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Seipin locates in endoplasmic reticulum (ER) and regulates adipogenesis and lipid

droplet formation. Deletion of Seipin has been well-demonstrated to cause severe

general lipodystrophy, however, its role in maintaining perivascular adipose tissue (PVAT)

and vascular homeostasis has not been directly assessed. In the present study, we

investigated the role of Seipin in mediating the anticontractile effect of PVAT and vascular

function. Seipin expression in PVAT and associated vessels were detected by qPCR and

western-blot. Seipin is highly expressed in PVAT, but hardly in vessels. Structural and

functional alterations of PVAT and associated vessels were compared between Seipin−/−

mice and WT mice. In Seipin−/− mice, aortic and mesenteric PVAT were significantly

reduced in mass and adipose-derived relaxing factors (ADRFs) secretion, but increased

in macrophage infiltration and ER stress, as compared with those in WT mice. Aortic

and mesenteric artery rings from WT and Seipin−/− mice were mounted on a wire

myograph. Vasoconstriction and vasodilation were studied in vessels with and without

PVAT. WT PVAT augmented relaxation but not Seipin−/− PVAT, which suggest impaired

anticontractile function in PVAT of Seipin−/− mice. Thoracic aorta and mesenteric artery

from Seipin−/− mice had impaired contractility in response to phenylephrine (PHE) and

relaxation to acetylcholine (Ach). In conclusion, Seipin deficiency caused abnormalities in

PVAT morphology and vascular functions. Our data demonstrated for the first time that

Seipin plays a critical role in maintaining PVAT function and vascular homeostasis.
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INTRODUCTION

Seipin, an endoplasmic reticulum (ER) membrane protein regulating adipogenesis and lipid
droplet formation, is the culprit gene for human Berardinelli-Seip congenital lipodystrophy
type 2 (BSCL2) (1, 2). BSCL2 is an autosomal recessive disorder, which is characterized by
the severe loss of adipose tissue, hypertriglyceridemia, fatty liver and insulin resistance (3).
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Recent studies have demonstrated that Seipin regulates adipocyte
lipolysis in addition to differentiation (2, 4). Besides, Seipin
functions in the metabolism of phospholipids and therefore
determines the size and distribution of lipid droplets (5–
7). Most researches focused on metabolic disorders of Seipin
deficiency. And, a small number of studies was found
to focus on cardiovascular diseases such as atherogenesis,
myocardial hypertrophy, heart remodeling and hypertension
(8–10). However, whether Seipin regulates vascular activity
remains obscure.

PVAT is tightly adherent to almost all blood vessels, including
the aorta and arteries such as carotid, coronary, and mesenteric
arteries, and it has long been considered as providing mechanical
support for vessels. Recent studies have suggested that crosstalk
between PVAT and blood vessels is vital for vascular homeostasis
(11, 12). Now, it is increasingly accepted that PVAT also
secrets a large number of biologically active molecules (13–15).
PVAT can release not only adipocyte-derived relaxing factors
(ADRFs) (e.g., leptin and adiponectin) but also adipocyte-derived
contracting factors (ADCFs) (e.g., Ang ll and superoxide anions)
and inflammatory factors (e.g., MCP-1 and IL-6). The function
and structure of vascular wall, including chronic inflammation
and vascular reactivity regulation, might be influenced by
these molecules. Accumulating data indicates that PVAT has
anticontractile effect on arteries and regulates vascular reactivity.
ADRFs is likely not a singular entity. ADRFs such as NO, Ang
(1–7), hydrogen sulfide, leptin and adiponectin may mediate the
PVAT vasorelaxant effect in part (16–18). However, in several
pathophysiological conditions, PVAT function may be altered.
It has also been demonstrated that the anticontractile effect is
reduced under the obese condition (19, 20). In obese condition,
PVAT depot greatly expands accompanied with macrophages
accumulation, which contributes to an inflammatory phenotype
switch and may be implicated in vascular dysfunction (21,
22). Lipodystrophy, the opposite of obesity, is accompanied
with many metabolic disorders in human patients, such as
severe hypertriglyceridemia, hepatic steatosis, insulin resistance
and atherosclerosis (23–25). However, little is known about
the PVAT function and vascular activity regulation in state
of lipodystrophy.

In the current study, we demonstrated impaired PVAT and
vascular function in lipodystrophic Seipin−/− mice. Our data
supports the idea that Seipin is required for maintaining normal
PVAT morphology and vascular homeostasis, and provides
a direct evidence of the tight correlation between PVAT
dysfunction and vascular activity.

MATERIALS AND METHODS

Animals
Lipodystrophic Seipin−/− mice on C57 background were
generated as described previously (26) and WT littermates were
used as controls. All mice were maintained on a 12-h light/12-
h dark cycle with free access to water and food. Only males
were included in the experiments. All experiments involving
mice were accorded with the Institutional Animal Care Research
Advisory Committee of the National Institute of Biological

Science (NIBS) and approved by the Animal Care Committee of
Zhengzhou University. Mice at 6 months old were anesthetized
with pentobarbital sodium (40 mg/kg, i.p) and arterial blood
pressure were measured by tail-cuff method.

Blood Analysis
Blood was obtained by retro-orbital bleed. Plasma total
cholesterol (TC), triglyceride (TG), glucose were detected
using enzymatic methods (Sigma-Aldrich kits). Plasma insulin,
leptin and adiponectin, tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6) were measured by ELISA (GPO-Trinder
kit, Sigma-Aldrich). Free fatty acids (FFA) were measured by a
colorimetric assay (Wako Chemical, Osaka, Japan).

Glucose and Insulin Tolerance Tests
Mice were fasted for 16 or 4 h, respectively, followed by
intraperitoneal injection of glucose (2 g/kg body weight; Abbott)
or insulin (0.75 mIU/g body weight; Humulin). Blood samples
were collected before (time 0) and at 15, 30, 60, 90, and 120min
after injection for glucose measurement (6).

Histological Analysis
Mice were sacrificed at 6 months old. PVAT surrounding
thoracic aorta and mesenteric arteries were removed and
weighed, respectively. PVAT and aorta were then fixed in 10%
buffered formalin and embedded in paraffin. Sections (2 um)
were stained with hematoxylin and eosin, and also stained
with Gomrori’s aldehyde-fuchsin staining and Sirius red for
microscopic observation of elastic fiber and collagen fiber
changes. Macrophage infiltration in PVAT were visualized by
immunochemical staining with macrophage antigen-2 (Mac-2)
antibody (Santa Cruz Biotechnology, Dallas, TX).

Electron Microscopy
For electron microscopy, blood vessels were fixed in 2.5%
glutaraldehyde, and post fixed in 1% osmium tetroxide. Tissue
slices were dehydrated with the different concentration ethanol
and acetone, and embedded in Epon 812 resin. Ultrathin sections
were stained with uranyl acetate and lead citrate and visualized
witha JEOL 1230 transmission electron microscope (JEOL,
Tokyo, Japan).

Gene Expression Analysis
Total RNA of PVAT and aorta from 6-months-old Seipin−/−

and WT mice was extracted using Trizol reagent (Invitrogen,
Carlsbad, CA). First-strand cDNA was generated by using a
RT Kit (Invitrogen). Quantitative RT-PCR was performed using
the Mx3000 Multiplex Quantitative PCR System (Stratagene).
mRNA quantity was determined applying PCR protocols based
on Eva Green detection and using primer sets shown in Table 1.
All samples were quantitated by the comparative CT method
normalizing with GAPDH from the same sample of RNA.

Western Blot Analysis
PVAT and aortas tissues were homogenized in RIPA buffer, and
the protein content was determined using a bicinchoninic acid
protein assay kit (Pierce, Rockford, IL) as previously described
(8). Immunoblotting was performed using the antibodies against
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TABLE 1 | Primer list for quantitative real-time PCR.

Gene name Forward primer (5′-3′) Reverse primer (5′-3′)

Seipin TCAATGACCCACCAGTC AAGGAGCCATAGAGGACC

F4/80 TTTCCTCGCCTGCTTCTTC CCCCGTCTGTATTCAACC

Mac2 CCTATGACCTGCCCTTGC CCCAGTTGGCTGATTTCC

TNFα CTGTGAAGGGAATGAATGTT CAGGGAAGAATCTGGAAAGGTC

MCP1 TCCCAATGAGTAGGCTGGA AAGTGCTTGAGGTGGTTGT

IL-1β AGGCTCCGAGATGAACAA AAGGCATTAGAAACAGTCC

Mgl1 TGAGAAAGGCTTTAAG

AACTGGG

GACCACCTGTAGTGATGTGGG

Mgl2 GGATGGGACCGACTTTGA GTGGGCTGAGCTGGCTTT

TGF-β1 GGCGGTGCTCGCTTTGTA TCCCGAATGTCTGACGTAT

Arg1 AAGACAGCAGAGGAGGTG AGTCAGTCCCTGGCTTAT

Ym1 GTAATGAGTGGGTTGGTT AGTAGATGTCAGAGGGAAA

Col1a1 CGCCATCAAGGTCTACTGC GAATCCATCGGTCATGCTCT

Col6a1 CACTCAACGGGACACGAC AGATACCTGGCCGACCTT

Col3a1 GGCAGTGATGGGCAACCT TCCCTTCGCACCGTTCTT

Elastin GCAGCCCCTAACCAGAAACT CCCACAAAGAAGAAGCAC

CHOP TCCCTGCCTTTCACCTTG CGTTCTCCTGCTCCTTCTC

GRP78 ACTTGGGGACCACCTATTCCT ATCGCCAATCAGACGCTCC

GRP94 TCGTCAGAGCTGATG

ATGAAGT

GCGTTTAACCCATCCAACTGAAT

mXBP1 AGCAGCAAGTGGTGGATTTG GAGTTTTCTCCCGTAAAAGCTGA

ICAM1 GTGATGCTCAGGTATCCATCCA CACAGTTCTCAAAGCACAGCG

VCAM1 AGTTGGGGATTCGGTTGTTCT CCCCTCATTCCTTACCACCC

IL-6 TAGTCCTTCCTACCCC

AATTTCC

TTGGTCCTTAGCCACTCCTTC

Seipin (Abnova, Taipei, Taiwan), Mac2 (Santa Cruz, CA, USA),
BIP/GRP78, PDI, PERK, phospho-PERK (Thr980), eIF2a and
phospho-eIF2a (Ser51) (Cell Signaling, Danver, MA, USA), and
GAPDH (Millipore, Billerica, MA). The examined proteins were
detected using an Odyssey V3.0 image scanning (Li-COR, Inc.,
Lincoln, NE, USA). The protein bands were analyzed using
densitometry, and arbitrary densitometry units were quantified
are expressed as mean± SEM.

Vasoactivity Analysis
Experiments were performed as described before (27). Mice
at 6 months old were killed by cervical dislocation. The
thoracic aorta and second-order branches of mesenteric arteries
were isolated, placed in cold (4◦C) Krebs-Ring bicarbonate
solution (in mmol/L: NaCl 118.6; KCl 4.7; CaCl2 2.5; MgSO4

1.2; KH2PO4 1.2; NaHCO3 25.1; EATANA2Ca 0.026; glucose
10.1). Arterial rings (2mm long) with or without PVAT
were dissected, and care was taken not to damage the
endothelium during preparation. Arterial rings were mounted
in a myograph system and contracted with KCL. The rings
were exposed to phenylephrine (PE, 10−9-10−5 mol/L, Sigma-
Aldrich), Constriction response to phenylephrine was assessed
in WT and Seipin−/− mice with PVAT or without PVAT, and
the results were expressed as contraction percentage of maximum
contraction to KCL. Relaxation responses to acetylcholine (Ach,
10−9-10−5 mol/L, Sigma-Aldrich) and sodium nitroprusside

(SNP, 10−9-10−5 mol/L, Sigma-Aldrich) were performed after
the aortic rings were pre-contracted with phenylephrine, and the
results were expressed as percentage of the maximum response
to acetylcholine and sodium nitroprusside. Aortas with PVAT
acted as donor vessels and pre-contracted by phenylephrine.
And aortas without PVAT acted as receptor vessels and
also treated with equal concentration of phenylephrine. Five
milliliter volume of culture medium of different donors were
changed into receptor aorta, and the constriction response
was recorded.

Statistics
All data are presented as means ± SEM. Vascular function
experiments were analyzed with ANOVA for repeated
measurements followed by a Bonferroni post-hoc test.
Comparisons between groups for remaining experiments
were analyzed by Student’s t-test. A value of P < 0.05 was
considered statistically significant. All data were analyzed with
Graphpad Prism 6.0.

RESULTS

Insulin Resistance in Seipin–/– Mice
Total cholesterol (TC), glucose and insulin levels were
significantly elevated as compared with WT mice in the fed
state (Figures 1A,D). Plasma leptin and adiponectin levels were
markedly decreased in Seipin−/− mice (Figure 1D). Plasma levels
of triglycerides (TG), free fatty acid (FFA), tumor necrosis factor-
α (TNF-α) and interleukin-6 (IL-6) were not significantly altered
(Figures 1A–C). We evaluated glucose homeostasis and insulin
sensitivity in Seipin−/− mice and control mice at 6 months of age.
Seipin−/− mice showed impaired glucose tolerance test (GTT,
Figure 1E). Insulin tolerance test (ITT) was performed and the
result indicatedthat Seipin−/− mice showed impaired insulin
sensitivity compared with control mice (Figure 1F). They had
significantly elevated fed plasma insulin levels, also demonstrated
insulin resistance.

Reduced PVAT Mass in Seipin–/– Mice
As revealed by real-time PCR and immunoblotting, Seipin is
highly expressed in adipose tissue, including white adipose
(WAT), brown adipose tissue (BAT), mesenteric PVAT (Mes
PVAT) and aortic PVAT (Ao PVAT), but in negligible amounts
in aorta (Figure 2A). Consistent with our previous findings in
animals, there was no significant difference in body weight in
6-month-old Seipin−/− mice and control WT mice (Figure 2B),
and fat depots were dramatically reduced in the Seipin−/− mice
(Figure 2C). Compared with abundant PVAT surrounding aorta
in WT mice, the PVAT weight of Seipin−/− mice aortas was
decreased to a significantly lower level, and there was rarely PVAT
around mesenteric arteries (Figure 2C).

Increased Inflammation, ER Stress and
Fibrosis in PVAT of Seipin–/– Mice
In haematoxylin and eosin stained sections, significant
differences were observed in PVAT between WT and Seipin−/−

mice. In WT mice, thoracic PVAT had the appearance of
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FIGURE 1 | Insulin resistance in WT and Seipin deleted mice. (A) Plasma triglyceride (TG), total cholesterol (TC), glucose content in mice fasted for 4 h. (B) Free fatty

acid (FFA) in mice fasted for 4 h. (C) Plasma levels of IL-6, TNF-α in mice fasted for 4 h. (D) Plasma insulin, leptin, adiponectin content in mice fasted for 4 h. (E)

Glucose tolerance tests and insulin tolerance tests (F) performed on 6-month-old Seipin−/− and WT mice. Data are expressed as mean ± SEM. N = 6. *P < 0.05, **P

< 0.01 for Seipin−/− mice vs. WT.

FIGURE 2 | Reduced PVAT mass in Seipin deleted mice. (A) Detection of Seipin mRNA and protein expression in various tissues of WT mice. N = 6. (B) Body weight

and (C) Mass of fat pad and PVAT in 6-month-old Seipin−/− and WT mice. Brown adipose tissue (BAT), White adipose tissue (WAT), aortic perivascular adipose tissue

(Ao PVAT), mesenteric PVAT (Mes PVAT). Data are expressed as mean ± SEM. N = 6. *P < 0.05, **P < 0.01 for Seipin−/− mice vs. WT.

BAT feature with small and multilocular lipid droplets, and
mesenteric PVAT showed features of WAT with large single
lipid droplets, whereas abdominal PVAT showed features
of both WAT and BAT. Thoracic PVAT of Seipin−/− mice
were comprised of large, unilocular vacuoles similar to white
adipocytes (Figure 3A). Interestingly, both thoracic and
abdominal PVAT from Seipin−/− mice were infiltrated with
massive mononuclear cells, and displayed increased eosinophilic
material (Figure 3A). As demonstrated by electron microscopy,
we find that thoracic and abdominal PVAT of WT mice contains
multilocular lipid droplets and mitochondria swollen with

low dense matrices, whereas thoracic and abdominal PVAT
of Seipin−/− mice were composed of large lipid droplets
and mitochondria that were spherical, large and packed with
laminar cristae (Figure 3B bottom right, pink arrow). Mac-2
stained macrophages were abundant in thoracic and abdominal
PVAT from Seipin−/− mice (Figure 3C). Consistent with the
histological observations, marker of macrophages, Mac2 and
F4/80 gene expression was significantly increased in PVAT
of Seipin−/− mice (Figure 4A). In PVAT of Seipin−/− mice,
proinflammatory M1 and prorepair M2 macrophages-associated
genes were both significantly elevated (Figure 4A). These
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FIGURE 3 | Histological observation of PVAT from WT and Seipin−/− mice. (A) Representative H&E and sirius-red staining of PVAT from 6-month-old WT and

Seipin−/− mice. (B) Representative electron microscopy of PVAT from 6-month-old WT and Seipin−/− mice. (C) Mac2 immunostaining of PVAT from 6-month-old WT

and Seipin−/− mice. m, mitochondria; n, adipocyte nucleus; L, lipid droplets. Pink arrow indicated deformed mitochondria.

findings demonstrated that PVAT of Seipin−/− mice displayed
increased inflammation. In aorta tissue, Mac2, F4/80, monocyte
chemotactic protein 1 (MCP-1), TNF-α and IL-6 expression
also elevated in Seipin−/− mice (Figure 4B). Immunoblotting
showed increased expression of Mac2 in PVAT and aorta of
Seipin−/− mice (Figures 4E,F). Additionally, analysis of collagen
content, following Sirius-red staining demonstrated fibrosis
apparently increased in PVAT of Seipin−/− mice (Figure 3B).
Corresponding to morphological results, fibrosis related genes
were upregulated in PVAT of Seipin−/− mice (Figure 4C).
These findings reflected chronic inflammation and fibrosis

were increased in PVAT of Seipin−/− mice. Quantitative PCR
revealed a high expression of the ER stress related gene CHOP,
GRP78, GRP94, and mXBP1 (Figure 4D) in PVAT of Seipin−/−

mice. Consistent with the RNA data, immunoblotting results
showed ER stress was activated in PVAT and aorta of Seipin−/−

mice (Figures 4E,F).

Vascular Lesions in Seipin–/– Mice
Representative Gomrori’s aldehyde-fuchsin staining showed
derangement of elastic fibers in aorta of 6-months-old Seipin−/−

mice (Figure 5A top right, red arrow). The mitochondria with
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FIGURE 4 | Inflammation, fibrosis and ER stress gene expression in PVAT and aorta from WT and Seipin−/− mice. Relative mRNA levels of macrophages and

inflammatory cytokines (A,B), fibrosis (C), and ER stress (D) in PVAT and aorta from 6-month-old WT and Seipin−/− mice. N = 6. (E,F) Western blot images and

densitometric quantitation for the indicated proteins and phosphoproteins related to inflammation and ER stress in PVAT from WT and Seipin−/− mice. Data are

expressed as mean ± SEM. N = 6, *P < 0.05, **P < 0.01 for Seipin−/− mice vs. WT.

tubular cristae and rough surfaced endoplasmic reticulum were
observed in normal mice aortas. Representative transmission
electron microscope results showed disintegrating elastic

laminae, swellen mitochondria and dilated rough endoplasmic

reticulum in aorta of 6-month-old Seipin−/− mice (Figure 5B

bottom right, pink arrow and green arrow, respectively).

Reduced Constriction and Impaired
Endothelium-Dependent Relaxation in
Seipin–/– Mice
Lipodystrophy is associated with hypertension in humans
(28, 29), we therefore sought to measure blood pressure in
Seipin−/− mice. There was no distinct difference in both
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FIGURE 5 | Vascular lesion in aorta of Seipin−/− mice. (A) Representative H&E and Gomrori’s aldehyde-fuchin staining in thoracic aorta, abdominal aorta and

mesenteric artery in WT and Seipin−/− mice. (B) Electron microscopy of thoracic aorta from 6-month-old Seipin−/− and WT mice. Red arrow indicated derangement

of elastic fibers in aorta. Thin red arrow showed deformed mitochondria. Green arrow indicated dilated ER. m, mitochondria; ER, endoplasmic reticulum.

systolic and diastolic blood pressure between WT and Seipin−/−

mice (Figures 6A,B). Additionally, the heart rates were similar
between WT and Seipin−/− mice (data not shown). Thenthe
responses of aortic rings to graded levels of phenylephrine (PE)
and acetylcholine (Ach) and sodium nitroprusside (SNP) were
measured. Aortic and mesenteric artery rings prepared with
or without Seipin−/− PVAT showed a reduced constriction in
response to PE (Figures 6C,F). In addition, compared with WT
mice, Seipin−/− mice showed impaired endothelium-dependent
relaxation responses to Ach, but direct smooth-muscle relaxation
in response to SNP was not altered (Figures 6G,H).

Seipin–/– Mice PVAT Lost the
Anticontractile Effect
In WT mice, thoracic aorta and mesenteric artery rings
contracted significantly less when PVAT was left, so
WT PVAT exerted a normal anticontractile effect on the
arteries (Figures 6C,D). However, in Seipin−/− mice,
the contractility of thoracic aorta and mesenteric artery
rings with or without PVAT was similar, which suggest
Seipin−/− PVAT lost the anticontractile effect (Figures 6C,E).
ADRFs play a critical role in PVAT anticontractile
effect, and transferring culture medium experiments
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FIGURE 6 | Impaired vasoactivity in Seipin−/− mice. Systolic (A) and diastolic (B) of WT and Seipin−/− mice. N = 10. (C) Phenylephrine induced contraction of aorta

rings with (+) or without (-) PVAT prepared from 6-month-old WT and Seipin−/− mice. (D, E, F) Phenylephrine dose-response curves of mesenteric artery rings with (+)

or without (-) PVAT prepared from 6-month-old WT and Seipin−/− mice. (G, H) Endothelial-dependent relaxation with acetylcholine (Ach) and smooth muscle relaxation

with sodium nitroprusside (SNP) in aortic rings prepared from 6-month-old WT and Seipin−/− mice. N = 10. (I) Representative curves of transferring 5mL incubation of

aorta PVAT of WT and Seipin−/− mice to aorta without PVAT after preconstruction with phenylephrine (PHE, 10 uM). *P < 0.05, **P < 0.01 for Seipin−/− mice vs. WT.

demonstrated that Seipin−/− PVAT showed reduced ADRFs
release (Figure 6I).

DISCUSSION

The aim of this study was to investigate the role of Seipin in
PVAT function and vascular homeostasis. In present study, we
found that Seipin deficiency induced increasing inflammatory
factor secretion, macrophage infiltration, and ER stress activation
inaddition to PVAT mass reduction; decreasing adiponectin,
leptin and ADRF secretion resulting in PVAT anticontractile
effect reduction. The alterations in PVAT morphology and
function induced vessel ER stress and chronic inflammation and
then Seipin−/− mice displayed impaired contractility in response
to phenylephrine and relaxation to acetylcholine.

Seipin−/− mice represent probably the best model for
lipodystrophy, and present a severe loss of adipose tissue,
fatty liver and insulin resistance. However, little is known
about whether lipodystrophy in Seipin−/− mice is associated

with hypertension, In this study, we demonstrated that the
systolic and diastolic blood pressure was comparable between
lipodystrophic Seipin−/− mice and their control mice, which was
consistent with previous research (30). Although lipodystrophy
is associated with hypertension in humans (31, 32), previous
studies have demonstrated that hypertension is separable from
lipodystrophy in mice. A lipodystrophy model, A-ZIP/F mice,
which lost almostwhite adipose tissue and showed dramatically
reduced brown adipose tissue, were hypertensive (33, 34). In
contrast, another lipodystrophy model MORE-PGKO, which is
a generalized PPARγ knockout mouse, were hypotensive (35).
Although, these findings suggest a controversial relationship
between hypertension and lipodystrophy, lipodystrophic mice
demonstrated PVAT dysfunction and impaired vasoactivity
(27, 35). In mouse model, PPARγ deficiency reduced increased
vascular relaxation and impairedcontraction. A-ZIP/F mice
showed enhanced response of the blood vessels to agonists (34).
Perilipin1 deficient mice demonstrated impaired anticontractile
effect of PVAT and impaired endothelium-dependent
vasodilatation (27).
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Almost all systemic arteries were surrounded by a substantial
amount of PVAT. Different from WAT and BAT, it is considered
as active tissue by secreting numerous vasoactive yet-unidentified
ADRFs. In addition to serving as mechanical support,
PVATphysiologically antagonizes vasocontractile response
to various vasoconstrictors (36, 37). Adiponectin and leptin
were identified as abundant adipokines with anticontractile
activity in recent studies (18, 38, 39). In Seipin−/− mice, aortic
and mesenteric PVAT showed obvious reduction in mass and
adiponectin and leptin release, which provided histological and
functional basis for impaired anticontractile effect. Seipin itself or
its deficiency probably not have a direct effect in situ on vessels,
in consideration of the low expression of Seipin in vascular
endothelial and smooth muscle cells. Seipin is an abundant
adipocyte protein, thus we speculated that impaired vascular
homeostasis in Seipin−/− mice was probablya consequence of
perivascular adipose tissue dysfunction.

Seipin is an ER membrane protein and abundant in adipose
tissue, testes and the brain. Recent studies have shown that
Seipin depletion induces ER stress activation through influencing
the intracellular calcium homeostasis in Drosophila fat cells
and hepatocytes (5, 40). Another study reported that increased
ER stress induced heart failure in Seipin deficient mice (9).
In our study, Seipin−/− mice also demonstrated increased ER
stress in PVAT. ER stress is manifested in adipose dysfunction
and which has been demonstrated to be involved in many
pathological processes, including inflammation, oxidative stress
and cell death. Our study demonstratedthat activated ER stress
led to inflammation in Seipin−/− PVAT.

In the present study, Seipin−/− PVAT showed increased
macrophage infiltration. Mac2-stained macrophages were
prominent in PVAT of Seipin−/− mice. Numerous macrophages
especially M1 categories were present in PVAT from
Seipin−/− mice. M1 macrophages are characterized with pro-
inflammatory properties. And expression of pro-inflammatory
M1 macrophage-associated genes (TNF-α and MCP-1) was
significantly upregulated in PVAT of Seipin−/− mice compared
to WT mice. Similarly, obvious infiltration of mac2 and F4/80-
positive macrophages and increased inflammatory cytokines
(TNF-α, MCP-1 and IL-6) were demonstrated in the aorta of
Seipin−/− mice.

Anticontractile effect of PVAT is involved many complicated
processes including macrophage function. It’s known that
macrophage activation plays a critical role in the adipose
tissue microenvironment, and is responsible for the loss of
anticontractile function in inflamed PVAT (41, 42). PVAT-
derived inflammatory cytokines such as TNF-α, MCP-1 and

IL-1β impair PVAT anticontractile properties and vascular

function in hypertension (43, 44). In Seipin−/− mice, aortas
and mesenteric arteries with or without PVAT had similar
vasoconstriction responses, which suggested Seipin−/− PVAT
lost anticontractile function. Seipin−/− PVAT displayed extensive
macrophage infiltration, inflammatory adipokines expression
and activated ER stress. And Seipin−/− aorta also demonstrated
increased MCP-1 and IL-6 expression. Collectively, these
multiple culprits could contribute to the vascular lesions in
Seipin−/− mice. Vascular lesions including derangement and
fragmentation of elastic fibers might contributed to reduced
constriction in response to PE.

In conclusion, Seipin deficiency induced PVATmass reduction
and ADRFs secretion, along with abnormal morphology,
macrophages infiltration and activated ER stress, resulting in
impairedanticontractile effect of PVAT. In Seipin−/− mice, PVAT
dysfunction induced vessel chronic inflammation, ER stress
and vascular lesions. As a result, vessels in Seipin−/− mice
had impaired contractility in response to phenylephrine and
relaxation to acetylcholine.
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