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The skin and intestine are active organs of the immune system that are constantly

exposed to the outside environment. They support diverse microbiota, both commensal

and pathogenic, which encompass bacteria, viruses, fungi, and parasites. The skin and

intestine must maintain homeostasis with the diversity of commensal organisms present

on epithelial surfaces. Here we review the current literature pertaining to epithelial barrier

formation, microbial composition, and the complex regulatory mechanisms governing the

interaction between the innate immune system and microbiota in the skin and intestine.

We also compare and contrast the skin and intestine—two different organ systems

responsible creating a protective barrier against the external environment, each of which

has unique mechanisms for interaction with commensal populations and host repair.

Keywords: skin, intestine, microbiome, innate immunity, AMPs

INTRODUCTION

The skin and intestine both rely on multifaceted mechanisms to maintain homeostasis and protect
against invading microbes. Components essential for proper homeostasis between the external
environments and the skin or intestine include the physical barrier formed by epithelial cells, the
chemical barrier, the presence of beneficial commensal microbiota, and finally the tissue-resident
and infiltrating immune cells. The barrier surfaces of the skin and intestine are not only habitats
for commensal microbiota, but they also represent potential entry sites for pathogens, including
bacteria, viruses, fungi, and parasites. The direct interface between the epithelial tissue barrier and
microbiota poses a challenge for the barrier-lining epithelial cells and resident immune cells to
distinguish dangerous pathogens from commensals and respond accordingly. Therefore, complex
regulatory mechanisms have evolved to allow for delicate coordination between host tissues and
their resident microbes. In this review, we provide an overview of the epithelial anatomy of the skin
and intestine and interactions between host and microbiota at these surfaces. We focus on the role
of microbiota and the innate immune system at homeostasis, in protection against infections, and
in tissue repair of the skin and intestine.

STRUCTURE OF THE PROTECTIVE BARRIER

The large surface areas of the skin and intestine—at least 30 m2 of skin in adults and about
400 m2 of intestinal epithelium—provides an expansive interface for interaction with the outside
environment and increases the risk of invasion by pathogens (1–3). Given their extensive surface
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areas, the skin and intestine not only harbor millions of
commensal microbiota, but they also must rely on multiple
protective strategies to prevent entry of pathogens. As a result, the
skin and intestine have developed site-specific physical, chemical,
microbial, and immunologic barriers to maintain health and
eradicate pathogenic bacteria.

Physical Barrier
The physical barrier of the skin and intestine provides the first
line of defense against external perturbation at these sites. The
physical barrier of the skin is formed by numerous layers of
epidermal and dermal keratinocytes (Figure 1). The outermost
layer of the epidermis is the stratum corneum, composed of as
many as 100 layers of keratinized cell envelopes (corneocytes)
that form a protective barrier (5). Barrier lipids, derived from
lamellar bodies form an occlusive matrix between corneocytes
(6). Deeper epidermal layers, including the stratum granulosum
and stratum spinosum, are major producers of keratin filaments,
which form a structural support for the epidermis (5). Finally,
the basal layer of the epidermis contains stem cells that
proliferate in homeostatic conditions and in response to injury in
order to reconstitute the physical epidermal barrier. Epidermal
keratinocytes maintain tight physical contact through tight
junctions and adherens junctions, which form protective layer
that is nearly impermeable to microbes. In addition to providing
physical protection at the skin barrier, tight junction proteins,
such as zona occludins proteins, play roles in proliferation
and differentiation of keratinocytes in the skin, allowing re-
establishment of the barrier against microbes after breach of the
skin from wounding (7).

In contrast to the stratified squamous epithelium of the
skin, the intestinal barrier is composed of a single layer of
columnar epithelial cells (Figure 2) (11). However, this single
layer of intestinal epithelial cells (IECs) is made of diverse cell
types with absorptive, secretory, and immune function (2). This
includes not only the absorptive enterocytes, which encompass
the majority of IECs, but also secretory goblet cells, Paneth cells,
and enteroendocrine cells. All cells that make up the intestinal
barrier are constantly renewed by intestinal epithelial stem cells
located in the bases of mucosal crypts (Figure 2). As in the
skin, IECs are connected via tight junctions, which form a
strong physical barrier that impedes translocation of pathogenic
microbes or toxins.

Chemical Barrier
The chemical barrier of the skin is formed by numerous secreted
lipids and acids. As previously mentioned, the lipid layer secreted
by lamellar bodies, is important for maintaining an occlusive
matrix between cells and among layers of the stratum corneum
(12, 13). Site-specific lipid content also influences the microbial
composition of various cutaneous body sites (4, 14). In fact,
microbial composition is relatively homogenous among multiple
sebaceous sites but varies greatly between sebaceous and dry skin
sites (4). Pathogenic microbes are also directly inhibited by some
lipids or free fatty acids. For example, sapienic acid can efficiently
inhibit pathogenic Staphylococcus aureus (S. aureus), but does
not have sufficient activity against Staphylococcus epidermidis

(S. epidermidis) (15). Overall, the chemical barrier formed by
epidermal lipids and fatty acids is important for modulating
microbial survival at the skin surface.

In addition, the stratum corneum of the epidermis maintains
an acidic pH under homeostatic conditions. The term “acid
mantle” has been used to describe the acidic condition of the
stratum corneum (16). This acidic pH is important for skin
barrier function and microbial defense by providing hostile
environment for certain microorganisms (12). Furthermore,
there are a number of pH-dependent enzymes that are critical for
synthesis, production and maintenance of the lipid composition
in the skin. Lipids, such as triglycerides and cholesterol, are
hydrolyzed by skin-resident bacteria and yeasts into free fatty
acids. Free fatty acids maintain a low pH that inhibits growth
of pathogenic species such as Staphylococcus aureus (S. aureus),
while allowing persistence of commensal bacteria such as
coagulase negative Staphylococcus and Corynebacterium (1, 17).

The intestine relies on goblet cells to secrete a thick layer
of jelly-like mucus made of glycoproteins to separate luminal
bacteria from epithelial cells and create a distinct protected zone
(Figure 2) (18). Mucins create both a chemical and a physical
barrier between the intestinal lumen and EICs, and can even
directly modulate expression of tolerogenic and inflammatory
cytokines (19). In addition to providing physical protection,
mucin layer is also rich in secretory IgA and antimicrobial
proteins (AMPs) that provide a chemical immune defense against
potential invading microorganisms (20, 21). Mucin synthesis is
increased by short chain fatty acids (SCFAs), a fermentation
product of bacterial metabolism (22). Furthermore, mucin
production is decreased in germ-free mice, but production of
mucin can be rescued by activation of microbe-sensing receptors,
suggesting that commensal microbes enhance the intestinal
barrier (2, 23). The composition of the mucin layer differs
between the small and large intestine. The mucous layer of the
small intestine is physically penetrable by bacteria, and epithelial
cells are protected via secreted AMPs (24). In contrast, the large
intestine contains both penetrable outer mucus layer and an
impenetrable inner mucous layer (25).

DIVERSITY OF COMMENSAL MICROBIOTA

With the rise of new techniques such as 16S and whole genome
metagenomic shotgun sequencing, we have begun to understand
in greater detail the diversity and functions of microbiota that
colonize the skin and intestine (14, 26). The skin and intestine
support a tremendous diversity and number of microbiota. In
both the skin and intestine, commensal microbiota are important
for maintaining epithelial homeostasis and overall health of the
tissue (4, 27).

Site-Specific Differential Composition of
Microbiota
Although differing profoundly in taxonomic composition, the
skin and intestine are similar in that the microbial composition
varies among sites and niches. Recent sequencing studies have
extensively mapped the species inhabiting various skin or
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FIGURE 1 | Skin-microbial interactions promote innate immune function. The skin is an active immune organ whose function is augmented by the presence of

commensal microbiota. The epidermis is made up of numerous keratinocytes. The stratum corneum is sealed via intracellular lipids, and other epidermal keratinocytes

are connected via tight junctions. Dermal appendages include sweat glands, hair follicles, and sebaceous glands, all of which contribute to immune function.

Keratinocytes and dermal appendages release antimicrobial peptides and proteins (AMPs), which provide defense against pathogenic microbes. A number of bacteria

species are commensal colonizers of the skin surface. The top three bacterial species for each skin site are shown (4). Dry and sebaceous sites are colonized

predominantly by Cutibacterium acnes, whereas moist sites and the foot are colonized chiefly by Corynebacterium tuberculostearicum.

body sites with different compositions, including wet, dry,
and sebaceous sites (Figure 1) (14, 28). Distinct skin sites
contain unique distribution of bacteria, in part governed by the

lipid composition of a skin site (14). For example, sebaceous
gland-rich areas, such as the glabella and back, are colonized
most predominantly by Cutibacterium (formerly known as
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FIGURE 2 | Microbiota augment intestinal innate immunity. Intestinal epithelial cells, which make up the physical barrier of the intestine, secrete antimicrobial peptides

and proteins (AMPs). Goblet cells secrete mucus which forms an additional layer of protection against pathogens. Dendritic cells present antigen to B cells within

Peyer’s patches, stimulating them to secrete IgA. The intestine provides unique niches in which commensal bacteria thrive. Bacteroides and Firmicutes species

comprise the majority of luminal bacteria, whereas segmented filamentous bacteria and Helicobacter pylori can penetrate into the mucus layer of the intestine (8, 9).

Alcaligenes species are able to inhabit Peyer’s patches (10).
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Propionibacterium) species, which are closely associated with
the common condition acne vulgaris (14). Moist sites, such as
the axilla and interdigital web spaces, are largely colonized by
Corynebacteria and Staphylococci species (14).

In addition to bacteria, which are the most abundant
kingdoms of organisms found on the skin, numerous fungi
and viruses inhabit the skin (14). In contrast to bacteria, which
are found in nearly all bodies sites and whose composition is
governed by physiologic conditions, fungal distribution varies
based on distinct body sites rather than physiologic conditions
(29). The core body and arms have a relatively homogenous
fungal composition and are predominantly colonized by
Malassezia species, whereas the foot harbors a much greater
fungal diversity (29). Viral composition, predominantly
Polyomaviridae and Papillomaviridae, shows most diversity
between individuals, rather than depending on body site or
composition (28).

In contrast to the skin, which is inhabited by aerobic bacteria,
aerotolerant anaerobes, or facultative anaerobes, the intestine is
mostly colonized by anaerobes, such as bacteria of the phyla
Bacteroidetes and Firmicutes (Figure 2) (8, 14). Whereas, the
microbial composition of the skin is largely determined by
environmental factors such as the presence or absence of sebum,
the intestinal microbiota is dependent on location, niche, and
external factors, such as diet (14, 30). The large intestine harbors
a higher microbial diversity and density within individuals than
the small intestine (31, 32). However, evidence suggests that the
microbial composition of the small intestine is more dynamic
than that of the large intestine, with large temporal fluctuations in
ileal microbial constituents within a single day (33). Fewer studies
have examined the microbial composition of the small intestine,
compared to the large intestine. However, one study utilized
16s rRNA sequencing to examine the bacterial compositions
of the jejunum, ileum, cecum, and recto-sigmoid colon (32).
Facultative anaerobic bacteria were present in all four locations
along the gastrointestinal tract. Lactobacilli, streptococci, and
Enterococcus were detected at high frequencies in the jejunum
and ileum. In addition to facultative anaerobes, which were the
major operational taxonomic unit in both the small and large
intestine, the large intestine was also found to contain obligate
anaerobic bacteria (32).

Within the small or large intestine, the environmental
niches can be luminal, mucus-associated, epithelial-associated,
or lymphoid tissue-resident (30). Which phyla of bacteria
inhabit a specific intestinal niche depends significantly on the
characteristics of both the bacteria and the niche itself. Luminal
bacteria are largely of the Bacteroidetes and Firmicutes phyla,
and represent the largest percent of intestinal biomass (8).
Recent studies have illuminated that the outer mucus layer of
the large intestine forms a unique “mucus-associated” microbial
niche with distinct bacterial communities (9). Specifically,
bacteria of this niche are adapted to thrive in high levels
of bioavailable iron and carbon, an ability conferred by their
distinct genome-encoded metabolic and mucolytic activities. For
example, Helicobacter pylori secretes urease to increase the pH
of the mucin layer and disrupts the strong glycoprotein bonds,
which allows it to burrow into the stomach mucosa (34).

The epithelial-associated bacteria make up a smaller
proportion of intestine bacteria since fewer bacteria are
able to infiltrate through the mucous layer (30). Epithelial-
associated bacteria express distinct genes that allow them to
colonize epithelial cells. For example, expression of commensal
colonization factor (Ccf ) genes allows Bacillus fragilis to
metabolize carbohydrates present in the intestinal lumen and
therefore promotes their colonization of intestinal epithelium,
illustrating the importance of nutrient-specific factors in
determining microbial composition (35). Furthermore, although
B. fragilis is an anaerobic bacteria and thrives predominantly
in the intestinal lumen, it also grows well in nanomolar
oxygen concentrations, such as that found in intestinal
crypts (36). Epithelial-associated bacteria are also important
for proper function of the intestinal immune system. For
example, segmented filamentous bacteria adhere tightly to EICs
and induces a Th17 response, conferring protection against
pathogenic mucosal bacteria (30). Intestine-associated lymphoid
tissues, including Peyer’s patches and lymphoid follicles, are
colonized largely by Alcaligenes species (10). However, it
should be noted that, under homeostatic conditions, these
bacteria do not spread to the spleen or produce a systemic
IgG response. Colonization of intestine-associated lymphoid
tissues by these bacteria only results in the local production of
Alcaligenes-specific IgA antibodies, highlighting the tolerogenic
response to a lymphoid tissue-resident bacteria (10). Overall,
the special distribution of intestinal bacteria is dependent on
niche-specific factors, such as availability of nutrients or site
specific microbial-host interactions.

Temporal Changes in the Commensal
Microbiome
Commensal species, which can vary according to topography
and anatomic environments, also undergo temporal changes as
humans develop over time. It was previously thought that in
utero fetuses were in a germ-free environment. However, data
have shown that bacteria can be cultured from the umbilical cord
and meconium of healthy full term babies (37, 38). 16S rRNA
gene sequencing recently confirmed the presence of microbiota
in newborn meconium and amniotic fluid (39). Meconium
samples contained bacterial DNA, the majority of which mapped
to Pelomonas puraquae. Conversely, amniotic fluid bacterial
DNA mapped to skin commensal species such as Cutibacterium
acnes and Staphylococcus species (39). The neonatal skin is first
colonized by microbes present in the birth canal. Subsequently,
an infant’s microbiome is shaped by contact with the outside
environment. Studies have shown that the skin flora of a baby is
largely shaped by the mother’s microbiome at birth and that there
are notable differences in both skin and intestinal microbiota
between infants born naturally or by C-section (40). The infant
can also be exposed to viruses, such as herpes simplex virus type
2, present in the mother’s vaginal tract (41). Over the course of
the first year of life, the infant’s skin microbiome is established
and begins to resemble that of adults (42).

The intestine similarly has a temporal shift in its microbial
flora as the baby transitions from an exclusively milk diet to
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solid foods (42). An initial diet of breast milk results in high
levels of facultative and obligate anaerobes, such as Escherichia
coli, Streptococcus, and Bifidobacterium species (43). Breast
milk provides a source of human milk oligosaccharides and
milk glycoconjugates, which are consumed by Bifidobacterium
species (44). Bacteroides and Clostridia species predominate as
babies are weaned and ingest more complex carbohydrates (43).
Clostridia species are particularly specialized in degrading plant
polysaccharides and are therefore able to thrive in the intestine
once complex carbohydrates are introduced into the infant
diet (45).

Beyond the early years of life, both skin and intestinal
microbiome becomemore stable, andwithin-individual variation
in microbial communities over time is much less than between-
individual variations (28, 46, 47). Despite the relative stability
of the skin microbiome, it is less stable over time than the
intestinal microbiome (48). Furthermore, the level of microbial
stability over time is significantly different among individuals;
some individuals have a very stable skin microbiome, whereas
others do not. Skin sites that have extensive environmental
contact, such as the palm, display the least stability in microbial
composition. Interestingly, individuals with a more diverse
intestinal microbiome (in terms of number of bacteria species)
also have a more stable microbiome over time, whereas
individuals with a more diverse skin microbiome have a less
stable microbiome over time (48). Microbial diversity decreases
in the elderly, coinciding with a decline in immunocompetence
in older populations (49). The complex shifts in establishing a
commensal population depending on skin and intestinal sites,
physiologic conditions, and temporality highlight the importance
of finely-tuned interactions between host and microbiota.

Environmental Influences on Microbiome
Composition
In both the skin and intestine, microbial diversity is influenced by
a plethora of exogenous factors, including diet, antibiotic use, and
obesity (50–52). In the skin, treatment with topical or systemic
antibiotics has been linked to shifts in the cutaneous microbiome.
For example, use of topical antibiotics, such a bacitracin,
neomycin, and polymyxin B (found in the commonly-used triple
antibiotic ointment) lead to decreased commensal Staphylococcus
strain in mice (53). Oral isotretinoin or tetracycline treatment
leads to decreased abundance of Cutibacterium on the skin
and the microbiome of sebaceous areas shifts to mimic that of
dry sites, containing a greater proportion of Staphylococcus and
Streptococcus species (54).

Diet is a strong driver of microbial composition in the
intestine. An animal-based diet increases the abundance of
bacteria that are bile-tolerant, such as Alistipes, Bilophila, and
Bacteroides (50). In contrast, a vegan or vegetarian diet is
associated with an increased prevalence of lactic acid bacteria,
including Ruminococcus, Eubacterium rectale, and Roseburia
(55). Prevotella species predominate in humans whose diets are
high in carbohydrates and simple sugars (56). High fiber diets
lead to a higher abundance of bacteria that ferment fiber into
SCFAs, which have a broad range of beneficial effects, including

immunomodulatory properties (57). Diet can even influence
the circadian dynamics of intestinal microbiota: diet-induced
obesity causes a dampening of diurnal variations in microbial
composition (58).

MAINTAINING HOST-COMMENSAL
HOMEOSTASIS VIA INNATE IMMUNITY

The skin and intestine have developed symbiotic relationships
with commensal microbes and established a homeostasis
that balances tolerating commensal microbes while defending
against pathogens.

Commensal Microbiota Help Maintain
Homeostasis in the Skin and Intestine
In the skin, the presence of commensal bacteria is crucial
for maintenance of a healthy cutaneous environment. In
development, skin immune tolerance begins developing in the
post-natal period when T reg cells begin expressing the pathogen-
specific FOXP3 transcription factor, coinciding with commensal
colonization (59). Later in development, the continued presence
of skin commensal bacteria modulates production of numerous
cytokines and AMPs that help to protect the skin against
pathogens. For example, commensal bacteria such as S.
epidermidis can induce production of various cytokines by IL-
17+CD8+ T cells (60). S. epidermidis can also produce ligands
that suppress inappropriate immune activation by inhibiting
production of tumor necrosis factor-α and IL-6 (61). Recent work
demonstrated that germ-free mice have decreased expression of
Toll-like receptors (TLRs), AMPs, complement cascades, and
IL-1 cytokine signaling in the skin, when compared to specific
pathogen free mice (62).

It is also well-established that bacterial colonization is essential
for maturation of the intestinal innate immune system and, as
in the skin, commensal microbiota work in tandem with the
immune system to protect the host against pathogens (63, 64).
For example, Bacteroides fragilis (B. fragilis) and commensal
Clostridium cluster such as IV and XIVa can accumulate
Foxp3+ Treg cells in mice and help build immune tolerance to
the commensal microbiome (65, 66). In addition, the lamina
propria harbors macrophages, whose function is phagocytosis of
pathogens. However, lamina propria-associated macrophages do
not express as strong proinflammatory phagocytic responses as
macrophages at other sites (67). This suggests adaptation of the
host in response to a large population of commensal microbiota,
which minimizes unnecessary inflammation (34).

Innate Immune Responses Upon Barrier
Injury Are Modulated by Commensal
Microbiota
The physical and chemical barriers discussed above are crucial
in preventing tissue penetration of the microbes by decreasing
direct contact between them. However, pathogenic microbes may
gain access to the tissue when there is a breach of these barriers.
Disruption of the skin barrier may occur through physical cut or
toxic chemical exposure. Barrier disruption is also associated with
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chronic intestinal diseases such as inflammatory bowel disease,
obesity, and diabetes, all of which can increase the intestinal
permeability (68). In the following section, we discuss innate
immune mechanisms upon barrier breach and how they are
modulated by commensal bacteria.

Prompt recognition and eradication of pathogens are
necessary to prevent infection. The innate immune system
provides a first line of defense against pathogens upon barrier
breach. Recent evidence has illuminated the role of commensal
microbes in strengthening innate immune defense against
pathogens (69). Pattern recognition receptors (PRRs) interact
with microbe- or pathogen-associated molecular patterns
(MAMPs or PAMPs) such as lipopolysaccharide (LPS) and
peptidoglycan (PG) on bacteria and nucleic acids from bacteria
(70). Upon activation of PRRs, downstream signaling leads to
release of inflammatory cytokines or activation of immune cells.
In the skin, PRRs are present on immune cells and keratinocytes.
TLR stimulation can mediate direct antimicrobial action through
the stimulation of macrophages to undergo phagocytosis and
can also induce cytokines that mediate the differentiation
of monocytes into macrophages and dendritic cells (70, 71).
Commensal microbes secrete molecules which may act directly
as TLR ligands; S. epidermidis secretes multiple small molecules
that act as TLR2 and EGFR agonists, stimulating production of
AMPs that have activity against group A Streptococcus and S.
aureus (72–74).

AMPs play a critical role in innate immunity by acting under
homeostatic conditions and destroying pathogenic microbes
through various mechanisms (75). Keratinocytes, the major cell
type in the skin, produce various AMPs (Figure 1) (49, 76).
Human β-defensin-1 (hBD-1) is constitutively expressed by
keratinocytes whereas hBD-2 and−3 are upregulated in response
to inflammation (77–79). Human cathelicidin (hCAP-18) is
cleaved and processed to the active form of antimicrobial peptide,
LL-37 which then disrupts microbial membranes (80). Some
specialized keratinocytes that make up appendages such as hair
follicles, sweat glands, and sebaceous glands have various AMPs
pertinent to their microenvironments (Figure 1). For example,
dermcidin is traditionally thought to be a sweat-gland specific
AMP, yet there are emerging evidences that it is also produced
by sebaceous gland in humans and mice (81, 82). Sebaceous
glands also produce cathelicidin and hBD-2 (83, 84). Commensal
bacteria have been shown to secrete AMPs. S. epidermidis secretes
phenol-soluble modulin γ and δ that have antibiotic effects
on S. aureus (85). Commensal bacteria can also act on lipids
secreted from sebaceous glands and hydrolyze them to free fatty
acids (FFAs) (86). FFAs have intrinsic antibacterial effects against
various Gram-positive bacteria; sapienic acid has activity against
methicillin-resistant S. aureus (MRSA) (87). Furthermore, FFAs
can induce sebocytes to upregulate expression of hBD-2 (88).

Just as external environmental effects are known to modulate
skin microbial composition, environmental factors also regulate
microbial recognition and AMP production in the skin. Ligand-
dependent activation of the vitamin D receptor (VDR) is
required for recruitment of macrophages to the injury site after
wounding (89, 90). Genes coding for TLR2 are induced by the
presence of 1,25-dihydroxy vitamin D3, which is regulated in

part by exposure to UV light (83). Furthermore, vitamin D3-
induced expression of TLR2 leads to cathelicidin production
upon exposure to microbial components. Conversely, TLR2
activation can lead to increased expression of the VDR, which
can be activated by vitamin D3 to produce cathelicidin (91).
Vitamin D3-eluting wound nanodressings have even been shown
to increased cathelicidin expression in human skin wounded
explants (92).

Similarly to epidermal keratinocytes, IECs express PRRs,
such as TLRS, NOD-like receptors (NLRs), and RIG-I-like
receptors (RLRs) (93). PRR signaling is important both in
homeostasis and in response to pathogenic bacteria, highlighting
the diverse functions of innate immunity at steady-state
and under disease conditions (94–96). PRRs also respond
differently under homeostatic vs. inflammatory conditions, in
part because of the presence of damage-associated molecular
patterns (DAMPs), which are released by injured epithelial
cells (97). Interestingly, steady-state activation of TLRs by
commensal intestinal microbiota is also important for proper
intestinal homeostasis. For example, mice deficient in TLRs,
downstream signaling components of the TLR pathway, or
normal commensal microbiota all displayed greater morbidity
and mortality following intestinal epithelial disruption (95).
Furthermore, TLR activation by commensal bacteria can enhance
the protective function of tight junctions against pathogens by
strengthening the zonula occludens-1 protein (94). The activated
macrophages also signal repair pathway that promotes rapid
enterocyte proliferation to repair the tissue defect by producing
growth factors (34, 43). This highlights the importance of
synergistic activity of commensal microbiota and host innate
immunity in maintenance of a healthy epithelium.

In addition to producing barrier-protective mucins, EICs
are also a rich source of AMPs (Figure 2) (2). Enterocytes
produce AMPs including regenerating islet-derived protein
IIIγ (REGIIIγ ) and numerous β-defensins, which play diverse
antimicrobial roles, including spatial segregation of bacteria
(98, 99). Beyond their roles in barrier formation and production
of AMPs, enterocytes also facilitate the translocation of
secretory immunoglobulins, particularly IgA, across the
intestinal wall (100). Paneth cells, present in intestinal crypts,
produce additional AMPs, including α-defensins, lysozyme, and
phospholipase A2 (98, 101, 102).

Intestinal commensals are able to induce AMP production
in the intestine. Lactobacillus and probiotic E. coli strains
are able to induce secretion of hBD-2 from enterocytes (103,
104). Commensal microbiota in the intestine are also capable
of producing molecules that protect the host from chronic
inflammatory diseases. For example, polysaccharide A, produced
by B. fragilis, prevents inflammatory bowel disease (IBD) via
an IL-10-producing CD4+ T cell-dependent mechanism (105).
SCFAs produced by commensals of the genuses Bifidobacterium
and Bacteroides interact with the G-protein-coupled receptor
43 (GPCR43) (106). Mice deficient in GPCR43 have impaired
resolution of inflammation in models of IBD, arthritis and
asthma. Similarly to vitamin D3-dependent regulation of AMPs
in the skin, butyrate regulates AMP production in the intestine.
Butyrate is a SCFA that is produced by fermentation of
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carbohydrates in the lumen by intestinal bacteria (107). Butyrate
strongly induces cathelicidin production in colonic epithelial
cells, and moderately induces h-BD1 and h-BD2 (108). Factors
produced by commensal bacteria in the intestine may also
prevent injury to IECs or facilitate intestinal repair. Numerous
commensal bacteria produce compounds that prevent damage
by noxious stimuli. Competence and sporulation factor (CSF)
produced by Bacillus subtilis activates the mitogen-activated
protein kinase (MAPK) pathway to protect epithelial cells
from oxidative stress (109). Similarly, Lactobacillus rhamnosus
produces two compounds, p75 and p40, which prevent
cytokine-induced apoptosis of IECs through epidermal growth
factor receptor (EGFR) signaling, which activates anti-apoptotic
Akt/protein kinase B (110–112). Tight junction assembly is
promoted by Bifidobacterium and butyrate from various bacteria,
underscoring the ability of commensal bacteria to promote
intestinal barrier function (113–115).

CONCLUSION

The skin and intestine are both active immune organs that
are under constant environmental exposure. Therefore, complex
regulatory mechanisms have evolved to maintain homeostasis.
In addition to acting as physical barriers, epithelial cells of the
skin and intestine produce AMPs, which act as endogenous
antibiotics to protect against potential pathogens. Immune cells
also constantly surveil both of these surfaces. More recently,
it has been appreciated commensal microbiota may induce
beneficial, tolerogenic immune responses under homeostasis or
prime the immune system to fight against pathogens upon
barrier breach. Some commensal bacteria may even produce
AMPs on their own. An improved understanding of beneficial

microbial-immune interactions has paved the way for new
research involving exogenous supplementation of skin and
intestinal microbial populations. For example, topical application
of Gram-negative bacterial species obtained from healthy human
volunteers improved atopic dermatitis in a mouse model (116).
Manipulation of intestinal microbiota may be a promising
therapeutic option for the treatment of numerous disease,
including obesity, IBD, colorectal cancer, and liver disease (117).
Although further studies will be needed to validate the safety and
efficacy of a microbial-based therapeutic approach, it is clear that
a healthy skin and intestinal microbiome is crucial for healthy
epithelial homeostasis and immunity.
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