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Abstract

The performance of data clustering algorithms is mainly dependent on their ability to balance

between the exploration and exploitation of the search process. Although some data cluster-

ing algorithms have achieved reasonable quality solutions for some datasets, their perfor-

mance across real-life datasets could be improved. This paper proposes an adaptive

memetic differential evolution optimisation algorithm (AMADE) for addressing data cluster-

ing problems. The memetic algorithm (MA) employs an adaptive differential evolution (DE)

mutation strategy, which can offer superior mutation performance across many combinato-

rial and continuous problem domains. By hybridising an adaptive DE mutation operator with

the MA, we propose that it can lead to faster convergence and better balance the exploration

and exploitation of the search. We would also expect that the performance of AMADE to be

better than MA and DE if executed separately. Our experimental results, based on several

real-life benchmark datasets, shows that AMADE outperformed other compared clustering

algorithms when compared using statistical analysis. We conclude that the hybridisation of

MA and the adaptive DE is a suitable approach for addressing data clustering problems and

can improve the balance between global exploration and local exploitation of the optimisa-

tion algorithm.

Introduction

Data clustering is widely used in different applications to understand the structure of the data,

to focus on a specific set of clusters for further analysis, and to detect the characteristics of each

cluster. Data clustering has been developed and used as an essential tool for different disci-

plines, in areas such as Information Retrieval [1], the Internet of Things [2], Business [3], Med-

icine [4], and Image segmentation [5].
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In recent times, clustering methods have been extensively studied [6–8]. The clustering

methods can be classified based on the fitness function. The popular clustering methods are

classified as partitioning clustering methods. The partitioning clustering methods attempt to

divide the dataset into a set of disjoint clusters and try to optimise specific criterion function,

which may emphasise the local structure of the data. The most popular partitioning clustering

algorithms are k-means, k-medoids, expectation maximisation, clustering large applications

and clustering large application based on randomised search [9].

The K-means algorithm is one of the popular for centre-based clustering [9], which is rec-

ognised as being simple and efficient. However, K-means can detect only well separated, com-

pact or spherical clusters [10]. It is sensitive to noise due to the use of squared Euclidean

distance, where any data object in the cluster can significantly influence the centre of clusters.

The performance of K-means is highly sensitive to the selection of initial centres [11].

Improper initialisation may lead to empty clusters, weak convergence or a high possibility of

getting trapped in a local optima [9]. Some researchers overcome these drawbacks by using

meta-heuristics, such as Genetic algorithms [12], Particle Swarm Optimization [13], Ant Col-

ony Optimization [14], Black Hole Algorithm [15], Gravitational Search Algorithm [16] and

Krill Herd algorithm [17].

In the clustering problems, the balance between exploration and exploitation can affect the

ability of the clustering algorithm to find good clusters among the datasets being used [18].

Some of the earlier proposed clustering algorithms, based on meta-heuristics, managed to find

good clustering solutions for specific datasets. However, across all datasets, it was unable to

find good results, or the results were not robust [7]. This might be due to the imbalance

between exploration and exploitation of the meta-heuristic algorithm, which may lead to pre-

mature convergence or stagnation [19]. Some researchers have proposed a hybrid approach of

a global search with a local search in order to achieve a better balance. The global search han-

dles exploration, while exploitation is handled by the local search [20–23]. Memetic Algo-

rithms (MAs) are one type of hybrid evolutionary algorithms that offer an efficient

optimisation framework by combining perturbation mechanisms, local search strategies, pop-

ulation management [24] and learning strategies [25]. MAs can adopt the strength of other

optimisation algorithms by combining them within the same framework, which can provide

better performance and overcome the weakness of other algorithms. MAs comprise evolution-

ary phases that aid its success in complex optimisation problems [26–29]. More specifically,

the mutation, the improvement and the restart phases are primarily responsible for the stabil-

ity of a MAs performance [30,31].

The differential evolution (DE) algorithm can be hybridised with the MA in the mutation

phase, where DE offers a superior mutation performance across many combinatorial and con-

tinuous domains’ problems [32,33]. However, the DE algorithm is subject to stagnation prob-

lems [34]. Many researchers tried to use the adaptation approach with the DE mutation

operator, where two trends were mainly focusing on the control parameter adaptation strategy

[35] and adaptive strategy control [36]. The importance of the mutation strategy can guide the

search process to a global optimum [37]. Therefore, [38] proposed global and local neighbour-

hood-based mutation operators, where it can balance between the global and local search

throughout the evolutionary processes. However, the mutation vectors require well-selected

weights for the global and local strategy.

Related work

Many researchers have used the nature-inspired algorithms to overcome the shortcomings of

the K-means algorithm, to avoid premature convergence. For example, [39] proposed a
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Gravitational Search Algorithm (GSA) for solving data clustering algorithm. The candidate

solutions are created randomly and interact with one solution via Newton’s gravity law to find

optimal solutions in the problem space. Later, [40] proposed a heuristic algorithm based on

the Black Hole phenomenon, where it has a simple structure, easy, and free from parameter

tuning implementation.

A hybrid meta-heuristic algorithm is proposed by [41] by using Particle Swarm Optimisa-

tion and Magnetic Charge System Search algorithms for partitioning clustering problem. A

dynamic shuffled differential evolution algorithm (DSDE) is proposed by [42]. The DSDE

used the DE/best/1 mutation strategy and shuffled frog leaping algorithm to separate the popu-

lation into two groups of the population during the evolving process.

In recent researches, authors presented data clustering algorithms by integrating the K-

means data clustering algorithm with the population-based meta-heuristics algorithms, for

example; Abdeyazdan presented an enhanced data clustering approach for that adopts the

combination of the K-harmonic means algorithm (KHM) and a modified version of the Impe-

rialist Competitive Algorithm (ICA) algorithm [43]. Gong et al. presented an improved Artifi-

cial Bee Colony clustering algorithm by enhancing the initial clustering centres selection [44].

Mustafi et al. presented an improved Genetic Algorithm (GA) data clustering algorithm to

overcome the K-means clustering algorithm drawbacks [12]. Niu et al. proposed an integrated

Particle Swarm Optimisers (PSOs) with the K-means algorithm [13]. Pandey et al. proposed

Improved Cuckoo Search data clustering that adopts the K-means [45]. In the research of [46],

the authors proposed an improved Tabu Search strategy that is integrated with the K-means

clustering algorithm. More recently, The research of [19] combined the K-Harmonic Means

(KHM) algorithm with PSO and an improved Cuckoo Search (ICS). They used ICS and PSO

to avoid the problem of falling into the local optima.

Despite that the modified data clustering algorithms based on many evolutionary

approached have better performance than other earlier algorithms, there still a problem with

the weak convergence shortcoming in some evolutionary algorithms. More precisely, the

exploitation and exploration balance of the evolutionary algorithms can be further improved.

Therefore, in this work, we aim to improve the clustering algorithm based on an adaptive

memetic differential evolution, named AMADE.

Contribution of this paper

The main objective of this paper is to address the issues discussed above by proposing an adap-

tive memetic differential evolution for solving data clustering problems. Specifically, the signif-

icance of our contribution is three-fold.

1. We design an adaptive memetic differential evolution algorithm for the data clustering

problem. The proposed algorithm data clustering algorithm used the approach of combin-

ing MA and DE in order to solve the data clustering problem.

2. We develop an adaptive DE Mutation phase with an adaptive mutation strategy that can be

used to narrow the search process through the evolutionary steps generations to the nearest

possible centroids.

3. We develop a local search algorithm utilising a neighbourhood selection heuristic that seeks

better centroids based on the maximum and minimum values of each attribute centroid.

More specifically, the algorithm proposed an adaptive DE mutation operator that was com-

bined with memetic algorithm evolutionary steps. The mutation operator strengthens the

search capabilities of DE through proposed DE mutation strategy. Thus, the algorithm also
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introduced an adaptive strategy to avoid any stagnation problem. The DE Mutation phase

employs an adaptive DE/current-to-best/1 mutation strategy, to speed up the convergence

speed of differential evolution algorithm under the guidance of both current and the best

individuals.

The memetic improvement phase included two steps: removing the duplicate solutions and

local search using an improved neighbourhood search heuristic, the modification aimed to

prevent the algorithm from falling into premature convergence. The hill-climbing local search

algorithm is utilised as a local search algorithm to seek for better centroids by employing an

improved neighbourhood selection heuristic with first improvement strategy. The neighbour-

hood selection heuristic seeks better centroids based on the maximum and minimum values of

each attribute centroid. The restart phase was modified to replace the new partial population

with good solution generate from the discrete differential algorithm, which can keep the diver-

sity of the population as maximum as possible.

Organization of This Paper

This research is organised as the following: Section 2 introduces the theoretical background

and concepts such as standard MA and DE. In section 3, briefly explains the improved adap-

tive memetic DE. Section 4 presents the experimental results of the proposed algorithm.

Finally, Section 5 provides the conclusion and future works.

Background

This section discusses the fundamental aspects of clustering analysis problem, differential evo-

lution (DE) and memetic algorithms, which have been used in the proposed data clustering

algorithm. Thus, this section discusses the relevant population-based approaches in the data

clustering.

Cluster analysis

Data Clustering is a process of partitioning a set of n objects into some clusters K, based on a

specific similarity measure. The n objects are represented by the set X = {x1, x2, . . ., xn}, the K
clusters are denoted by C = {C1, C2, . . ., CK}, such that data objects in the same clusters are sim-

ilar, and other data objects are dissimilar. In the data clustering problem, clusters must main-

tain the following three hard constraints [47]:

i. Each cluster should consist of at least one object:

Ci 6¼ �; 8 i 2 f1; 2; . . . ;Kg; ð1Þ

ii. Different clusters should not have objects in common:

Ci \ Cj ¼ �; 8 i 6¼ j and i; j 2 f1; 2; . . . ;Kg; ð2Þ

iii. Every object must be attached to a cluster:

Sk
i¼1
Ci ¼ X ð3Þ
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The Data clustering problem can be represented the Eq (4):

Optimize

C
f ðX;CÞ ð4Þ

The f(X, C) is the fitness function to measure the quality of the partitions generated by the

clustering method. Thus, the fitness function can be maximised or minimised depending on

the similarity/dissimilarity measure used. Moreover, the fitness function should be defined for

adequate partitioning. The intra-cluster Distance similarity/dissimilarity measure is one of the

most popular internal metrics that is utilised to measure the quality of the clustering solution

[7], as in the Eq (5):

f ðO;CÞ ¼
Pk

l¼1

Pn
Oi2CldðOi;ZlÞ ð5Þ

The d(Oi, Zl) represents the distance between the centre of cluster Zl and data object Oi. The

Euclidean distance, as in Eq (6), is one of the most famous distance functions [7]. It can mea-

sure the distance between two objects (Oi and Oj) inside the same cluster.

Euclidean distance dðOi;OjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

m¼1
ðOm

i � Om
j Þ

2

r

ð6Þ

Furthermore, the centres Zl is can determine the mean value for all cluster objects as in Eq

(7), where the number of data objects in cluster Zl is denoted by nl.

Zl ¼
1

nl

P
8Oi2Zl
ðOiÞ ð7Þ

Differential evolution algorithm (DE)

DE algorithm is an effective meta-heuristic optimisation algorithm for solving continuous and

combinatorial optimisation problems [48]. The algorithm starts with initialising a population.

The individuals are chosen as parents for the mutation and crossover operators to generate

trial offspring individuals. The mutation operation perturbed a base individual by a scaled dif-

ference vector, where the vector can consist of many random individuals selected from the

population in order to produce a mutant individual. The comparison between offspring indi-

vidual with the parent in fitness value will result in a new individual for the next generation.

The evolution process will be terminated when satisfying a termination condition. Finally, in

the last generation, the best individual will be the solution to the problem. The DE algorithm

starts the evolutionary process by initialising the population with individuals in the solution

space. In each generation, the individuals are selected as parents for the mutation and cross-

over in order to generate the trial offspring individuals. In the mutation phase, the individual

is perturbed by a scaled differential vector that contains several individuals that are randomly

selected in order to produce the mutant individual. The offspring individual is then compared

with the parent using the fitness value, and the superior one is chosen as the new individual for

the next generation. The evolutionary processes are terminated when the termination condi-

tion is satisfied, and the solution to the problem will be the best individual in the last

generation.

The effectiveness of the DE in solving complicated optimisation problems depends mainly

on choosing suitable mutation strategy and the related parameter values. Therefore, choosing

suitable control parameter values for the DE algorithm is an essential task. Many researchers

have been attracted to study the DE algorithm. For example, [35] proposed DE-PAS algorithm

An improved adaptive memetic differential evolution optimization algorithms for data clustering problems
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for selecting and incorporating a suitable adapting parameters scheme. [49] proposed a net-

work intrusion detection based on efficient feature selection technique using decision tree

algorithm and discretised differential evolution (DDE) from standard intrusion datasets. [50]

presented a DE algorithm that can avoid premature convergence and improve the search qual-

ity. The population is grouped into many tribes and utilises an ensemble of different mutation

and crossover strategies. They used an adaptive scheme to control the scaling factor and the

crossover rate. [51] introduced a self-adaptive differential evolution algorithm (APDDE). The

algorithm integrates the detecting values into two mutation strategies to produce the offspring

population. [36] proposed a self-adaptive differential evolution algorithm with a hybrid muta-

tion operator (SHDE) for parameters identification problem. In [52], researchers proposed a

self-adaptive DE which can predict the control parameters based on the ensemble. [53] pro-

posed a self-adaptive DE algorithm with discrete mutation control parameters (DMPSADE).

Every individual contains its mutation control parameter, crossover control parameter and

mutation strategy.

Memetic algorithms

The Memetic Algorithms (MAs) are a meta-heuristic approach that combines the problem-

specific solvers with evolutionary algorithms. The problem solvers can be implemented using

exact methods, approximation algorithms or local search heuristics. The hybridisation aims to

accelerate the discovery of good solutions or to find the solutions that are unreachable by evo-

lutionary algorithms or the local search methods alone. MAs have been proven successful per-

formance for a broad range of problem domains, such as wireless sensor networks [54],

Machine learning algorithms [55], scheduling problems [56], routing problems [57] and bioin-

formatics [58]. MAs received many names throughout the literature. Some of the alternative

names are hybrid GA, Baldwinian EA, Lamarckian EA, genetic local search algorithms [59].

The MAs can combine techniques and approach from many search techniques, and most dis-

tinguished approaches from local search methods and population-based search techniques.

The basic memetic algorithms template include procedures:

The initialisation procedure. The initialisation procedure is responsible for creating solu-

tions to the initial set of the population. The MAs seeks to create high-quality solutions to be

in the starting point. The initialisation procedure can be done either using a local search proce-

dure or a constructive heuristic to improve the random initial solutions.

The cooperate and improve procedures. The cooperate and Improve procedures typi-

cally rely on the selection of the solutions from the population and recombine them. Both pro-

cedures utilise the approach of a local search in the population.

The compete procedure. The Compete procedure is used in the reconstruction of the

current population using the old and the new population. A steady-state replacement strategy

is one of the most popular strategies that could be used when the fitness function suffers from

complexity and time-consumption and could lead to faster convergence [59].

The restart procedure. The restart procedure is invoked whenever the population falls

into a degenerate state. Typically, one of the strategies that could be used is to keep a part of

the current population and generate the remaining part by new solutions. Another approach is

to apply a heavy mutation operator; this could generate a population different from the current

state in the search space.

Improved adaptive memetic differential evolution. This section discusses the detailed

steps of the propose AMADE algorithm along with the solution representation.

An improved adaptive memetic differential evolution optimization algorithms for data clustering problems
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Solution representation

The optimal encoding aims to determine the data objects that belong to a particular cluster to

perform optimal clustering analysis. A label-based one-dimensional array is used to represent

the candidate solution in data clustering optimisation problem. Every solution representation

is considered as a set of N data objects, where each cell represents a cluster number associated

with that object. Fig 1 presents a candidate solution example for a problem with nine data

objects and two clusters, In this example: objects O1, O2, O5, O7 and O8 is attached with clusters

1, and O3, O4, O6 and O9 is attached with clusters 2.

Additionally, a centroid-based representation that consists of a two-dimensional matrix is

used to keep track of the positions of the cluster centroid and to be used by the local search.

The matrix consists of K rows and D column, where K is the total number of the clusters and

D is the total number of the attributes in the dataset. For example, in Fig 2, the dataset contains

two clusters and two attributes; then the position of first cluster centroids is 4.5, 2.3, and the

position of the second cluster centroids is 5.5, 7.4.

Constraint handling

The solution representation of the proposed AMADE guarantees that each data object is asso-

ciated only with one cluster. An additional soft constraint is formed to prevent any duplicate

solutions in the population in the improvement phase. Moreover, any possible duplicate solu-

tions can lead through the evolutionary processes to premature stagnation. The duplicate solu-

tion is handled in the improvement phase by generating solutions randomly.

The AMADE proposed approach

In AMADE, the DE mutation operator with an adaptive strategy DE/current-to-best/1 has

combined with the memetic algorithm evolutionary steps; this aims to have faster convergence

speed faster by the best individual’s guidance. The new individuals are compared with the tar-

get vector, which can improve the guidance of the population evolution. However, AMADE

may suffer from premature convergence. To this end, the restart phase can prevent falling into

premature convergence by reconstructing the population diversity by generating new solu-

tions in the population. The improvement phase plays a key role in finding better solutions,

Fig 1. Example of a candidate solution represented by a label-based representation.

https://doi.org/10.1371/journal.pone.0216906.g001

Fig 2. Cluster centroid-based representation of the solutions.

https://doi.org/10.1371/journal.pone.0216906.g002
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which can also improve the quality of the solution using a proposed improvement heuristic.

The pseudo-code for the proposed AMADE algorithm is shown in Fig 3.

The population initialisation phase

For keeping better diversity of the population, a random constructive method is used. The ini-

tial solutions for the proposed AMADE are randomly generated. The data points of the dataset

are randomly grouped into K clusters; all centroids of each cluster are calculated using Eq (7),

where K is the total number of clusters. These two steps are repeated N times to generate N
random solutions, where N is the population size parameter value of the AMADE algorithm.

The recombination phase

The recombination phase employs the mating pool approach [60] in evolutionary computa-

tion with CandPoolSize size. The tournament selection operators, with selection size TourSize
[61] are applied to the entire population then placed into the mating pool. Thus, a two-point

Fig 3. Pseudo-code of the proposed AMADE algorithm.

https://doi.org/10.1371/journal.pone.0216906.g003
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crossover operator [62] is then applied to the selected parents. At the end of the recombination

phase, the mating pool is combined with the population by replacing some worst individuals

with the new better individuals in the mating pool. The pseudo-code of the recombination

phase is shown in Fig 4.

Fig 5 demonstrates an example of the two-point crossover with label-based solution repre-

sentation chromosome with size N = 12 genes. The chosen cut points are randomly selected,

and cut point 1 should be less than cut point 2.

The DE Mutation phase

The DE Mutation phase employs an adaptive DE/current-to-best/1 mutation strategy, to speed

up the convergence speed of DE algorithm under the guidance of both current and the best

Fig 4. Pseudo-code of the recombination phase algorithm.

https://doi.org/10.1371/journal.pone.0216906.g004

Fig 5. Example of two-point crossover with label-based solution representation for a clustering solution using of

twelve data.

https://doi.org/10.1371/journal.pone.0216906.g005
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individuals. The cluster centroids are modified by the mutation phase to achieve better cluster

solution, as shown in Fig 6. This is performed by using Eq (8). Where Ccurrent is the current

individual centroid, Cbest is the best individual centroid, Crand is a random individual centroid,

CurrIteration is the current iteration in AMADE algorithm, and MaxIterations is the maxi-

mum number of iterations of AMADE.

Ci ¼ Ccurrent þ ðCbest � CrandÞ � 1 �
CurrIteration
MaxIterations

� �� �

ð8Þ

Such adaptive strategy will narrow the search process through the evolutionary steps gener-

ations to the nearest possible centroids. At the same phase, the data objects are rearranged to

the closest clusters after modifying the centroids of the clusters. The new produced individual

is immediately compared with the target vector in a current population, and the better individ-

ual could be retained.

In order to demonstrate the effectiveness of the adaptive DE strategy, Fig 7 shows an exam-

ple of a cluster centroid of value 6.5 that is adjusted throughout 1000 iterations of the AMADE

algorithm. The adaptive DE strategy provides more exploration capabilities to cluster centroid,

which in the first iteration is 6.5 and is adjusted to the new centroid that is 11.5. As the algo-

rithm reaches the maximum number of iterations, the DE strategy produces more exploitation

capability to the current centroids, which in the iteration 999 is 10.1 and the new centroid is

10.1004.

Fig 6. Pseudo-code of creating the trial individual algorithm.

https://doi.org/10.1371/journal.pone.0216906.g006

Fig 7. Example of the adaptive DE strategy performed on a cluster centroid of value 6.5 throughout 1000

iterations.

https://doi.org/10.1371/journal.pone.0216906.g007
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The improvement phase

The improvements phase consists of two solution quality improvement steps: the clear dupli-

cate solutions step and the local search step. In the clear duplicate step, the algorithm ensures

that the population retains better solution diversity in order to avoid any premature stagna-

tion. At the second step, a hill-climbing local search [63] is employed on the centroid-based

presentation by changing the current centroid with better cluster centroids. The hill-climbing

local search algorithm, as shown in Fig 8, seeks better centroids by utilising the neighbourhood

selection heuristic with a first improvement strategy [64]. The algorithm terminates when the

current solution is improved.

The neighbourhood selection heuristic, as shown as pseudo-code in Fig 9 and a flowchart

in Fig 10, seeks better centroids based on the maximum and minimum values of each field’s

centroid. The heuristic increases the centroid value with an increment step value until finding

better centroid. Otherwise, the algorithm will change the search direction decreasingly to the

minimum value of centroid.

The restart population phase

Once the population is having a state of degeneration, the restart procedure is employed

immediately [59]. The restart strategy keeps part of the population and excludes the remaining

individuals by generating new solutions. As shown Fig 11, AMADE keeps 75% of the popula-

tion for the next evolutionary steps, while the remaining population is generated using a DE

algorithm based on mutation strategy DE/rand/1 and the minimal number of generations,

which can produce a new population with better diversity and good quality solutions.

Gi ¼ ðGrand1 þ F:ðGrand3 � Grand3ÞÞ mod NoClusters ð9Þ

The DE algorithm, shown in Fig 12, is applied to the solution representation with a discrete

mutation operator. Each genome in the new chromosome is calculated using Eq (9). Where

Grand1, Grand2, Grand3 is the gene in the chromosome of randomly selected individuals. The

Fig 8. Pseudo-code of the modified Hill climbing algorithm.

https://doi.org/10.1371/journal.pone.0216906.g008
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modulus is used to ensure that the result of the equation within the number of clusters in the

dataset.

Experimental setup and results

Experimental setup

The performance of the proposed AMADE clustering method are investigated based on six

real data datasets from the UCI repository of the machine learning databases with a variety of

complexity [65], which can be download at http://archive.ics.uci.edu/ml/index.php. The data-

sets that been used are Wisconsin Breast Cancer, Vowel, Wine, Iris, Contraceptive Method

Fig 9. Pseudo-code of the neighbourhood selection heuristic algorithm.

https://doi.org/10.1371/journal.pone.0216906.g009
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Choice (CMC) and Glass, as shown in Table 1. The datasets also include different complexity

levels and classified from 1 to 10 levels based on the number of instances and attributes [66],

where level 1 is the lowest complexity level, and level 10 represents the highest complexity

level.

In order to evaluate the effectiveness of the proposed Memetic DE algorithm with proposed

evolutionary phases, the AMADE performance is first compared with DE [48] with DE/best/1/
bin strategy, Hybrid DE with DE/best/1/bin strategy, GA [67] and hybrid GA algorithms,

where all algorithms are applied with the same experimental setup and local search heuristic.

These algorithms have the same evolutionary phases of AMADA except restart phase. The

selection of these algorithms is essential to show the strength of the combination of such algo-

rithms in MA besides the proposed adaptive mutation operator and the modified restart

phase. Moreover, for further testify the performance, the AMADE is compared with recent

data clustering algorithms in the literature, including K-means [9], black hole [40], age-based

Fig 10. Flowchart of the neighbourhood selection heuristic.

https://doi.org/10.1371/journal.pone.0216906.g010
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particle swarm optimisation [68], dynamic shuffled differential evolution algorithm [42], the

krill herd algorithm [69] and hybrid ICMPKHM [19].

The algorithm’s performance is evaluated using the following criteria:

• The intra-cluster distances: is an internal quality measure that measures the distance

between all objects in the cluster and its centre, as defined in Eq (5). The purpose of the data

clustering algorithm is to minimise the sum of intra-cluster distances which can lead to high

clustering quality. The intra-cluster distance value is given as best (minimum intra-cluster

distance), the average value and worst (maximum intra-cluster distance) value of objective

function value among entire runs.

• The F-measure: is an external measure that compares the ground truth with the obtained

clusters to calculate the similarity between them. The high percentage of the F-measure

value indicates a better clustering quality. The precision and recall of cluster Sj, and class Ri,

i, j = 1, 2, . . ., k is shown in Eq (10) and Eq (11), Where |Ri| is the number of objects in class

Ri, and |Sj| is the number of data objects in cluster Sj, and Lij is the number of data objects of

class Ri in cluster Sj. The F-measure of a class Ri is defined in Eq (12). The overall F-measure

is computed as the weighted average of all classes is given in Eq (13).

precision Ri; Sj
� �

¼
Lij
jSjj

ð10Þ

recall Ri; Sj
� �

¼
Lij
jRjj

ð11Þ

Fig 11. Pseudo-code of the restart population algorithm.

https://doi.org/10.1371/journal.pone.0216906.g011
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F Rið Þ ¼
2� precision ðRi; SjÞ � recall ðRi; SjÞ
precision ðRi; SjÞ þ recall ðRi; SjÞ

ð12Þ

F � measure kð Þ ¼
Pk� 1

i¼0
ðjRij � FðRiÞÞ
Pk� 1

i¼0
jRij

ð13Þ

• The accuracy: is an external measure indicates the proportionate number of data objects that

correctly placed by the predictive model to match the class (ground truth) in the data, as

shown in Eq (14):

Accuracy kð Þ ¼
number of correct data objects identified

total number of data Objects
ð14Þ

The parameter settings for the AMADE algorithm were independently tested on each of the

six datasets for 31 times, the best, worst, average values, standard deviations and F-measure

Fig 12. Pseudo-code of creating DE population algorithm.

https://doi.org/10.1371/journal.pone.0216906.g012
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were computed. In AMADE, the maximum number of generations is set to 1000, and 100 to

DE/rand/1 in population restart phase. Accordingly, F is set to 0.7 and Cr is set to 0.9.

A Taguchi method [70,71] for the design of the experiment has been used to identify the

best values of the parameters for AMADE algorithm. Five levels were considered for each fac-

tor as shown in Table 2. AMADE algorithm run for 31 times for each factor at each level was

employed, and the mean of signal-to-noise (SN) ratio plot each level of the factors are shown

in Fig 13. The level with the maximum SN ratio is the optimum parameter determined by

Taguchi method.

According to Fig 13, the optimum value for population size is set to 20, and max generation

without improvement is set to 50. The recombination mating pool size is set to 10, and the

tournament selection pressure is set to 10. Last but not least, All algorithms are implemented

in Oracle Java 1.8 and were run on CPU Intel Core i7 (2.4GHz) personal computer that con-

tains 8 GB of RAM.

Experimental results and discussion

The objective function values comparison for the best solutions, average solutions and worst

solutions, F-measure, standard deviation and execution time of solutions for 31 runs is shown

in Table 3. Where Best, Mean and Worst are referred to the intra-cluster distances objective

function values that were obtained out of 31 runs, where the smaller value is better, and the

higher value of the F-measure is better. The results show that the proposed algorithm has a

smaller best, average, worst and standard deviation compared with the other algorithms. For

example, the Iris dataset results show that AMADE achieved 96.544 global optima whereas the

best solutions of GA, DE, HyGA ad HyDE are 97.225, 97.101, 96.571 and 96.571. However, the

worst, best, and average results of the solutions by HyGA and HyDE are close to AMADE on

most of the datasets, but it did not perform well with the standard deviation and the results of

worst solutions. Moreover, the results of F-measure of the proposed algorithm can be noticed

as better than other algorithms in most datasets, except for the iris and cancer datasets which

are similar to the global optimum.

Table 1. The characteristics of the UCI repository datasets used in the experiments of AMADE algorithm.

Dataset Number of clusters Number of features Number of data objects Description Complexity levels

Vowel 6 3 871 Indian Telugu vowel 4

Iris 3 4 150 Fisher’s iris data 3

Cancer 2 9 683 Wisconsin breast cancer 3

CMC 3 9 1473 Contraceptive method choice 6

Glass 6 9 214 Glass identification data 3

Wine 3 13 178 Wine data 4

https://doi.org/10.1371/journal.pone.0216906.t001

Table 2. The AMADE algorithm parameter levels.

Parameter Definition Level

1 2 3 4 5

PopSize The population size 20 30 40 50 60

MGWI max generation without improvement 10 20 30 40 50

CandPoolSize recombination mating pool size 1 5 10 15 20

TourSize tournament selection pressure 5 10 15 20 25

https://doi.org/10.1371/journal.pone.0216906.t002
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Furthermore, the trade-off between the quality and the time-cost problem occurred, leading

to the time-cost-quality trade-off problem. The hybrid metaheuristic approaches, such as

AMADE, HyDE, and HyGA, can obtain optimal solutions in reasonable execution time. In

contrast, the traditional metaheuristic algorithm, such as GA and DE, do not guarantee to find

the optimal solution, but they usually obtain sub-optimal, good-quality solutions in less execu-

tion time. As shown in Table 3, The traditional DE and DE algorithm achieve best execution

time for all dataset, but they were unable to obtain the optimal solution for the datasets. In con-

trast, AMADE algorithm produced the optimal results of the intra-clusters distances and the

F-measure with reasonable execution time when compared to HyDE and HyGA. For example,

AMADE obtained 5532.620 for the average intra-cluster distance on CMC dataset, and

0.52107 for the F-measure in 59.485 seconds, which were the optimal results with the best exe-

cution time compared to HyDE (72.470) and HyGA (86.887).

Fig 14 shows the convergence curves of the first 200 iterations on six datasets. It demon-

strates that AMADE has the best convergence rate results on the six datasets with faster con-

verge in the early iterations of the search process; later, the convergence becomes slower. The

HyDE achieved the second best convergence rate results, and the HyGA scored third best

results. The GA and DE algorithm produced a slow convergence rate toward the optimum

intra-cluster distance on all datasets. In general, the improved memetic phases by removing

the duplicated solutions along with the local search and the adaptive strategy shown the effec-

tiveness in preventing the algorithm from falling into premature convergence.

Furthermore, Table 4 shows the result of the rankings of the mean values generated by

Friedman’s test based on the average and best value of intra-clusters distances. Additionally,

the Friedman’s test reveals the significance of the AMADE algorithm with a p-value of 0.

Fig 13. Graphical results of Taguchi method for AMADE algorithm.

https://doi.org/10.1371/journal.pone.0216906.g013
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000189 for the test based on the average value of intra-clusters distances, and 0.0000128 for the

test based on the best value of intra-clusters distances, which are both below the significance

level (α = 0.05).

The Holm’s procedure is employed as a post-hoc method to detect the statistical difference

between the control case (ranked first) and the other remaining cases [72]. Table 5 shows the

p-value obtained by the Holm’s procedure, where the rejection of the null hypothesis relies on

the obtained p-value. Thus, the p-value must be less than the adjusted value of α (α/i), where i
is the rank of the algorithm. Table 5 presents the adjusted p-value of Holm’s procedure, and

the AMADE algorithm is used as the control algorithm. Holm’s procedure proves that

AMADE is statistically better than DE, GA and HyGA, but the algorithm does not differ

Table 3. Comparison of intra-clusters distances among AMADE, HyDE, HyGA, DE and GA obtained from 31 runs.

Data Set Criteria GA DE HyGA HyDE AMADE

Iris Best 97.225 97.101 96.571 96.571 96.544

Mean 100.22 100.238 96.704 96.687 96.549

Worst 106.63 121.42 97.082 96.851 96.56

Std. 2.799 8.287 0.1332 0.0913 0.004

F-measure 0.888 0.901 0.901 0.901 0.901

Time (s) 0.063 0.062 3.311 2.908 2.442

Wine Best 16555.679 16530.53 16295.932 16293.716 16292.279

Mean 17469.554 16579.30 16307.626 16320.591 16292.82

Worst 21381.732 18042.46 16375.151 16424.55 16293.884

Std. 857.221 271.550 14.750 43.344 0.395

F-measure 0.689 0.696 0.696 0.696 0.708

Time (s) 0.064 0.105 15.170 6.229 5.279

Vowel Best 213180.89 228726.3 149225.51 149216.30 148967.54

Mean 338611.71 246848.6 150098.78 150537.95 149228.50

Worst 414649.26 264116.7 151281.28 157436.32 150121.94

Std. 58186.943 8847.791 388.271 1415.782 490.294

F-measure 0.5731 0.549 0.645 0.549 0.66209

Time (s) 0.352 0.825 25.901 15.333 14.166

CMC Best 8232.03 7414.52 5534.209 5532.855 5532.404

Mean 9913.725 8242.965 5538.535 5535.566 5532.620

Worst 10919.04 8724.383 5591.429 5538.734 5534.836

Std. 682.494 306.242 9.928 1.775 0.423

F-measure 0.486 0.4875 0.517 0.487 0.52107

Time (s) 0.870 2.098 86.887 72.470 59.485

Glass Best 223.509 216.911 214.382 213.726 210.17

Mean 245.893 221.685 215.877 216.187 211.214

Worst 352.186 225.658 220.359 221.714 213.686

Std. 27.720 3.002 1.266 1.814 1.174

F-measure 0.589 0.611 0.597 0.611 0.680

Time (s) 0.079 0.253 37.199 26.606 28.459

Cancer Best 3022.224 2984.068 2965.945 2964.722 2964.393

Mean 3342.213 2984.674 2973.296 2966.021 2964.522

Worst 4316.204 2985.659 2994.217 2976.272 2964.73

Std. 346.972 0.645 5.743 2.753 0.091

F-measure 0.957 0.967 0.964 0.967 0.964

Time (s) 0.283 0.802 23.607 16.8370 14.736

https://doi.org/10.1371/journal.pone.0216906.t003
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Fig 14. The convergence curves for the first 200 iterations on (a) cancer, (b) CMC; (c) glass; (d) iris; (e) vowel; (f) wine datasets.

https://doi.org/10.1371/journal.pone.0216906.g014
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significantly from the HyDE algorithm. However, the results reported in Table 5 demonstrate

that the proposed AMADE approach outperformed the HyDE in all of the tested datasets in all

criteria. Based on the standard deviation criterion, AMADE is considered and more robust

than HyDE as well as the other algorithms. Moreover, AMADE can found global optimal solu-

tions for most of the cases.

Additionally, in order to show the superiority of the AMADE algorithm among the other

algorithms, Fig 15 presents the box plots of all datasets from 31 runs. It reveals that AMADE

did not produce any outlier on all datasets, and the median solutions obtained by AMADE dis-

tributions are centralised. The box plots for the AMADE was thick and near the minimum

intra-clusters distance values. The thickness of the box plots indicates that results obtained

have less deviation of the median value, which means that the algorithm performance was sta-

ble over the 31 runs. The HyDE algorithm achieved the second best performance on Cancer,

CMC, and Iris datasets, while it almost obtained the same performance of the HyGA algorithm

on the Glass, Vowel, and Wine datasets. The standard DE algorithm obtained a better result

than the GA algorithm on all datasets, where both GA and DE performance are weak com-

pared with other hybrid algorithms. In general, the improved memetic phases by the restart

phase along with the DE mutation phase shown the effectiveness in keeping the diversity of

the population as maximum as possible during the evolutionary process, which helped to

avoid the instability of the obtained results.

Furthermore, in order to validate the feasibility of the results, the centres of the clusters

obtained by AMADE algorithm is shown in Tables 6–8, where all datasets with the same num-

ber of clusters are grouped in one table. The clusters centres can be used to validate the sum of

intra-cluster distances given in Table 3. This could be manipulated by assigning the data

objects within each dataset with the nearest clusters centres given accordingly in Tables 6–8,

where the best intra-clusters distance values in Table 3 must be reached. For example, by allo-

cating the 178 data objects in Wine dataset to the nearest centres with corresponding three

cluster centres that are shown in Table 6, the best value of the sum of intra-cluster distances

obtained by the AMADE algorithm on the Wine dataset, which is reported in Table 3, should

be equals (16292.279). Otherwise, the best centres in Table 6 or the best values in Table 3 is

invalid. This procedure can also be performed to validate other dataset’s cluster centres.

Comparison between AMADE and state of the art

In order to evaluate the performance of AMADE, the algorithm results are compared with

well-known algorithms, such as the black hole (BH) [40], age-based particle swarm optimiza-

tion (PSOAG) [68], A dynamic shuffled differential evolution algorithm (DSDE) [42], the krill

herd algorithm (IKHCA) [69], hybrid of krill herd algorithm with harmony search algorithm

(H-KHA) [17] and hybrid ICMPKHM [19].

The related comparison results are presented in Table 9. The results present the average of

the intra-clusters distances for the AMADE and other Algorithms on Iris, Wine, CMC, Glass,

Table 4. Friedman tests based on the average and best intra-clusters distances obtained by AMADE.

# Algorithm Ranking

(Based on Average)

Ranking

(Based on Best)

1 AMADE 1.00 1.00

2 HyGA 2.50 2.916

3 HyDE 2.50 2.083

4 DE 4.17 4.166

5 GA 4.83 4.833

https://doi.org/10.1371/journal.pone.0216906.t004
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and Cancer. The results indicate that AMADE has shown consistent performance and better

result than IKHCA, ICMPKHM, PSOAG, H-KHA and BH on almost all the datasets. The

AMADE achieved the second best results after the MSDE algorithm on Wine, CMC, Cancer

Table 5. Holm’s procedure Adjusted p-value of the methods in the comparison.

i Algorithm α/i p-value of Holms

(based on average)

p-value of Holms

(based on best)

Null Hypothesis

1 HyGA 0.05/1 = 0.0500 0.1003 0.03576 Not rejected, rejected

2 HyDE 0.05/2 = 0.0250 0.1003 0.2353 Not rejected, Not rejected

3 DE 0.05/3 = 0.0166 0.00052 0.000522 Rejected, rejected

4 GA 0.05/4 = 0.0125 0.000267 0.000026 Rejected, rejected

https://doi.org/10.1371/journal.pone.0216906.t005

Fig 15. Box plots of fitness of best solutions for AMADE, HyGA, HyDE, GA and DE algorithms on (a) cancer; (b)

CMC; (c) glass; (d) iris; (e) vowel; (f) wine datasets.

https://doi.org/10.1371/journal.pone.0216906.g015
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datasets. Thus, The AMADE algorithm obtained the second best results on Iris and Glass data-

sets. The results shown in Table 9 reveal that the AMADE performance is consistent across all

the datasets compared to the state of art algorithms concerning the average of the intra-clusters

distances.

Table 6. The best clusters centres on the datasets Wine, Iris, and CMC obtained by the AMADE algorithm.

Dataset Centre 1 Centre 2 Centre 3

Iris 6.731 5.019 5.93

3.072 3.423 2.797

5.629 1.469 4.416

2.107 0.238 1.417

CMC 33.487 24.409 43.63

3.137 3.04 3.01

3.559 3.512 3.458

3.653 1.798 4.595

0.813 0.933 0.797

0.707 0.817 0.764

2.11 2.303 1.848

3.293 2.967 3.438

0.073 0.043 0.113

Wine 12.526 13.718 12.832

2.389 1.861 2.582

2.329 2.424 2.393

21.391 16.905 19.509

92.435 105.146 98.835

2.09 2.76 2.088

1.863 2.846 1.51

0.408 0.293 0.429

1.464 1.895 1.433

4.349 5.601 5.801

0.967 1.072 0.898

2.525 3.015 2.258

463.871 1137.495 686.798

https://doi.org/10.1371/journal.pone.0216906.t006

Table 7. The best clustering centres on the Cancer data set obtained by the AMADE algorithm.

Dataset Centre 1 Centre 2

Cancer 2.886 7.113

1.127 6.639

1.201 6.624

1.165 5.613

1.993 5.227

1.122 8.097

2.008 6.078

1.099 6.021

1.033 2.32

2.886 7.113

1.127 6.639

1.201 6.624

1.165 5.613

https://doi.org/10.1371/journal.pone.0216906.t007
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To further analyse the results in Table 9, the rankings with the compared algorithms gener-

ated by Friedman’s test are shown in Table 10 based on the average function of the intra-clus-

ters distances. Furthermore, the Friedman’s test has shown a significant difference of the

AMADE among the other compared algorithms, with a p-value of 0.02465 based on the aver-

age function, which is below the significance level (α = 0.05). The AMADE algorithm shares

the best ranked algorithm with the DSDE algorithm [42], which uses the DE algorithm with

multiple population approaches to reach the best average function of the intra-clusters dis-

tances for the best solutions. The results show that AMADE achieved the best ranking among

other clustering algorithm based on the average performance function of the intra-clusters dis-

tances. The BH algorithm achieved the third best rank, and the ICMPKHM algorithm

achieved the fourth rank, then the H-KHA. Lastly, PSOAG and IKHCA achieved the worst

rank compared to other algorithms. The rankings generated by Friedman’s test shown in

Table 9 reveal that the AMADE performance is consistent compared to the state of art algo-

rithms concerning the average of the intra-clusters distances.

Furthermore, the performance of AMADE is compared based on the computed accuracy

with four algorithms that reported accuracy performance measure in their research, such as

PSOAG, K-means [73], PSOAG, DSDE and IKHCA as shown in Table 11. The accuracy

obtained by AMADE is competitive with the other clustering algorithm, where it reaches the

optimum accuracy on CMC and cancer datasets. The IKHCA algorithm achieved best results

of the accuracy on Wine, CMC, and Glass datasets, while the PSOAG algorithm achieved the

best result on the Iris dataset. However, the results of the accuracy reveal the consistent perfor-

mance of the AMADE algorithm based on the accuracy on all datasets, where it obtained sec-

ond best result of accuracy on Glass and Wine datasets and obtained the third best result of the

accuracy on the Iris dataset.

Table 8. The best clusters centres on the Vowel and Glass datasets obtained by the AMADE algorithm.

Dataset Centre 1 Centre 2 Centre 3 Centre 4 Centre 5 Centre 6

Vowel 506.853 439.01 623.906 375.474 407.997 357.254

1839.705 987.21 1309.831 2149.202 1018.042 2291.144

2556.051 2665.001 2333.476 2678.136 2317.763 2977.367

Glass 1.52 1.517 1.513 1.517 1.522 1.521

12.843 14.612 13.021 13.324 13.812 13.088

3.456 0.056 0.018 3.578 3.569 0.259

1.312 2.204 3.03 1.418 0.935 1.426

73.022 73.239 70.581 72.669 71.854 72.666

0.602 0.089 6.221 0.574 0.165 0.342

8.565 8.651 6.94 8.212 9.523 11.978

0.013 1.03 0.01 0.006 0.052 0.108

0.079 0.016 0.001 0.05 0.058 0.061

https://doi.org/10.1371/journal.pone.0216906.t008

Table 9. Comparison between AMADE and other Algorithms based on the average of the intra-clusters distances.

Dataset PSOAG BH DSDE IKHCA ICMPKHM H-KHA AMADE

Iris 96.97 96.65 96.65 96.67 96.61 96.52 96.549

Wine 16296.3 16294.3 16292.3 16589. 16293.18 16410.1 16292.8

CMC 5559.98 5533.63 5532.18 5695.0 5695.13 5601.68 5532.62

Glass 244.99 211.49 212.73 223.03 199.45 215.66 211.21

Cancer 2984.24 2964.39 2964.38 2971.1 3024.79 2982.43 2964.52

https://doi.org/10.1371/journal.pone.0216906.t009
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At last but not least, the performance of AMADE is compared based on the computed F-

measure with three algorithms that have reported the F-measure external performance mea-

sure in their research, such as K-means [74], KSC-LCA [74], ICMPKHM [19] as shown in

Table 12. The F-measure obtained by AMADE outperformed other clustering algorithms,

where it reached the optimum F-measure value on the Iris, CMC, Cancer and Vowel datasets,

while it obtained the second best results of the F-measure on Wine and Glass. The KSC-LCA

algorithm achieved the best result of the F-measure on Wine dataset, and ICMPKHM algo-

rithm achieved the best result on Glass and Cancer datasets. The results shown in Table 12

reveals the consistent performance of AMADE across all dataset based on the F-measure.

Conclusions and future work

In this work, an adaptive memetic differential evolution (AMADE) was proposed for efficient

data clustering. The combination between MA and DE algorithms aimed to balance between

the exploration and exploitation. The algorithm proposed an adaptive DE mutation operator

and a neighbourhood selection heuristic that are combined with memetic algorithm evolution-

ary steps. The enhancements helped to avoid the instability of the obtained results by keeping

the diversity of the population as maximum as possible during the evolutionary process.

Table 10. Friedman tests based on the average of the intra-clusters distances.

Algorithm Ranking

AMADE 2.2

DSDE 2.2

BH 3.4

ICMPKHM 4.2

H-KHA 4.4

PSOAG 5.8

IKHCA 5.8

https://doi.org/10.1371/journal.pone.0216906.t010

Table 11. Comparison between AMADE and other population-based algorithms based on accuracy.

Data Set K-means PSOAG DSDE IKHCA AMADE

Iris 83.3 91.03 90.00 90.67 90.0

Wine 63.62 70.98 71.65 73.03 71.9

CMC 41.8 39.87 38.49 45.62 45.62

Glass 60.8 51.26 53.48 65.88 63.08

Cancer 93.37 96.31 96.486 95.16 96.486

https://doi.org/10.1371/journal.pone.0216906.t011

Table 12. Comparison between AMADE and other population-based algorithms based on the F-measure.

Data Set K-means KSC-LCA ICMPKHM AMADE

Iris 80.4572 89.8775 89.232 90.1

Wine 66.9781 73.0221 68.81 70.8

CMC 36.9273 42.8981 47.51 52.10

Glass 45.9440 49.6733 69.52 68.0

Cancer 95.6863 96.1730 96.4 96.4

Vowel 48.6859 51.9360 65.8 66.20

https://doi.org/10.1371/journal.pone.0216906.t012
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Experiments conducted on six real-life datasets with different level of complexity have demon-

strated that the AMADE showed consistent performance compared to the state of art algo-

rithms concerning the average of the intra-clusters distances, accuracy, and F-measure validity

measures. AMADE algorithm achieved the optimum result of the accuracy on CMC (45.62%)

and Cancer (96.486%) datasets, and also reached the optimum result of the F-measure on Iris

(90.1%), CMC (52.10%), Cancer (96.4%), and Vowel (66.20%) datasets. Moreover, future work

will focus on using other data clustering objective functions to solve a variety of categorical

and mixed data datasets. Additionally, future work will focus on how to associate validity mea-

sures with each other when combined in multi-objective approaches.
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