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Abstract 

Objective:  Many abiotic stresses cause the excessive accumulation of reactive oxygen species known as oxidative 
stress. While analyzing the effects of oxidative stress on tobacco, we noticed the increased accumulation of a specific 
protein in extracts from plants treated with the oxidative-stress inducing herbicide paraquat which promotes the 
generation of reactive oxygen species primarily in chloroplasts. The primary objectives of this study were to identify 
this protein and to determine if its accumulation is indeed a result of oxidative stress.

Results:  Here we show that the paraquat-induced protein is a covalently linked dimer of the large subunit of 
ribulose-1,5-bisphosphate carboxylase (LSU). Increased accumulation of this LSU dimer was also observed in tobacco 
plants exposed to ultra-small anatase titanium dioxide nanoparticles (nTiO2), which because of their surface reactivity 
cause oxidative stress by promoting the generation of superoxide anion. nTiO2 nanoparticle treatments also caused a 
decline in the chloroplast thylakoid proteins cytochrome f and chlorophyll a/b binding protein, thus confirming that 
covalent LSU dimer formation coincides with loss of chloroplast function.
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Introduction
Ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco) catalyzes the rate-limiting step of CO2 fixa-
tion in photosynthesis and is thus the key enzyme in 
the global carbon cycle [1]. It is a multi-subunit enzyme 
complex composed of eight small and eight large subu-
nits (LSU) with the latter assembling in the complex as 
LSU dimers that contain the active sites [2]. Rubisco, 
being a catalytically very inefficient enzyme, became an 
important target for improving photosynthetic efficiency, 
an effort that involved intense research aimed at under-
standing the regulation of Rubisco catalytic mechanisms, 

holoenzyme assembly mechanisms and pathways that 
lead to complex disassembly and degradation [3–6].

Degradation of Rubisco is an important catabolic pro-
cess. Because of its abundance, Rubisco is the most signif-
icant cellular storage of nitrogen and the remobilization 
of this nitrogen by proteolysis of Rubisco is a hallmark of 
senescence and stress responses [7]. The current view of 
Rubisco degradation indicates that the choice of proteo-
lytic pathway may largely be dictated by which endoge-
nous and environmental factors are triggering the stress 
response [8]. In addition to fragmentation, it was shown 
in the aquatic monocot Lemna gibba that small and large 
Rubisco subunit can form covalently linked dimers after 
exposure to ultraviolet radiation stress [9].

Here we describe the formation of covalently linked 
LSU dimers in burley tobacco exposed to oxidative 
stress. Oxidative stress was induced by the reactive oxy-
gen species (ROS)-generating herbicide paraquat (PQ) 
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and by titanium dioxide nanoparticles (nTiO2). PQ is a 
redox-active herbicide that accepts electrons from pho-
tosystem I and transfers them to oxygen thus loading 
the cell with superoxide radicals [10]. Superoxide radi-
cals are further metabolized into H2O2 and in turn, into 
hydroxyl radicals. All these ROS damage cellular compo-
nents and induce the oxidative stress response [11–13]. 
ROS-induced damage is also an important component of 
nanomaterial-induced toxicity. Due to the increased use 
of nanomaterials in all areas of technology and thus their 
presence in the biosphere, analyses of their mechanisms 
of nanotoxicity have been intensified and in recent years, 
they showed that one of the common mechanisms of tox-
icity is the generation of ROS and concomitant oxidative 
stress [14–16]. Exposure to nTiO2 for example leads to 
increased intracellular ROS in cells of all tested species 
and leads to cellular damage in function of the size, dose 
and surface reactivity of the nanoparticles used [17–20].

Main text
Materials and methods
Plant growth
Burley tobacco seeds (KT 204LC variety) were obtained 
from F.W. Rickard Seeds,  Inc. (Winchester, KY). Seeds 
were sterilized (5 min in 70% ethanol, followed by 20 min 
in 50% commercial bleach solution and 3 rinses in sterile 
water) and sown on Murashige and Skoog medium with 
3% sucrose (pH 5.7). Plants were grown in axenic cultures 
in a controlled environment chamber in continuous light 
(25 °C; 80 µmol m−2 s−1).

Treatments
Plants were analyzed when 2 months old. For all experi-
ments, the laminar part of mature leaves of three plants 
were pooled per sample and each treatment was done in 
triplicate. Paraquat (Sigma, methyl viologen) stock was 
prepared as a 100 mM aqueous solution. Anatase nTiO2 
(5–15 nm, 15 wt% nanopowder dispersion; US Research 
Nanomaterials) stock was prepared by diluting the com-
mercial suspension in methanol (1:9 v/v). Immediately 
before treatments, the stock was further diluted in dis-
tilled water to a final concentration of 2  mM and soni-
cated for 5 min.

Immunoblotting analyses
Protein extraction and immunoblotting analyses were 
performed as previously described [21]. The primary 
antibodies used were: anti-Rubisco LSU antibody (RbL 
form I and II, Agrisera, dilution 1:10,000), anti-Chloro-
phyll a/b binding protein (Cab) antibody (Lhcb1, Agris-
era, 1:10,000), anti-Cytochrome f (Cyt f ) antibody (PetA, 
Agrisera, 1:10,000), anti-Heat Shock Protein 90 (HSP90) 
antibody (at-115, Santa Cruz Biotechnology, 1:5000) and 

anti-Binding Immunoglobulin Protein (BiP) antibody (at-
95; Santa Cruz Biotechnology, 1:5000). The secondary 
antibody used was horseradish peroxidase-conjugated 
anti-rabbit IgG goat antibodies obtained from Santa 
Cruz Biotechnology. Immunoblots were developed using 
SuperSignal West Femto substrate (Thermo-Pierce) using 
a ChemiDoc™ XRS molecular imager (Bio-Rad).

Protein identification
SDS-PAGE gels for protein identification by mass spec-
trometry were prepared following the published guide-
lines [22]. After separation, proteins were stained with 
Coomassie Brilliant Blue R-250, destained and the band 
of interest was excised from the gel. After extensive 
washing with water, the sample was submitted for analy-
sis. Mass spectrometric analysis was performed at the 
Proteomics Core Facility of the University of Kentucky. 
The protein was digested with trypsin and peptides were 
extracted and analyzed by LC/MS/MS on an Orbitrap 
mass spectrometer. The resulting spectra were submitted 
for a database similarity analysis and the matches were 
ranked by score. The search program, MASCOT, was 
adjusted to analyze the “other green plants” database.

Results
Young leaves of 2-month-old sterile grown burley 
tobacco plants were incubated in water or 100 µM aque-
ous solution of PQ in light for 4  h. After that, one PQ-
treated sample was washed and incubated in water for 
another 4 h to test for recovery. Analyses of total protein 
extracts resolved on SDS/PAGE gels showed that PQ 
treatment leads to a marked induction of a ~125  kDa 
protein that can be observed after total protein extracts 
transferred to nitrocellulose membranes were stained 
by Ponceau S, which is a reversible protein dye with low 
sensitivity (Fig. 1a). To identify the PQ-induced protein, 
we ran preparative denaturing gels, excised the induced 
protein and identified it using mass spectrometry. These 
analyses revealed with high certainty (64% coverage) that 
the accumulated protein is Rubisco LSU. Using the MAS-
COT search program, the top hit was LSU from Nico-
tiana debneyi (Additional file  1). There were 469 other 
significant Rubisco matches (as a testimony to sequence 
conservation of this protein among plant species). On 
denaturing SDS-PAGE protein gels, LSU has an apparent 
molecular mass of 55 kDa (Fig. 1a). Because the oxidative 
stress-induced LSU protein was approximately twice the 
size of the LSU monomer, we concluded that this LSU 
version is a covalent dimer.

Next, we performed immunoblotting analyses to con-
firm that the induced protein is indeed LSU. We treated 
leaves of 1-month-old in  vitro grown tobacco plants 
with 100 µM PQ for 2 or 4 h (Fig. 1b). Immunoblotting 
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analyses of total protein extracts showed that increased 
treatment time led to an increase in LSU dimer level. 
In addition, immunoblotting analyses showed that both 
high molecular weight aggregates as well as degradation 
products of LSU are formed during persistent chloro-
plast-generated oxidative stress (Fig. 1b).

Next, we tested whether another oxidative stress 
inducer can also lead to the formation of a covalently 
linked LSU dimer and chose to test the effect of expo-
sure to nTiO2. For our experiments, we used a sublethal 
dose of ultra-small (aggressive and cell wall- and mem-
brane-permeable) anatase nTiO2 [20, 23]. We incubated 
excised leaves of 2-month-old in  vitro grown tobacco 
plants in water or an aqueous suspension of 2 mM nan-
oparticles for different times. Immunoblotting analy-
ses revealed that the denaturation-resistant LSU dimer 
is indeed formed and accumulates to a high level after 
prolonged (>12  h) treatments with nTiO2 (Fig.  2). Total 
protein extracts of nTiO2-treated tobacco were also 
analyzed using antibodies against the chloroplast thyla-
koid proteins chlorophyll a/b binding protein (Cab) and 
cytochrome f (Cyt f ). Both proteins were less abundant 
in extracts of the nanoparticle-treated leaves, suggest-
ing that nanoparticles impacted the overall function 
of tobacco chloroplasts (Fig.  2). In contrast, the levels 

of cytoskeletal proteins actin and EB1 and the levels of 
chaperoning proteins HSP90 and BiP did not change in 
response to the nanoparticle treatments (Fig. 2).

Discussion
Burley is a mutant tobacco variety with characteristic yel-
low–green leaves. Although the genetic nature of this leaf 
phenotype remains unknown, it has been recently shown 
that key genes related to chlorophyll biosynthesis and 
photosynthesis are significantly down-regulated in bur-
ley plants and that this causes a decrease in chlorophyll 
content and a reduction of photosynthesis efficiency 
when compared to other tobacco varieties [24]. In pre-
vious studies, we have analyzed total protein extracts of 
other tobacco varieties (e.g., Petit Havana SR1) and of the 
model plant Arabidopsis exposed to oxidative stress and 
we did not observe any accumulation of covalently linked 
LSU dimer in total extracts [25–32]. However, the pres-
ence of a stress-induced covalently linked LSU dimer was 
inadvertently shown in a study describing the effects of 
UV treatments on Rubisco stability in L. gibba [9]. This 
study describes the stress-induced formation of covalent 
dimers of the large and small Rubisco subunits in duck-
weed and a number of terrestrial monocots and dicots 
[9]. It is now well-established that ultraviolet irradia-
tion causes oxidative stress [33]. Thus, one can hypoth-
esize that the formation of covalently linked LSU dimer 
is an aspect of oxidative stress-induced damage in plant 
chloroplasts and that due to the nature of the genetic 
make-up of burley, this phenomenon can be more easily 
observed in this tobacco variety.
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Fig. 1  Formation of LSU dimer after paraquat (PQ) treatment. a 
Plants were incubated for 4 h in water (control, C) or 100 µM PQ (PQ 
and Rec). The recovery (Rec) sample was incubated in water for an 
additional 4 h. Protein extracts were resolved on a 7.5% separating 
acrylamide gels and transferred to nitrocellulose membrane. The 
Ponceau S staining of the membrane is shown. LSU, the large subunit 
of Rubisco. The size of the protein mass markers is shown on the left. 
b Plants were treated for 2 and 4 h with 100 µM PQ. Total protein 
extracts were resolved on a 7.5% separating acrylamide gels and 
transferred to nitrocellulose membranes. The membranes were 
probed with anti-LSU antibodies or anti-HSP70 antibodies (loading 
control)
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Fig. 2  Formation of LSU dimer after nanoparticle treatment. Plants 
treated for 2, 4 or 16 h with ultra-small anatase TiO2 nanoparticles 
(nTiO2) were used for the isolation of total protein extracts. Protein 
extracts were resolved on 4–20% gradient separating acrylamide gel 
and transferred to a nitrocellulose membrane. The membranes were 
probed with antibodies specific for the protein(s) indicated on the 
left-hand side of each immunoblot. Deg, degradation products
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Limitations
In addition to the question if oxidative stress-induced 
covalent LSU dimer linkage is universal to all plants, 
we have unanswered questions about the mechanism of 
the stress-induced covalent LSU dimer formation. We 
currently do not know if oxidative stress promotes the 
formation of the covalent bonds between LSU subunits 
between specific amino acid residues or for example, 
between a less defined number of oxidized amino acids.

Additional file

Additional file 1. Database similarity analysis. The PQ-induced protein 
(Fig. 1a) was trypsin-digested and the peptides were analyzed by LC/
MS/MS on an Orbitrap mass spectrometer. The resulting spectra were 
submitted for a database similarity analysis, and the matches were ranked 
by score.

Abbreviations
BiP: Binding Immunoglobulin Protein; Cab: chlorophyll a/b binding protein; 
Cyt f: cytochrome f; HSP90: Heat Shock Protein 90; LSU: large subunit of 
ribulose-1,5-bisphosphate carboxylase/oxygenase; nTiO2: titanium dioxide 
nanoparticles; PQ: paraquat; Rubisco: ribulose-1,5-bisphosphate carboxylase/
oxygenase.

Authors’ contributions
JK and JS have designed the study, interpreted the results and have written 
the manuscript. JK has performed all the experiments. Both authors read and 
approved the final manuscript.

Acknowledgements
The burley tobacco (KT 204) seeds were a gift from Anne Jack (KTRDC, 
Lexington KY, USA). We thank The Proteomics Core Facility at the University of 
Kentucky for the identification of the paraquat-induced protein.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All the data are contained within this manuscript. All research materials are 
commercially available.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was funded by the USDA National Institute of Food and Agriculture 
competitive grants program project 2015-67021-22997 and by the Kentucky 
Tobacco Research and Development Center (KTRDC). The funding bodies had 
no role in the design of the study and collection, analysis, and interpretation 
of data and in writing the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 15 November 2018   Accepted: 22 February 2019

References
	1.	 Erb TJ, Zarzycki J. A short history of RubisCO: the rise and fall (?) of nature’s 

predominant CO2 fixing enzyme. Curr Opin Biotechnol. 2018;49:100–7.
	2.	 Vitlin Gruber A, Feiz L. Rubisco assembly in the chloroplast. Front Mol 

Biosci. 2018;5:24.
	3.	 Hayer-Hartl M. From chaperonins to Rubisco assembly and metabolic 

repair. Protein Sci. 2017;26(12):2324–33.
	4.	 Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR. A faster 

Rubisco with potential to increase photosynthesis in crops. Nature. 
2014;513(7519):547–50.

	5.	 Wilson RH, Hayer-Hartl M. Complex chaperone dependence of Rubisco 
biogenesis. Biochemistry. 2018;57(23):3210–6.

	6.	 Bracher A, Whitney SM, Hartl FU, Hayer-Hartl M. Biogenesis and metabolic 
maintenance of Rubisco. Annu Rev Plant Biol. 2017;68:29–60.

	7.	 Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during 
senescence. J Exp Bot. 2002;53(370):927–37.

	8.	 Feller U, Anders I, Mae T. Rubiscolytics: fate of Rubisco after its enzymatic 
function in a cell is terminated. J Exp Bot. 2008;59(7):1615–24.

	9.	 Ferreira RM, Franco E, Teixeira AR. Covalent dimerization of ribulose bis-
phosphate carboxylase subunits by UV radiation. Biochem J. 1996;318(Pt 
1):227–34.

	10.	 Duke SO. Overview of herbicide mechanisms of action. Environ Health 
Perspect. 1990;87:263–71.

	11.	 Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and 
signal transduction. Annu Rev Plant Biol. 2004;55:373–99.

	12.	 Del Rio LA. ROS and RNS in plant physiology: an overview. J Exp Bot. 
2015;66(10):2827–37.

	13.	 Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular 
components in plants. Annu Rev Plant Biol. 2007;58:459–81.

	14.	 Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: gen-
eration of reactive oxygen species. J Food Drug Anal. 2014;22(1):64–75.

	15.	 Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources 
and toxicity. Biointerphases. 2007;2(4):MR17–71.

	16.	 Ma C, White JC, Zhao J, Zhao Q, Xing B. Uptake of engineered nanoparti-
cles by food crops: characterization, mechanisms, and implications. Annu 
Rev Food Sci Technol. 2018;9:129–53.

	17.	 Arora H, Doty C, Yuan Y, Boyle J, Petras K, Rabatic B, Paunesku T, Woloschak 
G. Titanium dioxide nanocomposites. In: Challa S, Kumar SR, editors. 
Nanomaterials for the life sciences, Vol 8: nanocomposites. Weinheim: 
WILEY-VCH Verlag GmbH & Co. KGaA; 2010. p. 1–42.

	18.	 Fenoglio I, Greco G, Livraghi S, Fubini B. Non-UV-induced radical reactions 
at the surface of TiO2 nanoparticles that may trigger toxic responses. 
Chemistry. 2009;15(18):4614–21.

	19.	 Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing 
L, Fashui H. Antioxidant stress is promoted by nano-anatase in spinach 
chloroplasts under UV-B radiation. Biol Trace Elem Res. 2008;121(1):69–79.

	20.	 Wang S, Kurepa J, Smalle JA. Ultra-small TiO2 nanoparticles disrupt 
microtubular networks in Arabidopsis thaliana. Plant Cell Environ. 
2011;34(5):811–20.

	21.	 Kurepa J, Smalle JA. Assaying transcription factor stability. Methods Mol 
Biol. 2011;754:219–34.

	22.	 Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE. 
Preparation of proteins and peptides for mass spectrometry analysis in a 
bottom-up proteomics workflow. Curr Protoc Mol Biol. 2009;10:10–25.

	23.	 Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, 
Woloschak GE, Smalle JA. Uptake and distribution of ultrasmall anatase 
TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 
2010;10(7):2296–302.

	24.	 Li Y, Yang H, Chang D, Lin S, Feng Y, Li J, Shi H. Biochemical, physiological 
and transcriptomic comparison between burley and flue-cured tobacco 
seedlings in relation to carbohydrates and nitrate content. Molecules. 
2017;22(12):2126.

	25.	 Kurepa J, Van Montagu M, Inze D. Expression of sodCp and sodB genes 
in Nicotiana tabacum: effects of light and copper excess. J Exp Bot. 
1997;48(317):2007–14.

	26.	 Kurepa J, Toh-e A, Smalle J. 26S proteasome regulatory particle mutants 
have increased oxidative stress tolerance. Plant J. 2008;53:102–14.

	27.	 Kurepa J, Smalle J, Van Montagu M, Inze D. Effects of sucrose supply on 
growth and paraquat tolerance of the late-flowering gi-3 mutant. Plant 
Growth Regul. 1998;26(2):91–6.

https://doi.org/10.1186/s13104-019-4153-z


Page 5 of 5Kurepa and Smalle ﻿BMC Res Notes          (2019) 12:112 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	28.	 Kurepa J, Smalle J, Van Montagu M, Inze D. Oxidative stress tolerance and 
longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to 
paraquat. Plant J. 1998;14(6):759–64.

	29.	 Kurepa J, Smalle J, Van Montagu M, Inze D. Polyamines and paraquat 
toxicity in Arabidopsis thaliana. Plant Cell Physiol. 1998;39(9):987–92.

	30.	 Kurepa J, Hérouart D, Van Montagu M, Inzé D. Differential expression of 
CuZn- and Fe-superoxide dismutase genes of tobacco during develop-
ment, oxidative stress, and hormonal treatments. Plant Cell Physiol. 
1997;38(4):463–70.

	31.	 Kurepa J, Bueno P, Kampfenkel K, Vanmontagu M, Vanden Bulcke M, Inze 
D. Effects of iron deficiency on iron superoxide dismutase expression in 
Nicotiana tabacum. Plant Physiol Biochem. 1997;35(6):467–74.

	32.	 Bueno P, Piqueras A, Kurepa J, Savoure A, Verbruggen N, Van Montagu 
M, Inze D. Expression of antioxidant enzymes in response to absci-
sic acid and high osmoticum in tobacco BY-2 cell cultures. Plant Sci. 
1998;138(1):27–34.

	33.	 Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV 
and light stress in plants. Front Plant Sci. 2014;5:474.


	Oxidative stress-induced formation of covalently linked ribulose-1,5-bisphosphate carboxylaseoxygenase large subunit dimer in tobacco plants
	Abstract 
	Objective: 
	Results: 

	Introduction
	Main text
	Materials and methods
	Plant growth
	Treatments
	Immunoblotting analyses
	Protein identification

	Results
	Discussion
	Limitations

	Authors’ contributions
	References




