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Abstract
The	 synergy	 between	 climate	 change,	 eutrophication,	 and	 biological	 invasion	 is	
threatening	for	native	submerged	plants	in	many	ways.	The	response	of	submerged	
plants	 to	 these	 changes	 is	 a	 key	 factor	 that	 determines	 the	 outcome	 of	 biological	
invasion.	 In	order	 to	explain	 the	 invasion	successes,	we	 investigated	 the	combined	
effects	of	climate	change	and	eutrophication-	related	environmental	factors	(tempera-
ture,	 light,	and	nutrients)	on	the	trait	 responses	of	a	native	 (Myriophyllum spicatum)	
and	an	alien	(Cabomba caroliniana)	submerged	species.	In	a	factorial	design,	we	culti-
vated	the	two	species	in	aquaria	containing	low	(0.5	mg N L−1,	0.05 mg P L−1)	and	high	
(2	mg N L−1,	 0.2	mg P L−1)	 nutrient	 concentrations,	 incubated	 at	 four	 light	 intensities	
(average	25,	67,	230,	and	295 μmol m−2 s−1	PAR	photon	flux	density)	under	two	tem-
perature	levels	(21.5	and	27.5 ± 0.5°C).	We	used	four	invasion-	related	functional	traits	
(relative	growth	rate	(RGR),	specific	leaf	area	(SLA),	leaf	dry	matter	content	(LDMC),	
and	nitrogen	to	carbon	ratio	(N:C	molar	ratio))	to	measure	the	environmental	response	
of	the	species.	We	calculated	plasticity	 indexes	to	express	the	trait	differences	be-
tween species. Cabomba caroliniana	 showed	significantly	higher	RGR	and	SLA	than	
M. spicatum	especially	under	low	light	intensity	indicating	that	Cabomba	is	much	more	
shade	tolerant.	Elevated	temperature	resulted	in	higher	SLA	and	reduced	LDMC	for	
C. caroliniana indicating that Cabomba	may	have	higher	invasion	success.	Myriophyllum 
showed higher LDMC than C. caroliniana.	Chemical	analyses	of	 the	plant	 tissue	re-
vealed	that	although	M. spicatum	showed	significantly	higher	N:C	molar	ratio,	none-
theless,	the	daily	nitrogen	uptake	of	C. caroliniana	was	more	than	three	times	faster	
than	that	of	M. spicatum.	Results	supported	the	idea	that	due	to	its	higher	shade	toler-
ance	and	nitrogen	uptake	capacity,	Cabomba	likely	has	greater	invasion	success	with	
increasing	temperature	combined	with	low	light	levels.
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1  |  INTRODUCTION

The	introduction	of	alien	plant	species	and	climate	change	are	among	
some	of	the	major	global	biodiversity	threats.	Climate	change	could	
alter	almost	every	facet	of	biological	invasion	and	every	interaction	
between	environmental	stressors,	thereby	decreasing	the	resistance	
to	invasion	of	natural	communities	(Dukes	&	Mooney,	1999; Hellman 
et al., 2007; Netten et al., 2010).	 Climate	 change	 is	 also	 stressing	
native	species	to	the	point	of	being	unable	to	compete	against	new	
invasives	(Rejmanek	&	Richardson,	1996).	Moreover,	in	freshwaters,	
it	intensifies	the	symptoms	of	eutrophication	(Jeppesen	et	al.,	2010),	
and	 a	 2–	4°C	 increase	 in	 water	 temperature	 is	 forecast	 by	 2100	
(Pachauri	et	al.,	2014).

The	 synergy	 between	 climate	 change	 and	 eutrophication	 is	
threatening	for	submerged	plants	in	many	ways	(Moss,	2011).	On	one	
hand,	there	is	a	positive	correlation	between	elevated	temperature	
and	dominance	of	 free-	floating	 vegetation	over	 submerged	plants	
(Peeters	et	al.,	2013).	In	addition,	high	nutrient	concentration	of	the	
water	may	also	result	in	the	dominance	of	phytoplankton	(Scheffer	
&	 van	 Nes,	 2007)	 and	 free-	floating	 plants	 (Scheffer	 et	 al.,	 2003; 
Smith,	2014;	Szabó	et	al.,	2022).	Both	phenomena	cause	light	limita-
tion	(Lewis	&	Bender,	1961; Morris et al., 2003;	Phillips	et	al.,	2016),	
which	negatively	affects	 the	growth	of	submerged	plants.	The	 re-
sponse	of	submerged	plants	to	these	changes	(i.e.,	lower	light	inten-
sity,	higher	nutrient	 concentration,	 and	elevated	 temperature)	 is	 a	
key	factor	that	determines	the	outcome	of	biological	invasion.

In	the	naturalization	phase	of	invasion,	alien	species	must	adapt	
to	 the	new	environmental	conditions	 in	order	 to	establish,	 survive,	
and	reproduce	(Richardson	&	Pyšek,	2012).	Morphological	or	physi-
ological	characteristics	(i.e.,	specific	leaf	area	(SLA),	dry	matter	con-
tent,	 relative	 growth	 rate	 (RGR),	 and	 nutrient	 uptake)	 that	 provide	
a competitive advantage to alien plants over native species have a 
key	 role	 in	 this	process	 (Vilà	&	Weiner,	2004).	Greater	phenotypic	
differences	between	alien	and	native	aquatic	plants	considerably	in-
crease	the	probability	of	the	alien's	success	(Lake	&	Leishman,	2004).	
Accordingly,	 higher	 RGR,	 nutrient	 uptake,	 SLA,	 and	 higher	 pheno-
typic	plasticity	can	contribute	to	the	success	of	alien	aquatic	plants	
(Geng	et	al.,	2006;	Lukács	et	al.,	2017;	Szabó	et	al.,	2019, 2020).	Light,	
nutrient	availability,	and	temperature	are	strongly	related	to	climate	
change	and	eutrophication.	Responding	to	these	environmental	fac-
tors,	invasive	plants	need	to	be	able	to	change	their	phenotypic	prop-
erties	more	quickly,	 such	as	elongation	 (Molnár	et	al.,	2015;	Szabó	
et al., 2019),	branching,	root-	shoot	ratio	(Szabó	et	al.,	2019),	chloro-
phyll	concentration	(Szabó	et	al.,	2020),	leaf	area	(Riis	et	al.,	2010),	or	
dry	matter	 content	 (Larson,	2007).	 The	 responses	 to	 these	 factors	
separately	have	been	well	documented;	however,	there	is	not	a	single	
study	addressed	to	evaluate	their	combined	impact	on	morphological	
and	physiological	traits	of	submerged	macrophytes.

Cabomba caroliniana	 is	one	of	 the	macrophytes	 that	gains	high	
invasion	risk	in	freshwaters	(Matthews	et	al.,	2017).	Significant	dif-
ferences	were	 discovered	 between	C. caroliniana and native beds 
for	 underwater	 light	 conditions,	macrophyte	 equitability,	 and	 epi-
phytic	algal	biomass	(Hogsden	et	al.,	2007).	Roijackers	(2008)	stated	

that	growth	form	plays	an	important	role	in	the	competitive	ability	
of	Cabomba caroliniana.	Specifically,	where	there	are	plants	with	a	
similar	growth	form	(e.g.,	Myriophyllum spicatum and M. heterophyl-
lum),	 the	 growth	 potential	 of	C. caroliniana appears to be limited. 
However,	limited	information	was	found	on	the	effects	of	C. carolin-
iana	on	native	aquatic	plants	(Matthews	et	al.,	2013).

In	our	experimental	study,	we	compared	the	phenotypic	plasticity	
of	Cabomba caroliniana and Myriophyllum spicatum,	 two	 submerged	
aquatic	plants	with	similar	growth	form	(i.e.,	Myriophyllid:	anchored	
submerged	 plants	 with	 long	 stems	 and	 finely	 divided	 submerged	
leaves,	Wiegleb,	1991).	Cabomba caroliniana	(Cabombaceae)	is	a	fast-	
growing	submerged	aquatic	plant,	native	in	Argentina,	Brazil,	Uruguay,	
Paraguay,	and	South-	eastern	USA	(Ørgaard,	1991);	however,	it	forms	
densely	vegetated	stands	in	European	freshwaters	as	an	alien	species;	
frequently	distributed	in	the	UK	(Stace,	1997),	the	Netherlands	(van	
der	Velde	et	al.,	2002),	and	Hungary	(Lukács	et	al.,	2014;	Steták,	2004).	
Myriophyllum spicatum	 (Haloragaceae)	 is	native	 in	Europe,	Asia,	and	
North-	Africa	 (Patten,	1954).	We	have	chosen	 to	compare	 the	envi-
ronmental	response	of	these	species	because	they	frequently	occur	
in	the	same	habitat	in	Hungary,	and	we	suggest	strong	competitive	in-
teraction	between	them	due	to	the	same	growth	form	display	similar	
extent	of	realized	niche	(Begon	et	al.,	1996).

Specific	leaf	area,	leaf	dry	matter	content	(LDMC),	nitrogen/car-
bon	(N:C)	molar	ratio,	and	RGR	are	considered	as	the	so-	called	“re-
sponse”	traits	in	the	plant	trait	literature	(Engelhardt,	2006).	It	means	
that	it	can	be	used	to	examine	the	manner	in	which	biota	responds	to	
changes	in	the	environment;	therefore,	we	investigated	these	traits	
in	order	to	get	answers	to	our	questions.

We	hypothesized	(H1)	that	differences	in	their	growth	rate	and	
nutrient	uptake	become	more	pronounced	both	under	higher	tem-
perature	or	higher	nutrient	concentration	and	with	decreasing	light	
conditions.	We	 suggest	 that	 these	 factors	 may	 contribute	 to	 the	
invasion	success	of	Cabomba over Myriophyllum.	We	also	hypothe-
sized	(H2)	that	along	various	environmental	conditions,	Cabomba has 
a	higher	phenotypic	plasticity	than	Myriophyllum	and	this	may	also	
contribute	to	its	invasion	success.

This	study	aims	to	evaluate	these	hypotheses	by	investigating	the	
combined	effects	of	temperature,	light,	and	nutrients	(N,	P)	on	the	trait	
responses	of	the	two	species	in	a	laboratory	experiment.	A	further	aim	
is	to	clarify	the	limited	competition	ability	of	Cabomba	growing	next	to	
Myriophyllum,	and	how	this	competition	 is	altered	by	changing	envi-
ronmental	conditions.	Since	submerged	species	may	strongly	change	
light	conditions	if	they	are	grown	in	cocultures	(Szabó	et	al.,	2019),	we	
cultivated	them	separately	in	order	to	eliminate	these	effects.

2  | METHOD

2.1  |  Plant collection, preincubation

We	collected	 apical	 shoots	 of	Cabomba caroliniana	 from	 the	 ther-
mal	 outflow	 of	 Lake	 Hévíz	 (N	 46.786986°,	 E	 17.194127°),	 and	
Myriophyllum spicatum	 from	 the	 Eastern	 Principal	 Channel	 (N	
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47.860911°,	E	21.382270°),	Hungary.	Shoots	were	preincubated	in	
plastic	boxes	containing	20	L	of	deionized	water	which	was	supple-
mented	by	Na+, K+, Ca2+, Mg2+, HCO−

3
, SO2−

4
, and Cl−	as	general	pur-

pose	culture	solution	medium	detailed	by	Barko	and	Smart	 (1985).	
Final	 concentration	 of	 the	 solutions	 for	 nutrients	 varied	 from	 eu-
trophic	 (0.5	mg N L−1	 and	 0.05 mg P L−1)	 to	 hypertrophic	 (2	mg N L−1 
and	 0.2	 mg P L−1)	 through	 the	 treatment	 of	 adding	 NH4NO3 and 
K2HPO4	stock	solutions	(1000 mg L

−1	for	N	and	for	P)	to	the	medium.	
The	 nutrient	 (nitrogen	 and	 phosphorus)	 concentration	 of	medium	
was	set	to	these	values	because	we	intend	to	simulate	the	natural	
conditions	and	these	two	trophic	levels	refers	to	eutrophic	and	hy-
pertrophic	 status	 of	 natural	waters.	 The	 supply	 of	micronutrients	
was	 ensured	 by	 adding	 TROPICA	 Supplier	 micronutrient	 solution	
(Szabó	 et	 al.,	 2010).	 We	 preincubated	 the	 selected	 apical	 shoots	
(10–	12 cm	length)	for	14 days	under	230 μmol m−2 s−1	photosyntheti-
cally	active	radiation	(PAR),	16:8	h	L/D	regime	at	24.5 ± 0.5°C.	We	
renewed	 the	 culture	 medium	 twice	 a	 week.	 Shoot	 length	 nearly	
doubled	(22 cm)	under	14 days	of	preincubation.	Therefore,	most	of	
the	selected	apical	shoots	(11–	14 cm)	had	developed	already	under	
preincubation	period;	hence,	they	were	well	accommodated	for	ex-
perimental	condition.	Before	starting	the	experiment,	we	removed	
water	from	the	surface	of	the	plants	using	a	centrifuge	(600	RPM,	
10	s).	We	measured	subsamples	of	initial	shoots	of	each	species	from	
each	nutrient	concentration	 for	 fresh	weight	 (FW)	and	dry	weight	
(DW)	(W0).

2.2  |  Laboratory experiment

We	placed	six	apical	Cabomba and Myriophyllum	shoots	(11–	14 cm	
length,	 7.40 ± 0.2	 g	 FW	 each)	 separately	 in	 2-	L	 aquaria	 (height:	
11.5	 cm,	 width:	 11.5	 cm,	 length:	 18 cm)	 containing	 the	 culture	
media	described	above.	The	initial	pH	of	the	water	was	adjusted	
to	7.3.	 Plant	 shoots	were	placed	 free	 into	 the	 aquaria,	 and	 they	
were	not	planted	into	a	substrate.	They	were	positioned	that	way	
to	 exclude	 the	 self-	shading	 effect.	We	 covered	 the	 sides	 of	 the	
aquaria	with	black	 foil	 to	avoid	 light	penetration	 from	 the	 sides.	
For	both	species,	two	different	nutrient	treatments	(0.5	mg N L−1, 
0.05 mg P L−1;	2	mg N L−1,	0.2	mg P L−1)	were	 incubated	at	 four	dif-
ferent	 light	 intensities	 varying	 from	 strongly	 shaded	 to	 well-	
illuminated	conditions:	22–	28	(L1),	52–	82	(L2),	170–	290	(L3),	and	
260–	330	 (L4)	μmol m−2 s−1	PAR	photon	 flux	density.	The	highest	
light	intensity	used	in	the	experiment	is	roughly	the	same	that	we	
could	measure	on	a	summer	sunny	day	under	half-	shaded	condi-
tions	in	a	natural	water.	The	other	light	intensities	were	set	to	this	
values	 because	 the	 differences	 between	 light	 treatments	 were	
suitable	for	measuring	the	effects	of	light	intensity	on	the	plants.	
The	 light	 intensity	of	 lamps	was	not	dimmable,	 but	 the	distance	
between	 the	 lamps	 and	 aquaria	 was	 adjustable;	 therefore,	 light	
intensity	 could	be	modified	 in	a	 specific	 area.	We	measured	 the	
light	intensity	at	the	water	surface	of	each	aquaria,	and	they	were	
placed	 into	 a	 lane	where	 the	 light	 intensity	was	 appropriate	 for	
the	treatment.	The	plants	were	grown	under	moderately	cold	and	

warm	water	(21.5	and	27.5 ± 0.5°C)	using	a	controlled	temperature	
water	bath.	We	renewed	the	culture	medium	on	days	2,	4,	and	6.	
Illumination	was	carried	out	by	400 W	metal	halogen	lamps.	Each	
treatment	(2 × 2 × 2 × 4	=	32)	was	replicated	three	times	meaning	
that	we	used	96	aquaria.	We	finished	the	experiment	after	8 days	
in order to keep the initial light levels more or less constant, as well 
as	to	avoid	overcrowding	of	the	plants.

2.3  |  Relative growth rate, Specific leaf area, and 
leaf dry matter content

Following	 Pérez-	Harguindeguy	 et	 al.	 (2016)	 protocol,	we	 selected	
three	relatively	young	(presumably	more	photosynthetically	active)	
but	 fully	 expanded	and	hardened	 leaves	 from	 the	upper	 and	mid-
dle	sections	of	the	shoots	from	each	aquarium	(96 × 3	=	288	leaves).	
We	 measured	 the	 area	 of	 the	 leaves	 using	 a	 LI-	3000	 Leaf	 area	
meter +	 LI-	3050C	 Transparent	 Belt	 Conveyor	 Accessory	 (LI-	COR	
Biosciences	GmbH,	Germany).	The	whole	submerged	plants	and	the	
three	cut	 leaves	were	used	for	fresh	weight	and	dry	weight	deter-
mination.	We	dried	samples	at	80°C	for	48 h.	After	that,	we	imme-
diately	measured	their	weights	on	Ohaus	Adventure	Pro	scale.	The	
RGR	of	the	plants	was	calculated	as	RGR	=	(lnWt − lnW0)/t, where W0 
represents the initial and Wt	the	final	dry	weight	of	the	three	plants	
in	each	aquarium,	and	t	is	the	cultivation	time	in	days.

We	 applied	 two	 additional	 traits	 in	 the	 subsequent	 analyses;	
both	were	calculated	from	the	measured	leaf	area,	leaf	fresh	weight,	
and	leaf	dry	weight	data.

Specific	leaf	area	(SLA)	was	calculated	as	SLA	=	(LA/Wt mm2 mg−1)	
where	 LA	 represents	 the	 leaf	 area	 and	Wt	 the	 dry	weight	 of	 the	
leaves.	We	 applied	 SLA	 because	 it	 tends	 to	 scale	 positively	 with	
mass-	based	light-	saturated	photosynthetic	rate,	and	in	general,	spe-
cies	tend	to	have	higher	SLA	in	permanently	or	temporarily	resource-	
rich	environments	than	do	those	in	resource-	poor	environments.

Leaf	 dry	 matter	 content	 (LDMC)	 was	 calculated	 as	
LDMC =	(Wt/W0	mg g

−1),	where	W0	represents	the	initial	(water	sat-
urated)	and	Wt	the	final	dry	weight	of	the	leaves.	Leaves	with	high	
LDMC	tend	to	be	relatively	tough	and	are	thus	assumed	to	be	more	
resistant	to	physical	hazards.

2.4  |  Chemical composition

At	the	end	of	the	experiment,	we	analyzed	nitrogen	and	carbon	con-
centration	of	the	dried	plants	(96	samples)	by	dry	combustion	using	
a	Vario	Max	Cube	elemental	analyzer	(Elementar	GmbH,	Germany).

2.5  |  Plasticity index

We	calculated	the	plasticity	index	(PI)	for	RGR,	SLA,	and	LDMC	for	
light	(PIL),	nutrients	(PIN),	and	temperature	(PIT)	according	to	Szabó	
et	 al.	 (2019)	 as:	 PI	=	 (maximum	 mean–	minimum	 mean)/maximum	
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mean.	 The	 index	 ranges	 from	 0	 (no	 plasticity)	 to	 1	 (maximum	
plasticity).

2.6  |  Statistical analysis

Normality	of	the	variables	was	checked	by	the	Kolmogorov–	Smirnov	
test.	 RGR,	 SLA,	 and	 LDMC	were	 all	 normally	 distributed	 (p > .05).	
A	general	 linear	model	 (GLM)	was	used	 to	 test	 the	significance	of	
the	 factors	 (light,	 nutrient,	 temperature,	 and	 species	 identity)	 and	
their	interactions	on	the	variables.	Pairwise	comparisons	(PC)	were	
used	to	test	the	variables	for	significant	differences	between	spe-
cies	where	mean	difference	 (MD)	± standard error was indicated; 
furthermore,	ANOVA	was	used	to	test	the	significance	level	when	
examining	 the	 effect	 of	 an	 independent	 variable	 on	 a	 dependent	
variable	for	a	given	species.	All	analyses	were	made	using	SPSS	16.0	
software.

3  |  RESULTS

3.1  |  Relative growth rate

For	 the	 overall	 experiment,	 all	 independent	 variables	 (light	 inten-
sity,	 nutrient	 concentration,	 and	 temperature)	 have	 a	 significant	
effect	on	 the	RGR	of	both	species	 (Table	S1).	 Increasing	 tempera-
ture	significantly	(MD	=	−0.011 ± 0.005,	p =	.018)	reduced	the	RGR	
of	submerged	plants	at	 low	 (L1	&	L2)	 light	 intensity	 (Figure 1b, d).	
RGR	 of	M. spicatum	measured	 at	 high	 nutrient	 concentration	was	
significantly	higher	(MD	=	0.009 ± 0.003,	p =	.007)	than	at	low	con-
centration;	nevertheless,	it	was	not	affected	by	temperature	treat-
ments.	 Nutrient	 concentration	 significantly	 influenced	 (F =	 9.049,	
p =	 .005)	 the	growth	of	C. caroliniana.	For	 the	overall	experiment,	
C. caroliniana	 showed	 significantly	 higher	 RGR	 than	M. spicatum 
(MD	 =	 0.011 ± 0.003,	 p =	 .001)	 (Figures 1 and 5).	 Moreover,	 at	
lower	 light	 intensity	 (L1	and	L2),	 the	differences	were	even	 larger	
(MD	=	0.022 ± 0.004,	p < .001).	However,	at	high	light	intensity	(L3	
and	 L4),	 there	 were	 no	 significant	 differences	 detected	 between	
growth	rates	of	plant	species	(Figure 1).

3.2  |  Specific leaf area

For	the	overall	experiment,	light	intensity,	species	identity,	and	tem-
perature	had	a	significant	effect	on	the	SLA,	but	nutrient	concentra-
tion	did	not	 (Table	S1).	On	one	hand,	SLA	of	M. spicatum was not 
altered	 at	 all	 neither	 by	 nutrient	 concentration,	 light	 intensity,	 or	
temperature.	By	contrast,	SLA	of	C. caroliniana	was	affected	both	
by	light	intensity	(F =	3.413,	p =	.029)	and	temperature	(F =	18.464,	
p < .001)	(Figure 2).	SLA	of	C. caroliniana	was	significantly	higher	at	
high	 temperature	 (MD	=	13.1 ± 3.0,	p < .001).	Light	 intensity	had	a	
significant	 (MD	=	 20.0 ± 4.1,	p < .001)	 effect	on	SLA	of	C. carolini-
ana	only	at	low	temperatures.	In	all	cases,	SLA	of	C. caroliniana was 

significantly	(MD	=	48.5 ± 2.0,	p < .001)	higher	than	that	of	M. spica-
tum	(Figures 2 and 5).

3.3  |  Leaf dry matter content

Species	 identity	 and	 temperature	 had	 a	 significant	 effect	 on	
LDMC	 (Table	 S1).	 LDMC	 of	M. spicatum	 was	 significantly	 higher	
(MD	=	0.061 ± 0.004,	p < .001)	than	that	of	C. caroliniana	(Figures 3 
and 5)	 in	 all	 light	 intensity	 treatments.	 However,	 the	 differences	
were	not	significant	under	low	temperature	(21.5 ± 0.5°C)	combined	
with	low	light	intensity	(L1)	(Figure 3).	Cabomba caroliniana showed 
reduced	LDMC	value	with	higher	temperature	(MD	=	0.020 ± 0.006,	
p =	.002).

3.4  | N:C molar ratio

For	the	overall	experiment,	nutrient,	light,	and	species	identity	had	
a	 significant	 effect	 on	 the	N:C	molar	 ratio	 (Table	 S1).	 Overall,	M. 
spicatum	 had	 a	 significantly	 higher	 (MD	=	 0.013 ± 0.001,	p < .001)	
N:C molar ratio than C. caroliniana;	 furthermore,	 under	 low	 light	
conditions	(L1	and	L2),	the	differences	between	species	were	even	
greater	 (Figures 4 and 5).	 On	 the	 other	 hand,	 at	 low	 light	 condi-
tions	 (L1	 and	 L2)	 with	 high	 temperature,	 the	 daily	 nitrogen	 up-
take	 (mg N g FW−1	 day−1)	 of	 C. caroliniana	 was	 significantly	 higher	
(MD	=	0.100 ± 0.021,	p < .001)	and	3.6	times	faster	than	that	of	M. 
spicatum	(Figure 6).

3.5  | Differences in phenotypic plasticity

Along	the	examined	light	gradient	combined	with	temperature	and	
nutrient	 levels,	 the	two	submerged	species	showed	marked	differ-
ences	in	their	phenotypic	plasticity	(Table 1).	On	one	hand,	M. spi-
catum	showed	greater	(by	0.1)	plasticity	for	light	regarding	to	RGR.	
On the other hand, C. caroliniana	 showed	higher	 (by	0.1)	plasticity	
for	 light	and	temperature	in	SLA	and	LDMC.	With	regard	to	nutri-
ents,	 the	 two	 species	 did	 not	 show	 any	 characteristic	 differences	
in	 their	phenotypic	plasticity	values.	Regarding	 the	overall	pheno-
typic	characteristics,	C. caroliniana	showed	a	higher	plasticity	than	
M. spicatum.

4  | DISCUSSION

The	search	for	 invasive	traits	and	the	 investigation	of	trait	plastic-
ity	constitutes	a	challenging	task	in	freshwater	biology	and	invasion	
biology.	The	best	progress	toward	a	general	conclusion	of	this	issue	
would	 be	 to	 pool	 evidence	 from	 pairwise	 comparisons	 and	multi-
species	studies	 (Pysek	&	Richardson,	2007).	 In	the	case	of	aquatic	
plants,	comparisons	within	growth	forms	have	high	relevance	due	to	
the	scarcity	of	congeneric	alien-	native	species	pairs.	Since	growth	
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forms	are	stem	from	certain	combination	of	traits,	it	can	be	concep-
tualized	as	groups	of	plants	with	similar	degree	of	adaptation	(Rowe	
&	Speck,	2005).	Anchored	 submerged	plants	with	 long	 stems	and	
finely	divided	submerged	leaves	(i.e.,	Myriophyllid	growth	form)	are	
successful	in	colonizing	flowing	waters	(Wiegleb,	1991),	since	finely	

divided	leaves	give	extra	competitive	advantages	over	species	with	
entire	 leaves	 (Givnish,	1987).	These	advantages	 is	due	to	 the	 fact,	
that	 divided	 leaves	 have	 much	 more	 light	 capturing	 surface	 per	
unit	biomass	than	entire	 leaves,	and	thereby	they	can	be	more	ef-
ficient	in	photosynthesis.	In	consideration	of	this	and	its	high	natural	

F IGURE  1 Relative	growth	rate	(RGR	
[dry	weight])	of	Myriophyllum spicatum 
and Cabomba caroliniana	cultures	grown	
at	different	light	levels	and	treatments	
(a)	low	nutrient	and	low	temperature;	
(b)	low	nutrient,	high	temperature;	
(c)	high	nutrient,	low	temperature;	
(d)	high	nutrient	and	high	temperature)	
(mean ± SE,	N =	3).	Asterisks	indicate	a	
significant	difference	(PC)	between	the	
species	(*p < .05,	**p < .01).

F IGURE  2 Specific	leaf	area	(SLA	
mm−2 mg−1)	of	Myriophyllum spicatum 
and Cabomba caroliniana	cultures	grown	
at	different	light	levels	combined	with	
low	(a)	and	high	(b)	temperature.	Each	
point	represents	data	from	low	and	high	
nutrient	concentrations	(mean ± SE,	
N =	6).	Asterisks	indicate	a	significant	
difference	(PC)	between	the	species	
(***p < .001).
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dispersal	 potential,	 it	 is	 not	 surprising	 that	Cabomba caroliniana is 
among	 the	most	 successful	 invasive	 aquatic	 plants	 across	 Europe	
(Hussner,	2012).

Our	laboratory	results	supported	the	idea	that	competitive	suc-
cess	 of	 the	 alien	C. caroliniana	 comes	 from	 its	 higher	 specific	 leaf	
area	 (SLA)	and	2–	3	 times	higher	growth	 rate	under	 shaded	condi-
tions than M. spicatum, which indicated that C. caroliniana tolerated 
the	 shade	 better	 (more	 shade	 tolerant).	Under	 shaded	 conditions,	
higher	temperature	induced	even	higher	specific	leaf	area	(SLA)	for	
Cabomba.	Therefore,	our	results	are	in	line	with	the	finding	of	Lukács	
et	al.	(2017)	who	pointed	out	that	among	Myriophyllids the invader 
species	had	higher	SLA	than	natives.	Furthermore,	it	also	supports	
the	findings	of	Lake	and	Leishman	(2004)	and	Hamilton	et	al.	(2005)	
who	found	that	high	SLA	can	promote	invasiveness.

In	 addition,	 higher	 SLA	 and	 lower	 LDMC	 of	 Cabomba	 versus	
Myriophyllum	suggest	that	Cabomba	can	form	much	more	leaf	area	
from	the	same	dry	matter	content	(LDMC),	which	can	also	contrib-
ute	to	its	invasion	success.	Invaders	having	lower	LDMC	may	have	
an	advantage	in	the	competition	for	light,	because	softer	leaf	tissues	
allow	invaders	to	build	their	photosynthetic	organs	faster	and	invest	
less	into	structural	tissue	elements	(Lukács	et	al.,	2017).	Our	results	
support	those	findings	revealing	that	some	invader	species	can	in-
vest	much	more	on	relative	shoot	elongation	(mm mg−1	DW)	which	

can	provide	a	better	position	for	light	capture	(Szabó	et	al.,	2019).	It	
also	suits	the	finding	that	alien	species	can	develop	larger	leaf	area	
faster,	thereby	increasing	their	invasion	success	(Lukács	et	al.,	2017).

Since	 former	 studies	 have	 already	 pointed	 out	 that	Cabomba 
has	high	light	requirements	(Hiscock,	2003;	Scheurmann,	1993),	it	
was	expected	that	low	light	intensity	would	have	a	limiting	impact	
on	its	growth.	However,	in	our	experiment,	Cabomba	showed	much	
less	reduction	in	growth	at	low	light	levels	than	did	Myriophyllum. 
Additionally,	 the	 growth	 rate	 of	 Cabomba was two– three times 
higher	 than	 that	 of	Myriophyllum, indicating its lower light com-
pensation point compared with Myriophyllum.	Under	natural	con-
ditions,	 especially	 in	eutrophic	waters,	 epiphytic	 algae	can	 shade	
submerged	plants	by	up	 to	90%,	decreasing	 their	photosynthesis	
and	growth	 (Bulthuis	&	Woelkerling,	 1983; Koleszár et al., 2021; 
Phillips	et	al.,	2016;	Tóth,	2013).	However,	both	species	are	able	to	
produce	allelopathic	substances	against	blue	green	algae,	thereby	
partly	lowering	the	shading	effect	of	periphyton	(Nakai	et	al.,	1999).	
In	this	way,	those	species	equipped	with	a	trait	such	as	lower	light	
compensation	point	might	gain	extra	competitive	advantage.	Our	
results	 indicate	 that	 Cabomba can be more competitive species 
than Myriophyllum,	 and	 it	may	 survive	better	under	more	 shaded	
eutrophic	conditions,	such	as	turbid	water	or	below	a	mat	of	float-
ing	plants	(Szabó	et	al.,	2020;	van	Gerven	et	al.,	2015).

F IGURE  3 Leaf	dry	matter	content	
(LDMC	mg g−1)	of	Myriophyllum spicatum 
and Cabomba caroliniana	cultures	grown	
at	different	light	levels	combined	with	
low	(a)	and	high	(b)	temperature.	Each	
point	represents	data	from	low	and	high	
nutrient	concentrations	(mean ± SE,	
N =	6).	Asterisks	indicate	a	significant	
difference	(PC)	between	the	species	
(*p < .05,	***p < .001).

F IGURE  4 N:C	molar	ratio	of	
Myriophyllum spicatum and Cabomba 
caroliniana	cultures	grown	at	different	
light	levels	combined	with	low	(a)	and	high	
(b)	temperature.	Each	point	represents	
data	from	low	and	high	nutrient	
concentrations	(mean ± SE,	N =	6).	
Asterisks	indicate	a	significant	difference	
(PC)	between	the	species	(*p < .05,	
**p < .01,	***p < .001).
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In	 our	 study,	 higher	 nutrient	 concentration	 only	 slightly	 en-
hanced	 the	 RGR	 of	Myriophyllum, and Cabomba.	 On	 the	 contrary,	
analyzing	the	tissue	N	concentration	revealed	that	under	 low	light	
intensity,	 Cabomba has more than three times higher nitrogen 
uptake	 capacity	 than	 Myriophyllum	 (Figure 6).	 This	 trait	 may	 be	
especially	advantageous	in	waters	with	suboptimal	nitrogen	concen-
tration.	Furthermore,	at	 low	light	 intensity,	 increasing	temperature	
reduced	the	growth	rate	of	both	submerged	plants,	but	significantly	

enhanced	the	SLA	of	Cabomba	and	reduced	its	LDMC	likely	contrib-
uting	to	its	invasion	success.

The	aim	of	our	study	was	to	investigate	the	combined	effects	of	
temperature,	light,	and	nutrients	(N,	P)	on	the	trait	responses	(RGR,	
SLA,	LDMC,	N:C	molar	ratio)	of	the	two	species	in	an	8-	day	laboratory	
experiment.	However,	several	questions	may	arise	regarding	the	du-
ration	of	the	experiment.	On	the	one	hand,	the	plants	were	properly	
preincubated	since	shoot	length	and	biomass	nearly	doubled	in	the	
14 days	of	preincubation	(via	RGR	0.04 day−1);	thus,	after	cutting	the	
apical	end,	newly	developed	shoots	were	used	for	the	experiment.	
On	the	other	hand,	this	period	was	sufficient	to	find	well-	detectable	
significant	changes	in	the	plant	traits	due	to	the	various	light	inten-
sities	and/or	nutrient	concentrations	and/or	temperature	levels,	as	
mentioned	above.	Although	an	8-	day	period	experiment	may	seem	
relatively	short,	the	reason	we	finished	the	experiment	after	8 days	
was	 to	avoid	overcrowding	of	 the	plants	 in	2-	L	aquaria.	 In	case	of	
overcrowding,	 the	 changes	 in	 traits	 are	 no	 longer	 just	 due	 to	 the	
treatments	 (light,	 nutrient,	 and	 temperature),	 but	 also	due	 to	 self-	
shading	 (intraspecific	competition).	Our	results	under	noncrowded	
laboratory	conditions	with	low	light	levels	partly	imitated	those	field	
conditions	with	densely	growing	shaded	plants	where	the	invasion	
is	actually	happening.	Thus,	the	measured	growth	traits	along	light	
gradient	gave	relevant	information	for	field	conditions	as	well.	Over	

F IGURE  5 Boxplots	of	relative	growth	rate	(RGR	[dry	weight]),	specific	leaf	area	(SLA),	leaf	dry	matter	content	(LDMC),	and	N:C	molar	
ratio	of	Myriophyllum spicatum	(white)	and	Cabomba caroliniana	(red)	under	different	light	levels.	Each	boxplot	represents	data	of	four	light	
intensities.	Boxes:	+25%–	75%	percentiles;	whiskers:	Standard	deviations,	□: Median, n = 12.

F IGURE  6 Nitrogen	uptake	(mg N g	FW−1	day−1)	of	Myriophyllum 
spicatum and Cabomba caroliniana	cultures	grown	at	low	light	levels	
(L1	&	L2)	with	high	temperature.	Each	column	represents	data	from	
low	and	high	nutrient	concentrations	(mean ± SE,	N =	12).
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and	above,	there	are	several	studies	(Cedergreen	et	al.,	2004;	Huang	
et al., 2017;	Szabó	et	al.,	2019, 2020)	clearly	supported	that	14 days	
of	 preincubation	with	8-	day	 incubation	was	 sufficient	 to	 compare	
traits	 (RGR,	 LDMC,	 N:C	 molar	 ratio,	 SLA)	 between	 aquatic	 plant	
species.

Our	short-	term	experimental	results	pointed	out	that	the	three	
environmental	factors	significantly	modified	the	 investigated	plant	
traits. However, it is well known, that these abiotic conditions con-
stantly	change	over	longer	growing	periods.	Due	to	apical	elongation	
of	 the	 shoots,	 it	 is	 obvious	 that	 light	 intensity	 increases	with	 de-
creasing	water	depth	(Pokorný	et	al.,	1984).	On	the	contrary,	under	
hypertrophic	 conditions,	 shading	 of	 epiphytic	 algae	 can	 strongly	
decrease	 light	 conditions	 on	 the	 surface	 of	 the	 older	 leaves	 (Levi	
et al., 2015;	Phillips	et	al.,	2016;	Tóth,	2013).	Bioturbation	of	benthic	
fauna	may	not	only	decrease	light	conditions,	but	also	increase	nu-
trient	release	from	the	sediment	to	the	water	body	as	well	(Adámek	
&	Maršálek,	2013; Chen et al., 2016;	Scheffer,	1998).	By	contrast,	in	
stands	of	 submerged	vegetation	due	 to	plant	nutrient	uptake,	nu-
trient	concentration	(N,	P)	of	the	water	shows	continuous	decrease	
over	the	growing	season	(Scheffer,	1998;	Szabó	et	al.,	2022).	Beyond	
the	 increasing	 temperature	 over	 the	 growing	 season,	 submerged	
vegetation	itself	can	strongly	modify	the	water	temperature	due	to	
reduced	turbulence	and	shading.	Thus,	over	a	longer	growing	period,	
the	differences	in	temperature	between	the	upper	and	lower	water	
bodies	are	increasing.	All	in	all,	even	in	the	absence	of	crowding	of	
the	vegetation,	both	abiotic	(light,	nutrient,	and	temperature)	and	bi-
otic	conditions	are	constantly	changing,	together	with	the	inevitable	
change	of	physiological	condition	of	the	aging	plants.	Thus,	in	field	
conditions,	it	is	not	at	all	likely	that	the	determined	traits	will	remain	
stable	over	a	longer	growing	periods.	By	contrast,	in	our	experimen-
tal	setup,	under	a	shorter	incubation	period,	we	were	able	to	keep	
the	environmental	factors	nearly	constant	in	order	to	gain	relevant	
information	regarding	to	the	plant	traits	under	changing	environment	
in	 field	 conditions.	Obviously,	 our	 experimental	 results	may	differ	
in	several	ways	from	the	results	of	long-	term	studies	under	natural	
conditions.	Natural	 pests	 and	 consumers	may	 significantly	 change	
the	 competition	 between	 the	 two	 species	 (Koleszár	 et	 al.,	 2021).	
Furthermore,	 canopy	 formation	 of	 submerged	macrophytes	 takes	
place	along	an	 increasing	 light	gradient	 (from	the	shady	bottom	to	
the	water	surface);	therefore,	horizontal	spread	of	the	two	species	
strongly	depends	on	 their	 apical	 elongation	and	branching	degree	
along	increasing	light	gradient	(Szabó	et	al.,	2019).	Consequently,	the	
differences	 in	 their	phenotypic	characteristics	under	various	envi-
ronmental	conditions	may	also	strongly	determine	their	competitive	
outcome.	Therefore,	it	is	obvious,	that	our	laboratory	results	do	not	

directly	 reflect	 the	 complexity	 of	 field	 conditions	 therefore,	 may	
not	directly	indicate	the	invasion	success	of	Cabomba. However, the 
change in the observed traits in these controlled conditions is well 
consistent	with	the	already-	documented	invasion	of	Cabomba.	Thus,	
this	 study	may	 help	 to	 understand	 further	 study	 of	 field	 traits	 of	
these	species	under	more	complex	conditions.

Comparing	all	the	results	we	may	conclude,	that	H1	hypothesis	
was	supported	by	the	results	that	the	trait	differences	for	RGR	and	
N:C	molar	ratio	between	species	were	more	pronounced	under	de-
creasing	 light	 conditions	 and	 this	 likely	 contribute	 to	 the	 invasion	
success	of	Cabomba over Myriophyllum.	Since	Myriophyllum showed 
higher	 phenotypic	 plasticity	 for	 RGR,	 and	 Cabomba	 for	 SLA	 and	
LDMC,	 our	 second	 hypothesis	 has	 been	 proved	 to	 be	 also	 partly	
true.	 However,	 these	 characteristics	 make	Cabomba	 a	 better	 sur-
vivor	 under	 turbid	 eutrophic	 conditions,	 contributing	 to	 the	 rapid	
spread	of	the	species.

Based	on	these	findings,	shade	tolerance	seems	to	be	a	key	fac-
tor	in	the	invasion	success	of	Cabomba caroliniana. In order to reveal 
more	realistic	image	of	the	interplay	between	the	two	species,	fur-
ther	long-	term	mesocosm	experiments	are	needed	to	be	performed	
cultivating	them	in	cocultures.
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