing the efficacy

of cisplatin in A549 cells
[55–59]

Skullcapflflavone I miR-21 (↓) PP2A Inhibition of cell proliferation [61]

Quercetin miR-16 (↑) Claudin-2 Destroyed the invasion and migration of lung
adenocarcinoma cells [55,63]

Genistein miR-27a (↓) MET Promoted apoptosis [55]

Kaempferol miR-340 (↑) Cyclin D1, PTEN, PI3K, AKT Cell apoptosis, inhibition of proliferation, autophagy
increased [55,65]

Baicalin miR-340-5p (↑), miR-424-3p (↓) NET1, PTEN/PI3K/Akt pathway Inhibition of proliferation and invasiveness [67,68]

Radix Tetrastigma Hemsleyani
Flavone has-mir-410-3p (↑) RTHF, MMP14, MMP16, CLDN18,

GSK3β, SFRP1 Inhibition of proliferation, migration, and invasion [70]

Apigenin miR-34a-5 (↑) SNAI1 Induced apoptosis [72]

Soy Isoflavone Genistein miR-873-5p (↑) FOXM1 Inhibited cell proliferation, migration, and invasion
and increased apoptosis [74]

Licochalcone A miR-144-3p (↑) NRF2, unfolded protein response Induced apoptosis and autophagy [76,77]

Puerarin miR-342 (↑) CCND1 Inhibition of cell viability, migration, invasion, and cell
cycle process, enhancement of the apoptosis [79]

Nobiletin miR-197 (↓) PD-L1, EGFR/JAK2/STAT3 signaling
pathway, Enhanced antitumor immunity [81]

Grape seed procyanidin miR-106b (↓), miR-19a (↓),
miR-19b (↓)

CDKN1A, insulin-like growth factor II
receptor, PTEN Inhibition of tumor growth [83]

Hesperidin miR-132 (↑) ZEB2 Inhibition of the proliferation [85]

Breviscapine miR-7 (↑) Bax/Bcl-2 Promoted apoptosis [87]

Nepeta Cataria L.’s Extract miR-126 (↑) PI3K-Akt signaling pathway Anticancer effect [88]
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Table 3. Cont.

Natural Compound ncRNA Targets/Regulators Cell Processes Reference

Luteolin miR-34a-5p (↑) MDM4 Inhibition of tumorigenesis and induces apoptosis [90]

Orientin miR-26b (↑),
miR-146a (↑) COX-2/PGE-2 Reduces cell proliferation, migration and invasion [91]

Rhamnetin, Cirsiliol miR-34a (↑) Notch-1 Inhibition of EMT [93]

Icaritin miR-10a (↓) PTEN Antitumor effect [95]

Caffeic Acid Phenethyl Ester miR-3960 (↑) YAP1, C-MYC Cell apoptosis [97]

Cucurbitacin B LncRNAXIST (↓),
miR-let-7c (↑) IL-6/STAT3 pathway Inhibition of the proliferation and promote apoptosis [99]

Resveratrol

miR-622 (↑), miRNA-520h (↓),
miR-345 (↑),
miR-498 (↑),
ak001796 (↓)

K-RAS, FOXC2, MAPK/CFOs,
Akt/BCL2 signaling pathways Induced apoptosis [101–103]

Honokiol miR-148a-5p (↑),
miR-148a-3p (↑)

ERBB3 and ITGA5, PI3K/Akt signaling
pathway Inhibited proliferation and migration [105]

Phyllanthus Emblica L miR-101 (↑) IL-1β/MiR-101/LIN28B signaling
pathway Effectively prevented precancerous lesions [106]

Ailanthone miR-195 (↑) PI3K, Akt, Jak, STAT3 Induced apoptosis and autophagy [108]

Curcumin

miR-3305p (↑),
miR-30c (↑),

miR-330-5p (↑),
miR-34a-5p (↑),
miR-34c-5p (↑),

miR-302b-3p (↑), miR-98 (↑),
miR-192-5p (↑), miR-30 (↑),

miR-186* (↓),
miR-206 (↑),
miR-21 (↓),
miR-874 (↑),

miR-let7c (↑),
miR-101 (↑),

CIRC-PRKCA (↓)
miR-384 (↑)

MTA1, CCND1/Wnt1/MYC, MMP2,
MMP9, ATP1B1, PI3K/Akt signaling

pathway, c-MYC, PTEN, ITGB1
Reduced their invasion, inhibited their migration [110]

Note: ↑: upregulation; ↓: downregulation.
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5. Clinical Trials Using Polyphenols for Lung Cancer Treatment

To date, there have been 12 clinical trials of polyphenols in lung cancer (http://
clinicaltrials.gov/ (accessed on 8 August 2022), listed in Table 4). Among these clinical
trials, flavonoids are the major ones used for treatment. Zhao et al. studied the side effects
and optimal dose of EGCG in patients with non-small cell lung cancer. The initial dose of
EGCG was 400 mg administered twice a day. The second incremental dose was 800 mg, the
third incremental dose was 1200 mg, the fourth incremental dose was 1600 mg, and the
fifth incremental dose was 2000 mg (NCT01317953). The results showed that oral EGCG
is feasible, safe, and effective, and the recommended concentration of EGCG in patients
with non-small cell lung cancer in the second stage of treatment is 440 µM [124]. Scott et al.
determined that the maximum tolerated dose of green tea extract in patients with advanced
lung cancer was 3 g/m2/day. At this dose, the green tea extract was well tolerated and the
toxicity was no more than grade 3 or 4 [125]. Siegenthaler et al. found that flavor aesthetic
acid (NSC.347512, LM975) had slight antitumor activity against NSCLC [126]. However,
the results of most clinical trials have not been published. Therefore, whether polyphenols
mediate antitumor effects through miRNAs in clinical trials has not been clarified.

Table 4. Clinical application of polyphenols.

Polyphenol Compound NCT Number Title Status Phase Population

Flavonoids

EGCG NCT01317953 Oral Green Tea Extract for Small
Cell Lung Cancer Available - -

EGCG NCT02577393

Study of
Epigallocatechin-3-gallate (EGCG)

for Esophagus Protection in
Patients with Lung Cancer

Receiving Radial Radiotherapy

Enrolling by
invitation 2 83

EGCG NCT00573885

Green Tea Extract in Preventing
Cancer in Former and Current

Heavy Smokers with Abnormal
Sputum

Completed 2 53

EGCG NCT00611650
Green Tea Extract in Treating

Current or Former Smokers with
Bronchial Dysplasia

Terminated 2 23

EGCG NCT04871412
The Thoracic Peri-Operative

Integrative Surgical Care
Evaluation Trial Stage II

Not yet
recruiting 3 40

Isoquercetin NCT02195232 Cancer Associated Thrombosis
and Isoquercetin (CATIQ) Completed 2/3 64

Isoflflavones NCT01958372

Radiation Therapy, Chem
motherapy, and Soy Isoflavones in

Treating Patients with Stage
IIIA-IIIB Non-Small Cell Lung

Cancer

Completed 1 11

Genistein NCT01628471

MTD Determination, Safety and
Efficacy of the

Decitabine-Genistein Drug
Combination in Advanced Solid

Tumors and Non-Small Cell Lung
Cancer

Completed 1/2 20

Chlorogenic
acid NCT03751592

Phase Ib/IIa Studies of
Chlorogenic Acid for Injection for
Safety and Efficacy of Advanced

Lung Cancer

Unknown
status 1/2 144

http://clinicaltrials.gov/
http://clinicaltrials.gov/
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Table 4. Cont.

Polyphenol Compound NCT Number Title Status Phase Population

Phenolic acids Black
Raspberry NCT04267874

Black Raspberry Nectar for the
Prevention of Lung Cancer, BE

WELL Study

Active, not
recruiting 1 96

Curcuminoids

Curcumin C3
complex NCT03598309

Phase II Trial to Modulate
Intermediate Endpoint

Biomarkers in Former and
Current Smokers

Recruiting 2 75

Blueberry
powder NCT01426620

Standard Chemotherapy with
Blueberry Powder in Non-Small

Cell Lung Cancer
Terminated 2 4

6. Conclusions and Future Perspectives

In the past two decades, miRNAs have been proven to play a major role in the
pathogenesis of lung cancer and have become candidate therapeutic targets. Preclinical
studies have shown that polyphenols can downregulate pro-tumor-associated microRNAs
or upregulate tumor-associated microRNAs, thereby exerting their antitumor function in
lung cancer. However, the therapeutic effects of using miRNAs for lung cancer treatment
need to be demonstrated in clinical trials. Thus, further studies are needed to explore this
promising field. Therefore, in future clinical trials, we could study the effects of polyphenols
on miRNAs in lung cancer patients in vivo by using new technologies such as metabolomics
and single-cell sequencing. Special attention should be paid to the cancer-promoting or
cancer-suppressing miRNAs that were found to be affected by polyphenols in preclinical
experiments. We could screen for different polyphenols targeting specific types of miRNAs
associated with cancer through the application of polyphenols in clinical settings.
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