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Abstract 

Purpose: Benefit from convalescent plasma therapy for coronavirus disease 2019 (COVID‑19) has been inconsistent 
in randomized clinical trials (RCTs) involving critically ill patients. As COVID‑19 patients are immunologically hetero‑
geneous, we hypothesized that immunologically similar COVID‑19 subphenotypes may differ in their treatment 
responses to convalescent plasma and explain inconsistent findings between RCTs .

Methods: We tested this hypothesis in a substudy involving 1239 patients, by measuring 26 biomarkers (cytokines, 
chemokines, endothelial biomarkers) within the randomized, embedded, multifactorial, adaptive platform trial for 
community‑acquired pneumonia (REMAP‑CAP) that assigned 2097 critically ill COVID‑19 patients to either high‑titer 
convalescent plasma or usual care. Primary outcome was organ support free days at 21 days (OSFD‑21) .

Results: Unsupervised analyses identified three subphenotypes/endotypes. In contrast to the more homogeneous 
subphenotype‑2 (N = 128 patients, 10.3%; with elevated type i and type ii effector immune responses) and subphe‑
notype‑3 (N = 241, 19.5%; with exaggerated inflammation), the subphenotype‑1 had variable biomarker patterns 
(N = 870 patients, 70.2%). Subphenotypes‑2, and ‑3 had worse outcomes, and subphenotype‑1 had better outcomes 
with convalescent plasma therapy compared with usual care (median (IQR). OSFD‑21 in convalescent plasma vs usual 
care was 0 (− 1, 21) vs 10 (− 1, to 21) in subphenotype‑2; 1.5 (− 1, 21) vs 12 (− 1, to 21) in suphenotype‑3, and 0 (− 1, 
21) vs 0 (− 1, to 21) in subphenotype‑1 (test for between‑subphenotype differences in treatment effects p = 0.008).

Conclusions: We reported three COVID‑19 subphenotypes, among critically ill adults, with differential treatment 
effects to ABO‑compatible convalescent plasma therapy. Differences in subphenotype prevalence between RCT 
populations probably explain inconsistent results with COVID‑19 immunotherapies.
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Introduction

The coronavirus SARS-CoV-2 (severe acute respiratory 
syndrome coronavirus 2) causes COVID-19 (coronavirus 
disease 2019), an acute illness affecting pulmonary and 
extrapulmonary organs [1]. COVID-19 patients requiring 
hospitalization (moderate-to-severe disease) have signifi-
cant viral load in the respiratory tract [2] and/or detect-
able viral ribonucleic acid (RNA) in blood [3]. Therefore, 
in moderate-to-severe COVID-19, antiviral therapies 
(either passive immunotherapy or antiviral medications) 
are considered potential treatment options [4]. The ben-
efit of passive immunotherapy with convalescent plasma 
(blood product containing SARS-CoV-2–specific poly-
clonal antibodies) reported in cohort studies have not 
been observed in randomised clinical trials (RCTs), with 
guidelines recommending against the use of convalescent 
plasma outside of RCTs [5].

It is well recognized that in hospitalized patients, 
COVID-19 is an immunologically heterogenous illness 
[6–13]. It is also recognized that immunological het-
erogeneity in COVID-19 patients is observable at pro-
tein level, i.e., differences in cytokine, chemokines, and 
other biomarker profiles [8, 13]. Abnormal immune 
responses persist throughout critical illness in COVID-
19 patients [13]. Thus, we hypothesized that differences 
in immune responses will manifest as subphenotypes 
and may be associated with subphenotype differences 
in treatment effect to convalescent plasma therapy (also 
known as heterogeneity of treatment effect (HTE) [14]) 
on OSFD-21 (primary outcome of pandemic appendix to 
REMAP-CAP) [15] and on hospital mortality (outcome 
of interest).

We tested these hypotheses in a biological sampling 
substudy conducted in the United Kingdom (UK) within 
the immunoglobulin domain of the REMAP-CAP, which 
randomized 2097 patients with severe COVID-19 into 
two units of high-titer convalescent plasma or usual care, 
and found no overall benefit with convalescent plasma 
therapy in critically ill COVID-19 patients [15]. Informed 
by previous work on protein biomarkers [6–13, 16], we 
explored whether differences in treatment effect (HTE 
[14] on OSFD-21 and mortality outcomes) was detect-
able between COVID-19 subphenotypes that were 
identified based on unsupervised analyses of changes 
in the CXC family of chemokines (CXCL1, CXCL5, 
CXCL8, CXCL9, CXCL10, CXCL11), the CC family of 
chemokines (CCL3, CCL4, CCL11, CCL17, CCL20), 
transforming growth factor-beta 1(TGF-β1), vascular 
endothelial growth factor (VEGF), interleukins (IL-6, 
IL-2, IL-4, IL-5, IL-10), interferons (IFN-α2, IFN-β, IFN-
λ1, IFN-y), granulocyte monocyte colony stimulating fac-
tor (GM-CSF), soluble tumor necrosis factor receptor-1 

(sTNF-R1), angiopoietin-2, intercellular adhesion mol-
ecule-1 (ICAM-1), A proliferation-inducing ligand 
(APRIL, TNFSF13) and B cell-activating factor (BAFF, 
TNFSF13B) [17]. We selected these biomarkers a priori, 
i.e., before our primary RCT results were available.

Methods
Study design
Briefly, REMAP-CAP is an international, multicentre, 
open-label adaptive platform designed to determine the 
best treatment strategies for patients with severe pneu-
monia in both settings during the pandemic and outside 
the pandemic [18]. This trial’s design, eligibility criteria, 
and results regarding glucocorticoids [19], anticoagu-
lants [20, 21], antivirals [22], interleukin-6 (IL-6) receptor 
antagonists [23], antiplatelet therapy, and immunoglobu-
lin domain convalescent plasma [15] for treatment of 
COVID-19 have been reported previously.

Study population
Our study population consisted of critically ill adult 
patients (> 18  years old) with microbiologically con-
firmed COVID-19, randomized to receive 2 units of 
high-titer, ABO-compatible convalescent plasma (total 
volume approximately 550  mL ± 150  mL) within 48  h 
of randomization or no convalescent plasma, between 
March 9, 2020 and January 18, 2021 [15]. These patients 
had a baseline blood sample collected after consent and 
before administration of the allocated intervention (con-
valescent plasma vs no convalescent plasma (usual care)).

Biomarker measurements
Serum was separated from whole blood by centrifu-
gation (1300  g for 10  min at room temperature) and 
stored in 200  µl aliquots at − 80  °C until analyses. Two 
custom 14-plex Legendplex™ (BioLegend) bead-based 
multiplex assays were used to measure a priori selected 
biomarkers described in “Introduction”, as per manufac-
turer’s instructions (eMethods-1). SARS-CoV-2 immu-
noglobulin G (IgG) antibody against spike was measured 
using enzyme-linked immunosorbent assay (ELISA), as 
reported previously [2, 24]. Viral loads and strains in the 

Take‑home message 

We report three COVID‑19 subphenotypes with differences in treat‑
ment response to ABO‑compatible high‑titer convalescent plasma 
therapy among critically ill adults, participating in a large interna‑
tional multi centre randomized clinical trial. Our findings support 
the hypothesis that immunotherapies in critically ill adults with 
COVID‑19 could be enhanced with patient selection based on host 
immune response characteristics.



1527

respiratory tract were measured as described previously 
[2] (eMethods-2).

Data analyses
We described the study cohort characteristics (overall 
and by randomized allocation status) in terms of age, sex, 
body mass index (BMI), pre-existing chronic health con-
ditions defined using the Acute Physiology and Chronic 
Health Evaluation II (APACHE II) score, SARS-CoV-2 
antibody status, viral loads in respiratory tract, respira-
tory support status, concomitant COVID-19 therapy use, 
and allocation status.

Before biomarker analyses, two proteins (IL-2 and 
TGF-β1) with more than 20% missing data were excluded 
from the dataset (eFigure-1a, b). We then used Gibbs 
sampler-based left-censored missing value imputation 
approach (GSIMP) [25], which considers the lower limit 
of detection calculated in the LEGENDplex™ data analy-
sis software suite. We checked data for batch effects and 
did not observe any batch effects (eFigure-1c, d). Thus, 
the final analytic dataset consisted of 26 biomarkers. 
The following analyses were performed in R statistical 
environment [26]. First, we assessed biomarker differ-
ences by SARS-CoV-2 antibody status and by hospital 
mortality, as differences in immune responses may be 
associated with antibody status and clinical outcomes. 
Second, we assessed biomarker differences by allocation 
status (convalescent plasma vs usual care), to check for 
baseline biomarker imbalances by randomization sta-
tus, as any imbalances will need to be accounted for in 
the subsequent unsupervised analyses. Third, we used 
the agglomerative hierarchical clustering method with 
WARD2 linkage function on  log10 transformed data. [27]. 
Additional details are reported in online supplement 
(eMethods-3).

Finally, we explored the associations between sub-
populations, allocation status and outcomes, with regres-
sion models incorporating robust standard errors using 
Stata 15.1 [28]. We report the association between the 
outcome of OSFD-21 and subphenotypes and by alloca-
tion to convalescent plasma using ordered logistic regres-
sion models to relate our substudy results to the primary 
outcome in our original publication [15]. OSFD-21 is an 
ordinal scale outcome, where mortality is given a score 
of −1 and among survivors OSFD is calculated up to day 
21, such that a higher number represents faster recovery 
[15]. We also report the associations between hospital 
mortality and SARS-CoV-2 antibody status in the overall 
cohort, by subphenotypes and by allocation to convales-
cent plasma using logistic regression models. We report 
unadjusted analyses, as testing associations between sub-
phenotypes and treatment effects of convalescent plasma 
is equivalent to performing a subgroup analyses with 

moderate-sized RCT data, where the additional value of 
baseline prognostic covariates adjustment needs careful 
consideration, due to risk of alpha error [29]. After the 
regression models, we used post-estimation commands 
and test of heterogeneity for differences in treatment 
effects.

Results
Study cohort and clinical characteristics
Amongst the 2097 participants randomized to a COVID-
19 immunoglobulin domain within the REMAP-CAP, 
1023 were assigned to convalescent plasma and 868 to 
usual care in the UK [15]. Our report is based on data 
from 1239 participants (737/1023 (72%) assigned to con-
valescent plasma and 502/868 (57.8%) assigned to usual 
care) from the UK, who had baseline blood samples after 
consent but before intervention (Table 1). Clinical char-
acteristics of our substudy cohort were similar to the 
overall trial population [15]. Importantly, clinical charac-
teristics were similar between patients assigned to conva-
lescent plasma and usual care, enabling us to analyse this 
UK sub-population as a cohort (eTable-1).

The study cohort had a median (interquartile range, 
IQR) age of 61 (52, 70) years, 408 (32.9%) were females 
and median (IQR) APACHE II score was 13 (8, 19). Typ-
ing of the specific SARS-CoV-2 variant was successful 
in 56% of cases, of which wild type and B.1.1.7 variants 
represented 61.1% and 38.9%, respectively. SARS-CoV-2 
antibodies (seropositive) were detected at baseline in 
846 (68.3%) patients. Nearly all (98.7%) patients required 
either invasive or non-invasive respiratory support; 94.1% 
received low dose corticosteroids and 35.7% received 
remdesivir. The overall cohort had a hospital mortal-
ity of 35.9%. Seronegative patients had higher hospital 
mortality compared to seropositive patients (odds ratio 
(OR) (95% confidence interval (CI)) of 2.05 (1.58–2.65; 
p < 0.001), which is consistent with the literature and 
explained by the deficient or delayed humoral immunity 
in severe COVID-19 [30].

Unsupervised clustering identified three subphenotypes
We found that a three subphenotype model (Fig.  1a, 
b; eFigure-2) optimally explained our biomarker data 
(eFigure-3). Subphenotype-1 was most common (70.2%; 
n = 870/1239), followed by subphenotype-3 (19.5%; 
241/1239) and subphenotype-2 (10.3%;128/1239) 
(Table 1). The top ten contributing proteins to principal 
component-1 (PC1) and PC2 were biomarkers deter-
mining subphenotype-2 (IL-4, IFN-α2, GM-CSF, IFN-γ, 
IL-5) and subphenotype-3 (CXCL8, CCL4, IL-6, CCL20, 
CCL3) allocations (Fig.  1c). We observed striking dif-
ferences between these subphenotypes on biomarker 
changes (Fig. 1d), with biologically plausible correlations 
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Table 1 Clinical characteristics of subphenotypes

Characteristic Overall  
(n = 1,239)

Phenotype-1  
(n = 870)

Phenotype-2  
(n = 128; 10.3%)

Phenotype-3  
(n = 241; 19.5%)

Allocation n (%)

  Convalescent plasma
 Usual care

737 (59.5%)
502 (40.5%)

534 (61.4%)
336 (38.6%)

67 (52.3%)
61 (47.7%)

136 (56.4%)
105 (43.6%)

  Age, median (IQR) y 61 (52, 70) 62 (53, 70) 58 (48, 65.5) 61 (52, 70)

  Female n (%) 408 (32.9%) 286 (32.9%) 39 (30.5%) 83 (34.4%)

  BMI (kg/BSA  m2) 30.9 (26.7, 36.3) [n = 1,111] 30.5 (26.3, 36) [n = 776] 33.4 (28.1, 37.1) [n = 116] 30.9 (27.4, 36.1) [n = 219]

Pre‑existing conditions

 Diabetes 358 (28.9%) 247 (28.4%) 35 (27.3%) 76 (31.5%)

 Respiratory disease 292 (23.6%) 204 (23.5%) 37 (28.9%) 51 (21.2%)

 Severe CVS disease 103 (8.3%) 73 (8.4%) [n = 848] 14 (10.9%) [n = 124] 16 (6.6%) [n = 236]

 Immunosuppression treatment/
disease

83 (6.7%) [n = 1,237] 61 (7%) 6 (4.7%) [n = 127] 16 (6.6%) [n = 240]

SARS‑CoV‑2 type

 Wild type 424 (34.2%) 301 (34.6%) 45 (35.2%) 78 (32.3%)

 B.1.1.7 270 (21.8%) 183 (21%) 27 (21.1%) 60 (24.9%)

 Inconclusive 391 (31.6%) 265 (30.5%) 39 (30.5%) 87 (36.1%)

 Not available 154 (12.4%) 121 (13.9%) 17 (13.3%) 16 (6.6%)

SARS‑CoV‑2 viral load, median (IQR)  (105 IU /ml)

  Wild type 7.88 (0.62—96.28) 8.21 (0.63 – 115.68) 14.27 (2.35 – 88) 3.03 (0.34 – 47.28)

  B.1.1.7 24.38 (1.39 – 248.65) 19.82 (1.32 – 185.69) 57.91 (0.38 – 420.74) 88.01 (2.60 – 307.7)

  Inconclusive 0.01 (0.00001 – 0.047) 0.013 (0.0016 – 0.050) 0.0085 (0.00010 – 0.031) 0.01 (0.00010 – 0.05)

SARS‑CoV‑2 antibody, n (%)

 Detected 846 (68.3%) 582 (66.9%) 95 (74.2%) 169 (70.1%)

 Not detected 348 (28.1%) 259 (29.8%) 29 (22.7%) 60 (24.9%)

 Not available 45 (3.6%) 29 (3.3%) 4 (3.1%) 12 (5%)

SARS‑CoV‑2 antibody positive n (%)

 Wild type 262 (64.8%) 184 (64.1%) 29 (67.4%) 49 (66.2%)

 B.1.1.7 176 (66.7%) 115 (64.2%) 24 (88.9%) 37 (63.8%)

 Inconclusive 318 (83.2%) 212 (80.9%) 32 (84.2%) 74 (90.2%)

 Not available 90 (62.5%) 71 (62.8%) 10 (64.1%) 0 (60%)

 APACHE II score, median (IQR) 13 (8, 19) [n = 1,196] 13 (8, 19) [n = 841] 11.5 (8, 17) [n = 122] 13 (8, 18) [n = 233]

Use and type of acute respiratory support, n (%)

 Non‑invasive mechanical 
ventilation

562 (45.3%) 397 (45.6%) 61 (47.7%) 104 (43.2%)

 Invasive mechanical ventilation 418 (33.7%) 290 (33.3%) 43 (33.6%) 85 (35.3%)

 High‑flow nasal cannula 243 (19.6%) 172 (19.8%) 23 (18%) 48 (19.9%)

 None or supplemental oxygen 
only

16 (1.3%)

COVID‑19 therapy use

 Glucocorticoids 1,166 (94.1%) 820 (94.3%) 121 (94.5%) 225 (93.4%)

 Remdesivir 442 (35.7%) 300 (34.5%) 48 (37.5%) 94 (39%)

 Il‑6 receptor antagonists 41 (3.3%)

Outcomes

Overall

 Number of OSFD at D21* 
(median (IQR))

1 (− 1, 21) 0 (− 1, 16) 6 (− 1, 17) 8 (− 1, 17)

 Hospital mortality

Overall 444 (35.9%) [N = 1214] 331 (38.7%) [n = 855] 37 (30.1%) [N = 123] 76 (32.2%) [n = 236]

 Seropositive 260/827 (31.4%) 195/571 (34.2%) 21/91 (23.1%) 44/165 (26.7%)

 Seronegative 166/343 (48.4%) 123/255 (48.2%) 14/28 (50%) 29/60 (48.3%)
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between biomarkers (Fig.  1e) and differences in average 
biomarker concentrations (Fig. 1f ).

Immunologically, subphenotype-1 patients had vari-
able levels of proinflammatory chemokines involved in 
leukocyte trafficking (CXCL9, CXCL10, CXCL11) [31], 
immune activating cytokines (IL-10 [32]), interferons 
[33] (IFN- λ1, IFN-β), TNF family biomarkers (APRIL, 
BAFF, sTNF-R1), and endothelial biomarkers of COVID-
19 severity (ICAM-1 [34], angiopoietin-2 [35]). Taken 
together, subphenotype-1 represents a dysregulated 
immune state with biomarkers strongly associated with 
severe COVID-19 [6, 13], without a dominant effector or 
co-regulated immune responses.

In contrast, subphenotype-2 appears homogene-
ous on biomarker patterns, with elevated levels of 
IL-4 and IL-5 (known to polarize naïve T cells into 
T-helper 2 (Th2), enable selective B cell class switch, 
and macrophage activation) [36], elevated levels of 
interferons (IFN-γ, IFN-α2) dysregulated in severe 
COVID-19 [33], and high GM-CSF levels with a cen-
tral role in endothelial injury, Th17 T cell response 
[37], neutrophil recruitment, and thrombosis seen in 
COVID-19 [38, 39] (Fig.  1a). Taken together, subphe-
notype-2 resembles the mixed immune response pat-
tern reported previously in COVID-19 [13].

Subphenotype-3 also appears more homogeneous 
compared to subphenotype-1 on biomarker patterns, 

with elevated proinflammatory cytokines such as IL-6 
(with prognostic [6, 8, 13]/therapeutic relevance [40]), 
and elevated chemokines indicating leukocyte recruit-
ment/activation [41] (Fig.  1a). Taken together, subphe-
notype-3 represents a heightened early innate immune 
response state [42].

Clinical features of subphenotypes
These subphenotypes were broadly similar in terms of 
age, sex, prevalence of comorbidities, illness severity, 
types of respiratory support, and prevalence of immu-
nosuppression. SARS-CoV-2 wild-type infections were 
detected in a third of patients within each of the three 
subphenotypes. Compared to other subphenotypes, sub-
phenotype-3 had the highest proportion of SARS-CoV-2 
B.1.1.7 variant and the highest B.1.1.7 variant viral load. 
Compared to seronegative patients, seropositive patients 
had lower viral loads for all variants, in all three subphe-
notypes (eFigure-4). There were no differences between 
subphenotypes in terms of glucocorticoid and remdesivir 
therapy (Table 1).

Biomarker associations between subphenotypes 
and serology status
Subphenotype-2 had the highest proportion of sero-
positive patients (74.2%) (Table 1). In the overall cohort, 
compared to seronegative, seropositive patients had 

Table 1 (continued)
APACHE II score measures the severity of illness based on age, medical history, and physiological variables. Scores range from 0 to 71; higher numbers represent 
greater risk of death. The median score of 12 is typical for critically ill COVID-19 patients [15]. Immunosuppression treatment refers to recent chemotherapy, radiation, 
high dose, or long-term glucocorticoid treatment

APACHE II, Acute Physiology and Chronic Health Evaluation II score; BMI, body mass index; BSA, body surface area; COVID-19, coronavirus disease 2019; CVS, 
cardiovascular; IQR, interquartile range; OSFD, organ support free days

Fig. 1 Unsupervised clustering of 26 protein biomarkers identified three sub‑subphenotypes of critically ill COVID‑19 patients. a Heatmap dis‑
playing the agglomerative hierarchal clustering identified three subphenotypes. Each row is a patient (N = 1239) and each column a biomarker. 
Each cell is coloured by the scaled log10‑transformed protein levels (high = red, low = blue). Rows are annotated by subphenotype (subpheno‑
type‑1 = blue, subphenotype‑2 = orange, subphenotype‑3 = red); allocation of convalescent plasma (yes = dark blue and no = orange); serology 
(positive = pink and negative = navy) and hospital mortality (alive = blue and deceased = red). b Principal component analysis (PCA) of the same 
26 protein biomarkers coloured by subphenotype. Subphenotype‑1 = blue, subphenotype‑2 = orange and subphenotype‑3 = red. Columns are 
annotated by protein biomarker signature. A = sky blue, B = light green, and C = light red. c Top ten contributing variables to principal component 
(PC) PC1 and PC2. Arrows are coloured based on their respective protein contribution to variation from low (blue) to high (red). d Box and whisker 
plots of Log2 fold change of protein biomarkers normalized to median of subphenotype‑1 and grouped by protein signature (A–B). Boxes are 
coloured by subphenotype. The bottom border of the box represents the 25th percentile; line bisecting the box represents the median; upper 
border of the box is the 75th percentile. The whiskers represent extremes, 1.5 times the 75th (highest) and 25th (lowest) values. e Circos plots of 
each patient subphenotype represent Spearman correlations between each protein biomarker. Only correlations of an adjusted p value < 0.001 are 
shown. Positive and negative correlations are coloured by red and blue, respectively. The strength of the correlation is depicted by the strength 
of the colour. Proteins are grouped into three signatures: A = sky blue (representing biomarkers associated with dysregulated COVID‑19 immune 
responses), B = light green (representing Type ii, Type i and altered interferon responses), C = light red (co‑regulated innate immune responses with 
chemokines and cytokines associated with leukocyte migration and activation). Subphenotype‑1 had the weakest positive correlations between 
the biomarkers evaluated. In subphenotype‑2, all 26 biomarkers were positively correlated, consistent with the mixed immune response pattern. 
In subphenotype‑3, CXCL8 was negatively correlated with CXCL9, CXCL10, IFN‑γ, and IFN‑α2, as previously reported in COVID‑19. f Summary radar 
plot of the 26 protein biomarkers. Medians of the log10‑transformed values of each protein by subphenotype are plotted. Lines are coloured by 
subphenotype: subphenotype‑1 = blue, subphenotype‑2 = orange, subphenotype‑3 = red

(See figure on next page.)
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Fig. 1 (See legend on previous page.)



1531

significantly higher CXCL8, IL-5, CCL3 and CCL4, and 
lower levels og IFN-λ1, CXCL10, IL-10, IL-6, IFN-α2, 
CXCL11, and angiopoietin-2 (Fig.  2a; eFigure-5). Serol-
ogy status did not segregate patients on principal com-
ponent analyses (PCA; eFigure-6a). In subphenotype-1, 
the seropositive–seronegative comparison highlighted 
a pattern similar to the overall cohort (Fig.  2b). There 
were no significant biomarker differences between sero-
positive and seronegative patients within subpheno-
type-2 (Fig. 2c). In addition, seropositive subphenotype-1 
patients had higher levels of CCL20, while seroposi-
tive subphenotype-3 patients had lower levels of CCL20 
(Fig.  2d). Individual biomarker differences by serology 
status are shown in Fig. 2e–h.

Biomarker associations between subphenotypes 
and hospital mortality
Hospital mortality differed between subphenotypes 
(p = 0.03, Chi-square test), with the highest mortality 
observed in subphenotype-1 (38.7%), and the lowest hos-
pital mortality in subphenotype-2 (30.1%). In all three 
subphenotypes, seronegative patients had a higher (and 

importantly similar) hospital mortality compared to sero-
positive patients (Table 1).

In the overall cohort, compared to survivors, non-sur-
vivors had significantly higher levels of CXCL10, CXCL9, 
IL-10, sTNF-RI, IL-6, angiopoietin-2, CCL20 and lower 
levels of CCL3 and CCL4 (Fig. 3a; eFigure-7). Mortality 
did not segregate patients on PCA (eFigure-6b). In sub-
phenotype-1, and subphenotype-3, the comparison of 
survivors versus non-survivors had a biomarker pattern 
similar to the overall cohort (Fig.  3b-d). Although the 
volcano plot appears to show no biomarker differences 
between survivors versus non-survivors in subpheno-
type-2 (Fig. 3c), non-survivors in this cohort had higher 
IL-6, CXCL-10, and angiopoietin-2 (Fig. 3e–h), which is 
consistent with the pattern seen in the overall cohort.

Association between subphenotypes and treatment effect 
of convalescent plasma
Within each subphenotype, there was no difference in 
baseline biomarkers between subjects allocated to con-
valescent plasma or usual care (eFigure-8), and alloca-
tion status did not segregate patients based on PCA 
(eFigure-6c).

Fig. 2 Biomarker associations between subphenotypes and serology status. Comparison of the overall cohort and subphenotypes by serology sta‑
tus. a Volcano plot of the overall cohort. b Volcano plot of subphenotype‑1. c Volcano plot of subphenotype‑2. d Volcano plot of subphenotype‑3. 
e–h Box and violin plot of (e) IFN‑ λ1, (f) IL‑6, (g) CCL20 a chemokine increased during microbial insult and required for effective humoral responses 
[54], and (h) IL‑5 by overall and subphenotypes by serology status. For volcano plots, upregulated proteins (higher in serology positive compared to 
serology negative) are coloured red and defined as log2 fold change > 0.3 and P ≤ 0.05. Downregulated proteins (lower in serology negative com‑
pared to serology positive) are coloured blue and defined as log2 fold change < − 0.3 and P ≤ 0.05. For box and whisker plots, the bottom border of 
the box represents the 25th percentile; line bisecting the box represents the median; upper border of the box is the 75th percentile. The whiskers 
represent 1.5 times the 75th (highest) and 25th (lowest) values
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The overall treatment effect of convalescent plasma 
compared to usual care for OSFD-21 was OR (95%CI) 
of 0.91 (0.74–1.11), which is consistent with our origi-
nal RCT result [15] (OR (95%CI) 0.97 (0.82 to 1.14)). The 
overall treatment effect of convalescent plasma compared 
to usual care for mortality was OR (95%CI) 1.01 (0.80–
1.29), which was also consistent with our original RCT 
result [15] with OR (95%CI) 1.04 (0.85 to 1.27) [15].

There were no major differences in the main baseline 
prognostic clinical characteristics [43] (age, sex, BMI, 
comorbidities, and need for mechanical ventilation) by 
allocation status, within each subphenotype (eTable-2). 
In subphenotype-1, the median (IQR) OSFD-21 was 
0 (−1, 21) in convalescent plasma and 0 (−1, to 21) in 
the usual care arm. In subphenotype-2 and -3, the usual 
care had higher OSFD-21 compared to the convalescent 
plasma arm (subphenotype-2 (OSFD-21 median (IQR) 0 
(−1, 21) in convalescent plasma vs 10 (−1, to 21) in usual 
care) and subphenotype-3 (OSFD-21 median (IQR) 1.5 
(−1, 21) in convalescent plasma vs 12 (−1, to 21) in usual 

care). The corresponding odds ratio differed by subphe-
notype (test of heterogeneity; p = 0.008 (Fig. 4).

In subphenotype-1, the hospital mortality in the con-
valescent plasma group was lower than that in the usual 
care group (37.6% vs 40.5%). In contrast, in subpheno-
type-2 and subphenotype-3, the hospital mortality in the 
convalescent plasma group was higher than that in usual 
care (subphenotype-2 = 35.4% vs 24.1% and subpheno-
type-3 = 34.1% vs 29.7%). The corresponding odds ratio 
differed by subphenotype (test of heterogeneity; p = 0.02) 
(eFigure-9).

Association between serology status of subphenotypes 
and treatment effect of convalescent plasma
In our main trial publication [15], the treatment effect 
of convalescent plasma did not meaningfully vary in the 
prespecified serology status subgroup. Consistent with 
the main trial result, the treatment effect on mortal-
ity did not vary by serology status of the subphenotypes 
(p = 0.69, for the three-way interaction test between 
allocation to convalescent plasma, serology status, and 

Fig. 3 Biomarker associations between subphenotypes and hospital mortality. Comparison of the overall cohort and subphenotypes by hospital 
mortality. a Volcano plot of the overall cohort. b Volcano plot of subphenotype‑1. c Volcano plot of subphenotype‑2. d Volcano plot of subphe‑
notype‑3. e–h Box and violin plot of (e) angiopoietin‑2, (f) CXCL10, (g) IL‑6, and (h) CCL4 by overall and subphenotypes by mortality status. For 
volcano plots, upregulated proteins (higher in deceased patients compared to survivors) are coloured red and defined as log2 fold change > 0.3 and 
P ≤ 0.05. Downregulated proteins (lower in deceased patients compared to survivors) are coloured blue and defined as log2 fold change < − 0.3 
and P ≤ 0.05. For box and whisker plots, the bottom border of the box represents the 25th percentile; the line bisecting the box represents the 
median; the upper border of the box is the 75th percentile. The whiskers represent 1.5 times the 75th (highest) and 25th (lowest) values
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subphenotype). It could be that our substudy is under-
powered to assess this subgroup within a subgroup effect 
(i.e., serology status within subphenotypes). Of note, only 
in subphenotype-1, seronegative patients who received 
convalescent plasma had lower mortality, compared 
to seronegative patients who received usual care (eFig-
ure-10). As serology is a prognostic covariate, our sensi-
tivity analyses including serology status as a covariate in 
two additional regression models (for OSFD-21 and mor-
tality) was consistent with the main findings.

Discussion
We report the largest biomarker study conducted within an 
RCT in critically ill COVID-19 patients. We highlight three 
distinct subphenotypes based on biomarker profiles within 
critically ill COVID-19 patients who had similar clini-
cal features, but with differences in clinical outcomes and 
treatment effect estimates for OSFD-21 and hospital mor-
tality. Compared to subphenotype-1, mortality was lower 
despite higher inflammation in suphenotype-2 and subphe-
notype-3. Our observations, if validated, favour avoiding 
convalescent plasma therapy in subphenotype-2 and -3.

Our subphenotypes have biological plausibility. The 
median (IQR) IL-6 levels in our cohort was 62.2 (23.8–
290.6) pg/mL, which is consistent with literature [44]. 
Negative association between IL-10, CXCL-10, and IL-6 
with seropositive status in COVID-19 has been reported 
previously [6], explaining the prognostic utility of this 
biomarker triad. Biomarker differences between sero-
positive and seronegative patients in our study repre-
sent altered interferon responses [33], and compromised 
humoral immunity [12, 13, 30] in critically ill COVID-19 
patients. Prognostic associations with many of these bio-
markers have been reported previously in acute respira-
tory distress syndrome [45].

As we are unable to assess potential molecular mech-
anisms, we propose the following hypotheses as to why 
convalescent plasma therapy could theoretically worsen 
outcomes in the more proinflammatory subphenotypes 
[46–49]. High-affinity antibodies present in convalescent 
plasma elicit SARS-CoV-2 neutralization [46–48]. How-
ever, the low-affinity antibodies present either in donor 
plasma or formed in recipients following convalescent 
plasma administration could activate proinflammatory 
pathways [49], worsening the outcomes. The presence 
of autoantibodies reported in COVID-19 patients [50, 
51] may be present in convalescent plasma, which could 
worsen outcomes in the more proinflammatory subphe-
notypes. Although a rare event in our primary trial [15], 
convalescent plasma is a blood product that can cause 
transfusion-related adverse events.

Our sampled population appears representative of the 
overall RCT publication [15]. Our findings also highlight 
the value of enriching trial populations [52]. Although 
our findings are likely to be widely applicable to moder-
ate or severe COVID-19 patients, our primary RCT was 
not powered to detect subgroup effects. We neither have 
non-COVID controls nor validation cohorts. Research 
blood sampling was not possible outside the UK, and not 
every patient enrolled in the UK had sampling. As our 
RCT was conducted early on in the pandemic, SARS-
CoV-2 vaccination may alter the prevalence of reported 
subphenotypes.

Our results have clinical utility for the following rea-
sons. Our findings support the hypothesis that immuno-
therapy in COVID-19 could be useful with better patient 
selection based on host immune response characteristics. 
It is feasible to determine subphenotype-2 and -3, where 
we observed a harm signal by measuring a limited bio-
marker set based on discriminant value (such as IL-6, 

Fig. 4 Treatment effect of convalescent plasma compared to usual care for organ support‑free days by subphenotypes. Forest plot comparing 
organ support‑free days at day 21 (OSFD‑21) of the overall cohort and by subphenotypes when treated with convalescent plasma, compared to 
usual care population. Median and inter‑quartile ranges (IQR) for OFSD are displayed. Odds ratio was calculated using ordered logistic regression, 
and 95% confidence intervals are reported. Square dots represent odds ratio of the respective row, and the black line denotes 95% confidence 
intervals. Odds ratio < 1 favours control. The P value is reported based on the test of heterogeneity estimated post‑ordered logistic regression. The 
odds ratio represents the average odds ratio for each possible cut points of the outcome variable. Proportional odds assumption means that the 
odds ratios are about the same regardless of the cut point of the ordinal outcome variable
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CCL3, and IL-8 based our data in Fig. 1). Lower overall 
mortality in the more inflammatory subphenotypes in 
our cohort supports the notion that strong prognostic 
association to cytokines such as IL-6 in mild COVID-
19 [8] may be masked by complex cytokine networks or 
hubs in severe inflammatory illnesses [53] observed with 
severe COVID-19, highlighting the futility of measuring 
single cytokines as value-added biomarkers for informing 
treatment decisions.

Our novel findings highlight future research questions. 
A key next step is to study the molecular mechanisms 
underpinning these subphenotypes, to consider them as 
COVID-19 endotypes [52]. A related research question is 
whether these subphenotypes are associated with HTE to 
other immunomodulators. It is important to determine 
whether these subphenotypes are identifiable in non-
critically ill COVID-19 patients and whether they have 
HTE to immunotherapies, as our study focused on criti-
cally ill COVID-19. In any viral pandemic, as convales-
cent plasma will be a potential treatment, understanding 
the mechanisms for harm may lead to better selection of 
donor plasma in the future.

Conclusions
We report three COVID-19 subphenotypes with differ-
ences in treatment response to ABO-compatible high-
titer convalescent plasma therapy among critically ill 
adults, participating in an RCT. Given the distinct immu-
nological mechanisms, these subphenotypes could be 
termed endotypes. These findings support the hypoth-
esis that the benefits of immunotherapy in COVID-19 
could be enhanced with patient selection based on host 
immune response characteristics.   
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