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Abstract: (1) Background: COVID-19 has been global epidemic. This work aims to extract 3D
infection from COVID-19 CT images; (2) Methods: Firstly, COVID-19 CT images are processed
with lung region extraction and data enhancement. In this strategy, gradient changes of voxels in
different directions respond to geometric characteristics. Due to the complexity of tubular tissues
in lung region, they are clustered to the lung parenchyma center based on their filtered possibility.
Thus, infection is improved after data enhancement. Then, deep weighted UNet is established to
refining 3D infection texture, and weighted loss function is introduced. It changes cost calculation of
different samples, causing target samples to dominate convergence direction. Finally, the trained
network effectively extracts 3D infection from CT images by adjusting driving strategy of different
samples. (3) Results: Using Accuracy, Precision, Recall and Coincidence rate, 20 subjects from a
private dataset and eight subjects from Kaggle Competition COVID-19 CT dataset tested this method
in hold-out validation framework. This work achieved good performance both in the private dataset
(99.94–00.02%, 60.42–11.25%, 70.79–09.35% and 63.15–08.35%) and public dataset (99.73–00.12%,
77.02–06.06%, 41.23–08.61% and 52.50–08.18%). We also applied some extra indicators to test data
augmentation and different models. The statistical tests have verified the significant difference
of different models. (4) Conclusions: This study provides a COVID-19 infection segmentation
technology, which provides an important prerequisite for the quantitative analysis of COVID-19
CT images.

Keywords: COVID-19; infection segmentation; 3D convolutional neural network; data enhancement;
weighted loss function

1. Introduction

COVID-19 is currently the most serious infectious lung disease [1,2]. Therefore, clinical
imaging examination is a common and critical process. Usually, professional levels and
subjective judgments of different doctors leads to inconsistent diagnosis results [3–5].
Although clinical medical technology has a set of quantitative indicators for preliminary
screening [6–9], it is very dependent on collection and quantification of image information,
which limits promotion of this technology [10,11]. Thus, reconstruction of COVID-19
infection can provide a digital model and quantitative analysis basis for diagnosis and
treatment of COVID-19. It helps to build a more objective evaluation system and provides
theoretical guidance for staff in related fields [12–14].

Since CT images can collect 3D information of patients, it is currently the most com-
monly clinical imaging technique for COVID-19 examination [15–18]. From CT images,
COVID-19 infection present characteristics of regional spread, blurred boundaries, tis-
sue adhesion, and large morphological differences (Figure 1). Therefore, identifying the
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method of how to extract infection effectively and accurately from COVID-19 CT images is
a difficult and urgent challenge [19,20].

Diagnostics 2021, 11, x FOR PEER REVIEW 2 of 19 
 

 

method of how to extract infection effectively and accurately from COVID-19 CT images 
is a difficult and urgent challenge [19,20]. 

 
Figure 1. Infection structure from COVID-19 CT images. (b,c,f,g) indicate four different cases. 
(a,d,e,h) are the local magnification structure of the red boxes from (b,c,f,g), respectively. 

To solve this problem, many researchers have explored it. For examples, Fan et al. 
[21] proposed a deep network for lung infection segmentation to automatically identify 
COVID-19 infected area in CT images. In their work, a semi-supervised framework based 
on random propagation is applied to make up for the lack of COVID-19 CT data. Qiu et 
al. [22] introduced a lightweight model. Compared with classic network structure, their 
parameters have been significantly reduced, which can meet needs of rapid clinical train-
ing. Yan et al. [23] established a global energy network to analyze COVID-19 CT images. 
Through their network, global energy was increased, thereby enhancing contrast of infec-
tion. Also, a feature mutation module has been added to adaptively adjust global attrib-
utes applied as analysis of COVID-19 features. Chen et al. [24] proposed a 3D attention 
module to enhance infection feature from COVID-19 CT images. Their analysis of the pros 
and cons are listed in Table 1. 

Table 1. Analysis of the Pros and Cons of Related Research. 

Methods Advantages Disadvantages 

Fan et al. [21] 
The training framework on semi-su-
pervised learning can cope with the 

shortage of labeled data. 

The network is only used for the pro-
cessing of two-dimensional slices. 

Therefore, it is necessary to manually 
screen slices with infected areas from 

CT images in advance. 

Qiu et al. [22] 
The model is lightweight and can 

adapt to deployment and computing 
requirements. 

Due to insufficient network infor-
mation extraction, some segmentation 

results lead to loss of details. 

Yan et al. [23] 

The design of pyramid space enables 
the network to integrate information 
from multiple stages in the learning 
process. It has a stronger learning 

ability. 

There are many network parameters, 
the training speed is slow, and the 
hardware requirements are high. 

Chen et al. [24] 

The location of the infection and the 
3D attention module can improve the 

texture characteristics of the target 
area. 

The network is only used for partial 
segmentation, and cannot display 

global spatial information. 

 

Figure 1. Infection structure from COVID-19 CT images. (b,c,f,g) indicate four different cases.
(a,d,e,h) are the local magnification structure of the red boxes from (b,c,f,g), respectively.

To solve this problem, many researchers have explored it. For examples, Fan et al. [21]
proposed a deep network for lung infection segmentation to automatically identify COVID-19
infected area in CT images. In their work, a semi-supervised framework based on random
propagation is applied to make up for the lack of COVID-19 CT data. Qiu et al. [22]
introduced a lightweight model. Compared with classic network structure, their pa-
rameters have been significantly reduced, which can meet needs of rapid clinical train-
ing. Yan et al. [23] established a global energy network to analyze COVID-19 CT images.
Through their network, global energy was increased, thereby enhancing contrast of infec-
tion. Also, a feature mutation module has been added to adaptively adjust global attributes
applied as analysis of COVID-19 features. Chen et al. [24] proposed a 3D attention module
to enhance infection feature from COVID-19 CT images. Their analysis of the pros and
cons are listed in Table 1.

Table 1. Analysis of the Pros and Cons of Related Research.

Methods Advantages Disadvantages

Fan et al. [21]
The training framework on

semi-supervised learning can cope
with the shortage of labeled data.

The network is only used for the
processing of two-dimensional slices.
Therefore, it is necessary to manually
screen slices with infected areas from

CT images in advance.

Qiu et al. [22]
The model is lightweight and can

adapt to deployment and computing
requirements.

Due to insufficient network
information extraction, some

segmentation results lead to loss of
details.

Yan et al. [23]

The design of pyramid space enables
the network to integrate information
from multiple stages in the learning
process. It has a stronger learning

ability.

There are many network parameters,
the training speed is slow, and the
hardware requirements are high.

Chen et al. [24]

The location of the infection and the
3D attention module can improve the

texture characteristics of the target
area.

The network is only used for partial
segmentation, and cannot display

global spatial information.
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Although initial results have been achieved in reconstruction of COVID-19 infection,
there are still some problems that still need to be solved: (1) When infections are adjacent to
thorax, segmentation boundary cannot be effectively judged (Figure 1c); (2) Most methods
focus on 2D images processing or partial patches, which cannot deal with complete 3D
feature information in CT images; (3) COVID-19 infection usually only occupies a small
part of the entire CT image. Thus, imbalance of positive and negative samples appears in
network training, resulting in slow convergence and insufficient accuracy; (4) In vicinity
of infected area, invasive structure of infection adheres to vessels and tracheas, which is
difficult to distinguish effectively (Figure 1d).

In order to solve the above existing problems, this work proposes a method for
analyzing COVID-19 CT images to meet the needs of reconstruction and quantification
of infection. The main contributions are as follows: (1) 3D COVID-19 infection from CT
images can effectively constructed by proposed deep weighted UNet (DW-UNet), which
has 3d structure and space information; (2) The proposed data enhancement method can
reduce interference of vessels and trachea to infection, which improves segmentation
contrast between target and background; (3) An application example of weighted loss
function in 3D network segmentation is introduced, which provides a theoretical basis
for expanding to other fields. The main structure of this work is: The second section
elaborates on the method described. The third section introduces the experimental process
and conclusion analysis. Finally, the work is summarized in the fourth section.

2. Methods

This work proposes a method that can identify infection and complete segmentation
from COVID-19 CT image. The main steps include: Firstly, the infected lung masks are
prepared based on Random Walker segmentation. By these masks, the area of image
processing can be focused on the lung region. Secondly, based on tubular feature of vessels
and tracheas in 3D voxels, data enhancement is achieved. Finally, DW-UNet based on
weighted loss function is established, which can balance convergence speed of different
samples and improve segmentation accuracy. Method flow chart is shown in Figure 2.

2.1. Lung Mask Preparation

Lung mask preparation is mainly used to extract lung area that only contains lung
tissue, tracheas, vessels, and infection. Sometimes, infection is located at lungs borders
adhere to tissues, resulting in blurring and rupture of the lung verge. Therefore, Random
Walker method [25] is adopted to complete pathological lung extraction. Firstly, structured
data are established and defined as V = (P, E) based on lung CT images. Where P and
E represent sets of voxel points and edges between voxels, which satisfies p ∈ P and
e ∈ E ⊆ P× P. To measure degree of similarity between points, edge weights based on
gray and space are defined as follows:

wij = exp
(
−β1

(
gi − gj

)2 − β2
(
di − dj

)2
)

(1)

where β1 and β2 parameters control influence of different factors. g and d are gray value
and spatial index of voxel point p.

By edge weights, probability of a non-marked point walking to each seed point can be
calculated. Then, the maximum probability can be applied as new mark of the non-marked
point to achieve image segmentation. Reference [26] proved that solution of probabilities
can be transformed into a classic Dirichlet problem: By finding a harmonic function, it is
solution of a specified partial differential equation in a given area, and its predetermined
value is taken on this area boundary. Since harmonic function satisfies Laplace equation
∇2u = 0 and corresponds to the Euler–Lagrange equation of Dirichlet integral D[u], so the
solution when Dirichlet integral reaches the minimum is harmonic function. Additionally,
D[u] = 1

2

∫
Ω |∇u|2dΩ.
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Laplacian matrix L of V is established as:

Lij =


di , when i = j
−wij , when vi and vj are adjacent
0 , others

(2)

L satisfies L = ATCA; di is the degree of vertex vi, which is sum of weights of all
edges connecting vertex. It satisfies di = ∑ wij. Vertex P is composed of marked points
Us and non-marked points Uu, satisfying Uu ∪Us = V and Uu ∩Us = O. Thus, discrete
expression D[x] is defined as:

D[xu] = 1
2
[
xT

s xT
u
][ LM B

BT LU

][
xs
xu

]
= 1

2
(
xT

s Luxs + 2xT
u BTxs + xT

u Luxu
) (3)

where xs and xu correspond to probabilities of marked and non-marked points, respectively.
To obtain xu, differential of D[xu] with respect to xu is solved, and the extreme point through
the zero point is found. Luxu = −BTxs is satisfied after solving. xs

i is supposed to represent
probability that vertex vi belongs to label s. Set of s tags is defined as Q

(
vj
)
= s and

∀vj ∈ Us, where 0 < s ≤ K and K is the number of all seed points. Thus, solution of
Dirichlet problem is LUX = −BT M. Segmentation result is obtained through this equation
(Figure 3). For any vertex, the sum of all probabilities is 1. So ∑

s
xs

i = 1, ∀vi ∈ V is satisfied.
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Figure 3. Process and results of lung region extraction. (a,d) are the original CT images; (b,e) show
results of lung mask covering the original CT images; (c,f) indicate the extracted lung area.

2.2. Data Enhancement

Figure 4 reveals the data enhancement process. In the extracted lung area structure,
it can be observed that the contrast between infection and vessels or tracheas is low. To
eliminate interference of these tissues, contrast of infection is improved through data
enhancement. Thus, to extract structure information of COVID-19 CT images, Hessian
matrix of 3D medical image I(x, y, z) is constructed and expressed as:

H = ∇2 I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 (4)

where Ixx, Ixy, and Ixz correspond to the second-order partial differential of I(x, y, z), re-
spectively. In digital images, the second-order partial differentials in X, Y, and Z directions
are expressed in a discrete manner:

Ixx = ∂2 I
∂x2 = I(x− 1, y, z) + I(x + 1, y, z)− 2I(x, y, z)

Iyy = ∂2 I
∂y2 = I(x, y− 1, z) + I(x, y + 1, z)− 2I(x, y, z)

Izz =
∂2 I
∂z2 = I(x, y, z− 1) + I(x, y, z + 1)− 2I(x, y, z)

(5)

The corresponding mixed partial differential can be expressed as:

Ixy = Iyx = ∂2 I
∂x∂y = I(x + 1, y + 1, z) + I(x, y, z)

−I(x + 1, y, z)− I(x, y + 1, z)
Iyz = Izy = ∂2 I

∂y∂z = I(x, y + 1, z + 1) + I(x, y, z)
−I(x, y + 1, z)− I(x, y, z + 1)

Ixz = Izx = ∂2 I
∂x∂z = I(x + 1, y, z + 1) + I(x, y, z)

−I(x + 1, y, z)− I(x, y, z + 1)

(6)
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Since Hessian matrix is a symmetric matrix, eigenvalues λ1, λ2, and λ3(|λ1| ≤ |λ2|
≤ |λ3|) can be obtained and the corresponding eigenvectors are defined as

→
v1,
→
v1, and

→
v3.

Based on its geometric meaning, λ1 represents intensity change in direction of vessels and
tracheas (

→
v1). λ2 and λ3 represent intensity change in direction perpendicular to vessels

and tracheas (
→
v2 and

→
v3).

In CT images, according to vessels and tracheas characteristic, they always present
a bright tubular structure in contrast to a relatively dark background. Usually, intensity
change along the main direction of them is much smaller than intensity change along
their vertical direction. Based on this prior knowledge, it can be used to distinguish tube
and other structures in image. Therefore, when a pixel with larger λ2 and λ3 obtains a
smaller λ1, it has a greater probability of belonging to vessels or tracheas. Inspired by [27],
construction of a linear filter based on 3D voxels is as follows:

Hλs(x) =

{
0 λ2 > 0 or λ3 > 0

(1− exp(− R2
A

2α2 )) exp(− R2
B

2β2 )(1− exp(− S2

2c2 )) else
(7)

where x is voxel point in volume data; α, β, and c control the difference between tubular and
disc structure, tubular and spherical structure, and high-contrast and low-contrast structure,
respectively. Therefore, by adjusting the three control parameters, tubular structure can be
effectively enhanced. To augment data, new voxel I′(x, y, z) is updated as follows:

I′(x, y, z) =
{

T Hλs(x) ≥ 0.8
I(x, y, z) Hλs(x) < 0.8

(8)

where T is obtained from gray distribution H(I) of I(x, y, z), which includes two cluster
centers. The largest cluster center usually has a low gray value and is mainly composed
of lung tissue with low brightness. Frequency of another cluster center is low, mainly
composed of highlighted vessels, tracheas, and infected areas. Thus, T is generated ran-
domly from lung tissue cluster. By processing, the obvious vessels and tracheas in original
data can be effectively suppressed and impact on infection can be minimized as much
as possible.

2.3. Structure of Basic Convolutional Neural Network

Deep weighted UNet (DW-UNet) is combined with basic convolutional neural net-
work and weighted loss function. Since 3D U-Net [28] has advantages of lightweight and
symmetry in 3D-based networks, this work established it as basic convolutional neural
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network. Its main structure is an encoder-decoder way, in which the first half contains
encoding path used for feature extraction, and the second half is applied for decoding path
of feature analysis and pixel classification. In the encoding path, there are five resolution
layers. Each layer has two convolutional layers with 3 × 3 × 3 kernel size, and a batch nor-
malization step is performed to obtain consistent data distribution. Then, ReLU function is
applied to complete activation. A 2 × 2 × 2 maximum pooling operation with a 2 stride is
adopted to realize down-sampling. In addition, the number of feature channels along each
layer of encoding path is doubled in turn.

In the decoding path, structure is symmetrical with encoding path to ensure that the
final structure matches input size. Up-sampling with a 2 × 2 × 2 kernel size is adopted,
and step is 2. Two convolutions are also 3 × 3 × 3 kernel size. Then, normalization
and ReLU steps are completed. The number of feature channels is sequentially halved
along each successive layer in decoding path. The last convolution is used to map final
component feature vector to a single channel and Sigmoid activation function is applied
for classification. In addition, in each layer with the same resolution, a skip connection is
constructed by passing corresponding feature map from encoding path to decoding path
to fuse shallow and deep features.

2.4. Weighted Loss Function

Usually, even if independent lung structures have been extracted through lung masks,
COVID-19 infection still only occupy a small part. Therefore, convolutional neural network
for feature extraction from COVID-19 CT images faces problem of uneven distribution
of positive and negative samples. Common loss functions generally keep the same cost
for positive and negative samples, resulting in the final convergence of network being
dominated by negative samples, and it is impossible to extract effective positive sample
feature structures. To introduce weights of positive and negative samples, [29] et al.
proposed focal loss function L f . In their work, y ∈ {0, 1} is supposed as the sample
category, which is background area and lesion area.

p ∈ [0, 1] is the predicted value of y = 1 by the model, so that pt satisfies:

pt =

{
p if y = 1
1− p else

(9)

Weight factor α is defined to represent proportional weight distribution of positive
and negative samples, satisfying:

αt =

{
α if y = 1
1− α else

(10)

Then L f (α, γ) is defined as follows:

L f (α, γ) = −αt(1− pt)
γ log(pt) (11)

where γ balances weight distribution of simple and complex samples.
Although L f (α, γ) changes weights by introducing α and γ factors, the overall cost is

also reduced because of weight coefficient. It makes loss value decrease rapidly, resulting
in network converging too fast.

To obtain a more reliable loss value and change weight of positive, negative, simple,
and complex samples, this work proposes Lw(α, γ), which defines as follows:

Lw(α, γ) = −(α + 1)y(2− p)γ log(p)− (1− α)(1− y)(1 + p)γ log(1− p) (12)

Weighted loss function considers weight distribution of positive, negative, simple,
and complex samples. While increasing cost ratio of positive samples, the overall sample
cost stays steady, so that the final loss value can maintain overall balance.
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3. Results
3.1. Data Source

In assessment process, this work selected two datasets to test the proposed method.
In total, 20 CT scan imaging data of patients with confirmed COVID-19 from the Fifth
Medical Center of the PLA General Hospital were retrospectively analyzed as the private
dataset. Scanning equipment was a high-resolution LightSpeed VCT CT64 scanner (GE
MEDICAL SYSTEMS), and scanning range was uniform from entrance of chest cavity to
level of posterior intercostal angle. Where, scan parameters were 120 kV voltage, automatic
milliamp technology (40–250 mA), noise index (NI) 25, pitch 0.984:1, matrix 512 × 512, slice
thickness 5 mm, and a total of 10232 slices. A total of 12 cases were randomly selected as
training data, and the remaining eight were testing data. Slices and allocation details of
them are reported in Table S1 of the supporting information. In addition, scope of lung
infection was discussed by three experienced clinical experts. After unanimous agreement,
identification and labeling of infection area was completed as the manual ground truth for
assessment. Private dataset is mainly for discussion of ablation experiments.

Another dataset was selected from public COVID-19 dataset of Kaggle, which con-
sisted of COVID-19 CT images provided by Coronavirus [30] and Radiopaedia [31]. Due
to insufficient resolution of some data, eight sets of cases were finally taken as testing data
to assess performance of network trained under the private dataset. All data consisted
of 512 × 512 matrices with a total of 2111 slices, and were labeled by [32] et al. as the
manual ground truth. Slices and allocation details of them are reported in Table S2 of
the supporting information. Public dataset is used for performance testing to verify the
generalization of the method proposed in this work.

3.2. Initialization

This work designed three sets of controlled experiments to verify rationality of the
proposed method. The first set of experiments explored effectiveness of data enhancement.
They compared results obtained with data enhancement and without data enhancement
based on U-Net network and binary cross-entropy loss function Lbce [33]. The second
group of experiments discusses impact of different loss functions. Experimental groups
included binary cross-entropy loss function, focal loss function, and weighted loss function.
Where, parameters of weighted loss function have been discussed. The third set of experi-
ments explored performance of this method. So, V-Net [34], U-Net, Dense-Net [35], and
DenseVoxel-Net [36] networks were established as comparative experiments. Since pro-
portion of COVID-19 infection was too small, these networks uniformly applied extracted
lung regions as dataset to improve their performance.

In initialization stage, experiment parameters were set as: small batch of 12 sam-
ples, Adam optimizer [37], batch normalization, deep supervision [38], and 100 epochs.
To prevent memory congestion, data were randomly cropped into slices with a size of
128 × 128 × 128 in each step, and the current batch of data were read only. In testing
progress, testing data were cyclically cropped until the entire data were traversed, and
finally the complete splicing of data was realized. In addition, the overlap-tile [39] strategy
was adopted: by intercepting yellow line area as actual segmentation result (Figure 5),
possible splicing errors were explicitly ignored. The segmentation threshold was set as 0.5.

For quantitative comparison, TP, TN, FP, and FN parameters are set to compare with
the manual ground truth. They represent true cases, false positive cases, false negative
cases, and true negative cases, respectively, which indicate relationship between predicted
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value and the manual ground truth. Based on them, Accuracy (ACC), Precision (PRE),
Recall (REC), and Dice Coefficient (DSC) [40] are defined as assessment indicators:

ACC = TP+TN
TP+TN+FP+FN

PRE = TP
TP+FP

REC = TP
TP+FN

DSC = 2TP
2TP+FN+FP

(13)

where ACC represents proportion of all voxels with correct predictions, including TP
and TN; PRE introduces accuracy of the predicted positive cases; REC is the accuracy
of correct infection prediction; DSC reveals coincidence rate of predicted value and the
manual ground truth.
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Based on these metrics, all experimental results were recorded in Tables 2–9 with
CI 95% indices. To better observe the performance, SPE [41], MCC [42], and Kappa [43]
indicators have been added to the results of data augmentation (Table 2) and performance
assessment (Table 7). Ablation experiments and performance assessments are discussed in
next section.

Table 2. Comparison of the segmentation with or without data enhancement (compared with the manual ground truth).

ACC (%) PRE (%) REC (%) DSC (%) SPE (%) MCC (%) Kappa (%)

True * 99.94 ± 00.01 58.21 ± 15.75 67.25 ± 13.51 60.11 ± 13.93 99.96 ± 0.01 61.35 ± 13.21 60.09 ± 13.93

False * 99.94 ± 00.02 73.42 ± 13.35 26.86 ± 11.79 37.50 ± 14.57 99.99 ± 0.00 42.66 ± 13.53 37.49 ± 14.60

* True represents output with data enhancement. False is outputs without data enhancement.

Table 3. Chi-square tests for data augmentation.

Value Exact Significance (2-Sided)

McNemar Test 0.000 *

N of Valid Cases 2048917488
* Binomial distribution used.

Table 4. ACC, PRE, REC, and DSC comparison of the segmentation with different parameters on
focal loss function (compared with the manual ground truth).

Lf(α,γ) ACC (%) PRE (%) REC (%) DSC (%)

(0.8, 2) 99.94 ± 00.02 57.29 ± 14.30 76.09 ± 11.27 62.17 ± 11.03

(0.6, 2) 99.93 ± 00.02 53.20 ± 14.28 64.29 ± 10.70 56.32 ± 11.83

(0.4, 2) 99.94 ± 00.02 70.80 ± 11.84 49.12 ± 11.50 56.75 ± 09.50



Diagnostics 2021, 11, 1942 10 of 18

Table 4. Cont.

Lf(α,γ) ACC (%) PRE (%) REC (%) DSC (%)

(0.2, 2) 99.94 ± 00.01 67.55 ± 15.27 51.22 ± 11.25 56.35 ± 11.72

(0.8, 1) 99.94 ± 00.02 60.55 ± 14.63 65.98 ± 12.03 60.50 ± 10.56

(0.6, 1) 99.89 ± 00.02 40.25 ± 13.10 73.70 ± 08.95 49.30 ± 12.83

(0.4, 1) 99.95 ± 00.01 68.22 ± 15.72 55.63 ± 13.12 58.87 ± 12.40

(0.2, 1) 99.94 ± 00.02 68.22 ± 15.59 51.43 ± 12.63 56.96 ± 11.66

Table 5. ACC, PRE, REC, and DSC comparison of the segmentation with different parameters on
weighted loss function (compared with the manual ground truth).

Lw(α,γ) ACC (%) PRE (%) REC (%) DSC (%)

(0.8, 2) 99.88 ± 00.03 40.46 ± 13.02 84.64 ± 06.58 52.08 ± 13.35

(0.6, 2) 99.88 ± 00.03 40.31 ± 13.35 81.82 ± 07.69 51.18 ± 13.73

(0.4, 2) 99.93 ± 00.02 51.54 ± 07.57 74.34 ± 10.72 58.23 ± 13.56

(0.2, 2) 99.94 ± 00.02 64.16 ± 15.13 56.97 ± 11.11 58.24 ± 10.53

(0.8, 1) 99.90 ± 00.03 45.58 ± 14.12 82.56 ± 07.56 55.61 ± 13.38

(0.6, 1) 99.91 ± 00.03 49.14 ± 14.70 79.89 ± 08.10 57.46 ± 12.54

(0.4, 1) 99.93 ± 00.02 54.78 ± 15.31 74.25 ± 11.75 60.18 ± 12.40

(0.2, 1) 99.94 ± 00.02 60.42 ± 12.58 70.79 ± 10.45 63.15 ± 09.33

Table 6. ACC, PRE, REC, and DSC comparison of the segmentation with different loss function
(compared with the manual ground truth).

Methods ACC (%) PRE (%) REC (%) DSC (%)

Lbce 99.94 ± 00.01 58.21 ± 15.75 67.25 ± 13.51 60.11 ± 13.93

L f (0.8, 2) 99.94 ± 00.02 57.29 ± 14.30 76.09 ± 11.27 62.17 ± 11.03

L f (0.8, 1) 99.94 ± 00.02 60.55 ± 14.63 65.98 ± 12.03 60.50 ± 10.56

Lw(0.8, 2) 99.88 ± 00.03 40.46 ± 13.02 84.64 ± 06.58 52.08 ± 13.35

Lw(0.8, 1) 99.90 ± 00.03 45.58 ± 14.12 82.56 ± 07.56 55.61 ± 13.38

Lw(0.2, 1) 99.94 ± 00.02 60.42 ± 12.58 70.79 ± 10.45 63.15 ± 09.33

Table 7. Comparison of the segmentation with different methods on private dataset (compared with the manual ground truth).

Methods ACC (%) PRE (%) REC (%) DSC (%) MCC (%) Kappa (%) ECE (%)

V-Net 99.94 ± 00.01 67.75 ± 19.47 44.22 ± 13.24 51.15 ± 14.40 53.38 ± 14.10 51.14 ± 14.40 00.14 ± 00.03

U-Net 99.94 ± 00.01 58.21 ± 15.75 67.25 ± 13.51 60.11 ± 13.93 61.35 ± 13.21 60.09 ± 13.93 00.24 ± 00.03

Dense-Net 99.94 ± 00.02 74.86 ± 15.81 40.62 ± 14.77 49.50 ± 13.80 53.25 ± 12.75 49.49 ± 13.80 00.05 ± 00.01

DenseVoxel-Net 99.67 ± 00.19 25.16 ± 12.06 88.44 ± 05.70 36.08 ± 14.91 43.59 ± 12.51 36.05 ± 14.90 01.34 ± 00.31

Our 99.94 ± 00.02 60.42 ± 12.58 70.79 ± 10.45 63.15 ± 09.33 64.33 ± 08.79 63.14 ± 09.33 00.30 ± 00.02
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Table 8. Chi-square tests for different models.

Value Degree of
Freedom

Asymptotic Significance
(2-Sided)

Pearson Chi-Square 188,564,555.194 * 4 0.000

Likelihood Ratio 190,509,995.678 4 0.000

Linear-by-Linear Association 64,355.139 1 0.000

N of Valid Cases 5,122,293,720

* 0 cells (0.0%) have expected count less than 5. The minimum expected count is 4.91 × 108.

Table 9. ACC, PRE, REC, and DSC comparison of the segmentation with different methods on public
dataset (compared with the manual ground truth).

Methods ACC (%) PRE (%) REC (%) DSC (%)

V-Net 99.66 ± 00.15 81.66 ± 05.22 15.90 ± 06.10 25.53 ± 08.77

U-Net 99.71 ± 00.12 65.34 ± 09.08 44.71 ± 09.31 51.70 ± 08.28

Dense-Net 99.69 ± 00.14 87.47 ± 03.89 22.74 ± 07.15 34.98 ± 09.06

DenseVoxel-Net 99.19 ± 00.21 29.17 ± 09.56 80.81 ± 05.18 41.13 ± 10.51

Our 99.73 ± 00.12 77.02 ± 06.06 41.23 ± 08.61 52.50 ± 08.18

4. Discussion
4.1. Ablation Experiment

Some ablation experiments were designed to assess effectiveness of data enhancement
and weighted loss function in this work. To test effect of data enhancement, all data were
extracted with lung mask as original dataset and binary cross-entropy loss function was
applied. One set of experiments used original data for training and testing. Data of another
experiment were calculated with data enhancement as enhanced dataset. Experiment
parameters of two experiments remained the same. By comparison, quantitative results are
revealed in Table 2. Based on ACC and PRE, both experiments obtained a high value. Even
PRE obtained from original data is 15% higher than that from enhanced dataset. However,
REC obtained from original data is only 26.86%. It can be judged that texture characteristics
of COVID-19 infection are suppressed due to interference of tissue in original data. Outputs
obtained through network usually get fewer positive cases at infection. Although most of
these positive cases belong to correct positive cases, they cannot effectively describe overall
infection profile. After data enhancement, infection features are enhanced, so that more
infection areas are judged as positive cases. Therefore, this is also the reason why DSC
obtained by original data is only 37.5%, which is much lower than that of enhanced data.

Since the DSC is the coincidence rate of the segmentation results and the manual
ground truth, it is a key indicator that reflects the performance of the segmentation method.
Based it, all data pixels are used as samples, and McNemar’s test [44] have verified the
results of data augmentation (Table 3). Var.1 indicates whether augmentation is used,
and Var.2 indicates whether the voxels overlap. Since p = sig. is much less than 0.01, the
difference between the two methods is very significant. Therefore, the data augmentation
can improve the performance. Details of the Var.1 and Var.2 crosstabulation is shown in
Table S3 of supporting information.

To verify quantitative conclusion, Figure 6 randomly shows two visualizations ob-
tained from enhanced data and original data. Where, Figure 6a shows output map from
network trained by original data. Relevant features are marked by blue boxed to highlight.
Figure 6b is output map by enhanced data. For convenience of observation, Figure 7
enlarges blue boxes in Figure 6 to display clearly. From visualization results, number of
positive cases in infection area from original data is less than that from enhanced data.
Additionally, the probability of many areas is lower. This is because infection feature is not
obvious which leads to unclear judgment of network. It may lead to wrong judgment as
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background area in next binary segmentation process, thereby reducing accuracy. However,
results from data enhancement also have shortcomings. For example, parts of the invasive
lesions are judged to be highly similar vascular structures (Figure 7b, the second column),
which may reduce infection area. Therefore, more scientific data enhancement methods are
still an important direction for our next exploration.

Figure 6. Two output maps from network. (a) is results trained by original data. (b) is results trained by enhanced data.
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Another ablation experiment was applied to verify the role of the loss function in the
method in this work. In experimental group and control group, lung region extraction,
data enhancement, and network parameters were consistent. Additionally, modulation
factors α and γ were discussed.

Tables 4–6 list quantitative results by focal loss function, weighted loss function, and
comprehensive comparison, respectively. For focal loss function, costs of positive and
negative samples are balanced by α parameters. When α ∈ [0, 1], cost of positive samples is
reduced to α times than the original, and the cost of negative samples is reduced to (1− α)
times than the original. In contrast, when α > 0.5, positive samples can get more cost, so
that network has more time to optimize positive sample. Therefore, Table 4 shows that
the best results are usually obtained at α = 0.8. γ parameter is mainly used to balance
cost of complex and simple samples. Here situation of γ = 1 and γ = 2 are discussed. By
quantitative assessment, performance of γ = 2 is better and stable.

Table 5 mainly discuss the parameters of weighted loss function. Different from
focal loss function, weighted loss increases cost of positive samples by (1 + α) times with
α ∈ [0, 1], while cost of negative samples is reduced by (1− α) times. This allows positive
samples to get more cost ratio and keep all cost steady, which makes network converge
stably while pay more attention to target area. If parameters are appropriate, cost of
negative samples will not decrease too much, which prevents network from converging
too fast and oscillating near the minimum point. From experimental results, α = 0.8 is a
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better balance. At the same time, due to the influence of γ parameter on cost, weighted
loss function has a relatively reliable result at γ = 1.

Figures 8 and 9 shows loss convergence of three loss functions in the first 100 steps.
For convenience of observation, the ordinate adopts a logarithmic coordinate, and base
is 2. Where, Figure 8 highlights the relationship between focal loss function and binary
cross-entropy loss function. It can be clearly observed that cost of focal loss function drops
fast and quickly reaches a relatively stable level. Further, as weight of positive sample
increases and weight of the negative sample decreases, trend of this cost reduction will
become greater. When facing a sample with a small proportion of positive samples, the
weight of the positive and negative samples and the overall cost need to be rebalanced.
Figure 9 is the relationship between weighted loss function and binary cross-entropy loss
function, where weighted loss function will increase weight ratio of the positive sample to
the negative sample while α increases. Similarly, as the number of positive samples is small,
it causes overall cost to gradually decrease. Eventually, it will face the same contradiction
as focal loss function, so α value needs to be adjusted appropriately. In addition, the overall
loss will increase to cause more training cost with γ = 2. After discussion of this work,
appropriate results are obtained for α = 0.2 and γ = 1.
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To comprehensively discuss binary cross-entropy loss function, focal loss function, and
weighted loss function, Table 6 compares results with representative parameters and binary
cross-entropy loss function. Comparison shows that on the basis of focal loss function,
by changing cost of positive, negative, complex and simple samples, performance can
be effectively improved, especially on data where positive and negative samples do not
match completely. Therefore, segmentation of vessels, tumors, nodules, and other small
tissues are also the same common problem as this work. However, focal loss function
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will reduce cost of all samples, causing cost to quickly decrease to a small value, which
may lead network to be difficult to continue to effectively converge in subsequent training
process. Therefore, weighted loss function recalculates cost calculation method for positive,
negative, complex, and simple samples, thereby further improving result on the basis
of focal loss function. Figure 10 introduces output map of four randomly data. Starting
from Figure 10a to Figure 10h, they are original CT images, the manual ground truth,
results of binary cross-entropy loss function, focal loss (0.8, 1), focal loss (0.8, 2), weighted
loss (0.8, 1), weighted loss (0.8, 2), and weighted loss (0.2, 1). In visualization results, the
positive sample area from binary cross-entropy loss function is dark. It can be judged that
the same cost weight is difficult to effectively increase output value of target area on data
with positive and negative sample imbalance. It is because the cost change obtained by
calculating the positive sample is much smaller than the cost obtained by calculating the
negative sample.
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problem, the image segmentation task is a pixel-level processing. Inspired by [48], we de-
fine expected calibrated error (ECE) as follows: 

 Figure 10. Output maps of four randomly data. (a) is original CT images. (b) is the manual ground truth. (c) is results using
binary cross-entropy loss function. (d) is results using focal loss (0.8, 1). (e) is results using focal loss (0.8, 2). (f) is results
using weighted loss (0.8, 1). (g) is results using weighted loss (0.8, 2). And (h) is results using weighted loss (0.2, 1).

Other visualization results increase ratio of positive sample cost to a certain extent un-
der adjustment of weight, which makes their positive sample area is brighter than that from
binary cross-entropy loss function. It has more advantages in the next binary segmentation.
The main difference between them is the degree of calculation for negative samples. For
example, because rapid decrease in cost reduces subsequent training efficiency, background
from focal loss function (Figure 10d,g) is relatively gray. In Figure 10g, background area
is also gray. This is because the number of negative samples is large. Increasing γ value
will make cost of negative sample grow faster than positive sample, causing them to be
unbalanced again. Therefore, it is very important to choose appropriate parameters.

4.2. Performance Assessment

This work evaluated accuracy of the proposed method by comparing with different
work. Results of this work were obtained from 3D U-Net network model guided by
lung region extraction, data enhancement, and weight loss function. Two datasets tested
this work. As comparison groups, V-Net, U-Net, Dense-Net, and DenseVoxel-Net as
four common 3D networks were constructed. To improve their performance, all data
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in comparison groups are calculated with lung region extraction and data enhancement.
Finally, quantitative comparison on private dataset and public dataset is introduced in
Tables 7 and 9, respectively. It can be seen from comparison that results on private dataset
are better than results on public dataset. This is because labeling specifications of different
datasets are different. As the surrounding area of COVID-19 infection is usually spread
and blurred, it is impossible to effectively distinguish a clear boundary. Thus, labeling on
private dataset is mainly based on conservative outlines, with the purpose of accurately
identifying and locating COVID-19 infection. Contrastingly, labeling of public dataset is
mainly based on accurate coverage of COVID-19 infection. Label area needs to cover all
infection ranges, so it usually crosses actual infection boundary. This leads to reason that
PRE on public dataset is significantly higher than that on private dataset, but REC is smaller
than the private dataset. It proves that positive cases of outputs are mainly concentrated in
target area.

Moreover, we conducted statistical tests on the results in Table 7. We have carried out
Pearson Chi-Square, Likelihood ratio, Linear-by-Linear, and Association [44] based on the
DSC. So, the Chi-Square tests for different models are shown in Table 8. The p-value of all
statistical tests is far less than 0.01, so there is a significant statistical difference. Details of
the Var.1 and Var.2 crosstabulation is shown in Table S4 of supporting information.

In addition to the indicators mentioned above, calibration is also an important factor
in evaluating network models [45–47]. Different from the machine learning classification
problem, the image segmentation task is a pixel-level processing. Inspired by [48], we
define expected calibrated error (ECE) as follows:

ECE =
M

∑
m

|Bm|
n
|PRE(Bm)− con f (Bm)| (14)

where PRE(Bm) represents the average PRE value in a Bm. con f (Bm) represents the average
of all probability values under this Bm. Bm is the interval divided by the probability value.
This study divides five Bm with a 0.2 gap. Different from [48], because the positive and
negative samples are unbalanced, any classifier can get a higher ACC value. Therefore, this
study replaces the PRE that judges the positive class as the observation value. So, the ECE
is implemented in Table 7. From their ECE value, the models have achieved lower ECE,
indicating that the neural network has good calibration. The output of the proposed model
can match its confidence.

By comprehensive analysis, the proposed method has certain advantages in two
datasets, which verifies that it is stable and generalizable. Since this work proposes a
global 3D reconstruction, it can have a more complete global digital information than
2D segmentation and local patch segmentation. In the existing mainstream 3D network
architecture, 3D U-Net is a lightweight and cost-effective network. Combined with data
enhancement and loss function proposed in this work, it has certain clinical potential.

4.3. Limitations and Outlook

There are also some limitations to this study. Based on the proposed weighted loss
function, the parameter ratios discussed are not absolute, and the optimal results may
change under other datasets. Therefore, in the next stage, a good idea is to change the α
and γ parameters to be learnable. We believe it will be able to adapt to more application
areas. Therefore, this work can establish a quantitative model for the infection in COVID-19
CT images, which is helpful to assist the use of computers in the next stage to complete
the needs of intelligent diagnosis. In addition, the proposed network model and method
is a universal method, which can be extended to other application fields, especially other
respiratory diseases. We will seek the law of various lung CT images in the next task, not
limited to COVID-19.
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5. Conclusions

This work proposed a method for extracting infection from COVID-19 CT images.
It mainly included lung region extraction, data enhancement, and convolutional neural
network segmentation. In the process of lung region extraction, a Random Walk strategy
based on threshold and spatial location can distinguish complicated lung boundary prob-
lems caused by infection; In addition, through inhibiting structures such as vessels and
tracheas, it can reduce interference of tissues in lungs; Finally, a new network DW-UNet
based on weighted loss function was proposed, which can balance the cost of all samples,
making the training process of convolutional neural networks more reliable.

The proposed loss function can solve actual situation of imbalance between positive
and negative samples, which will be applied to extraction of small tissues such as infection,
nodules, and vessels in medical images. When facing different applications, results can
be more reliable by adjusting parameters and selecting appropriate network, which also
provides a new direction for convolutional neural network processing of medical images.
Notably, the proposed data enhancement is dominated by vessels and tracheas throughout
lung, but it may also cause partially spreading filamentous infection to be misjudged as
vascular tissue. Therefore, how to distinguish filamentous spread of blood vessels, trachea,
and infection provides a direction for further research.
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