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GIS‑based precise predictive 
model of mountain beacon sites 
in Wenzhou, China
Lifeng Tan1, Bei Wu2*, Yukun Zhang2 & Shuaishuai Zhao2

In ancient China, where was frequently troubled by invaders, the government set up many beacon 
towers for alerting and transmitting military information along the border and the coast. Many 
beacon sites still exist in some areas, which are generally located in dangerous places with high 
mountains and rough terrain, bringing great difficulties to archaeological discovery. Therefore, it 
is particularly important to develop a predictive model applicable to the distribution of mountain 
beacon sites. Taking 68 beacon sites found in Wenzhou as research samples, this study used the 
superimposed method of logistic regression and viewshed analysis, forming a high-precision, scientific 
and operational predictive model for the distribution of beacon sites, which was verified by the 
cross-validation method. The results showed that the beacon site predictive model simulated in this 
study could reduce the probability scope of site location by 90% compared with the common logistic 
regression predictive model, which greatly improved the accuracy and ability of site prediction. At the 
same time, it could also be used to understand the relationship between the known sites and their 
surroundings to assist in decision-making about conservation and management.

Cultural heritage, as a witness of history, is a precious treasure left to mankind by history. In the coastal areas of 
China, there are many beacon tower remains, which were high platforms used to light fires to convey messages in 
ancient times, built to prevent enemy invasion. Beacon tower (烽燧, Feng Sui), the fastest and most effective way 
to transmit military information in the cold weapon era, has a long history in China1. According to the Records 
of the Grand Historian, there were beacon towers as early as the Western Zhou Dynasty, and the beacon system 
was quite mature during the Han Dynasty and reached its peak during the Tang Dynasty, following which it was 
used throughout the Song to Qing Dynasties2. Before the emergence of modern communication technology, 
beacon towers had been valued by successive Chinese dynasties as ancient but effective military communication 
tools and were commonly placed in border areas. In the Ming Dynasty, the coastal areas were constantly invaded 
by remnant rebel forces and Japanese pirates, and the maritime situation was extremely severe. To anticipate 
the invasion of enemies and take timely precautions, the Ming government constructed beacon towers along 
the coast as indispensable coastal defense facilities to resist enemies. When enemies occurred, smoke was burnt 
during the day, called "Feng", and fire was lit at night, called "Sui", so that the beacon towers were connected to 
convey information3. Once the enemy appeared, the garrisons of the beacon towers would quickly light the fire 
to report important military information so that the message of invasion could be spread one by one at the fastest 
speed until the soldiers in the nearby forts found it. Beacon towers, together with forts, played a vital role in the 
struggle against Japanese pirates on the coastline. Therefore, a systematic study on the distribution of beacon 
towers is a prerequisite and necessary process for the exploration of coastal defense systems. To obtain a good 
view and expand its coverage as much as possible, beacon towers were usually built-in places with high altitudes 
and wide vision. Therefore, there are many beacon sites on the mountaintops and high hills in coastal areas. 
However, over the course of history for centuries, beacon sites have gradually faced extinction due to natural 
erosion and man-made vandalism. Thus, it is exceedingly significant to discover these beacon sites as soon as 
possible and implement scientific and effective conservation measures.

However, the discovery of mountain beacon sites is time consuming and labor consuming. Owing to their 
long history, remote location, vegetation coverage, dilapidated condition and small dimension, beacon sites are 
difficult to investigate so that archaeologists usually acquire site information by asking local residents, consulting 
materials and combining field investigations. However, in fact, few local residents truly know about the beacon 
sites, so the useful information that can be obtained through inquiry is very limited, which poses great difficulties 
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to archaeologists. According to the local archaeologists, the mountainous terrain in Wenzhou was complex and 
rugged, with tight vegetation coverage. In most cases, they could not rely on transportation tools, and the only 
way to reach the mountaintops was by walking. In extreme weather conditions, there are also many potential 
dangers. Even after overcoming those physical difficulties, there was no guarantee that new beacon sites would 
be found in each survey, which greatly reduced the efficiency of archaeological work and was very detrimental 
to conservation work. Therefore, we intend to simulate a predictive method for the distribution probability of 
mountain beacon sites to solve these difficulties, reduce the research workload, and improve the efficiency of 
the site survey.

Site probability prediction based on the assumption that the distribution of sites was not random but was 
related to specific characteristics of the natural environment and factors associated with human activity and 
norms of human behavior in the past4. Over the years, the most commonly used method of site probability 
prediction has been to build a mathematical model in the research area and calculate the probability values that 
the site may exist in an unknown area by analyzing the data of known samples5. This research originated in the 
1950s, when Willey (1953) first applied the predictive model to the regional settlements of Weilu Valley, providing 
insight into the relationship between site and environment through qualitative analysis6. In the 1970s, quantitative 
analysis emerged, and Green (1973) used multiple linear regression to predict the probability of the existence 
of prehistoric Mayan sites in Northern British Honduras, laying the groundwork for the subsequent application 
of site predictive models to cultural resource management7. Thanks to the development of computer science, 
the two disciplines of statistics and spatial analysis skillfully combined in the 1980s led to great advances in site 
predictive research. Kvamme (1983) was the main advocate of this technique, and he proposed an approach for 
regional modeling of archaeological site locations based on computer processing techniques applied to digital 
elevation data8. Subsequently, books written by Kohler (1988), Judge & Sebastian (1988) and Kvamme (1988) 
were published, which were highly influential at that time9–11. Entering the 1990s, with the emergence of rel-
evant computer software and the continuous promotion of Geographic Information Systems (GIS) in the field 
of archaeological research, the research methodologies gradually diversified. Märker & Heydari-Guran (2009) 
used data-mining techniques to predict Paleolithic site locations in the Zagros Mountains of Iran12. Casarotto, 
et al. (2011) proposed a predictive model to simulate an ancient landscape in the Eastern Lessinia by exploit-
ing GIS suitability maps and multi-criteria target analysis13. Dorothy Graves (2011) developed a site predictive 
modelling using Logistic Regression method to target Neolithic settlement and occupation activity in mainland 
Scotland14. Scientific and sophisticated predictive means had vigorously developed site predictive research in 
terms of both depth and breadth15–18.

Constructing a site predictive model is a complex task that requires effective methodology, appropriate param-
eters, and a scientific approach of validation19. Statistical regularities and distribution characteristics of known 
sites are identified first based on the analysis of environmental factors in the given area, such as altitude, slope, 
distance from transport system or hydrographic net; then, a multivariate discriminant function is adopted to 
assess the existence probability of other sites in this area, giving a potential site distribution map20. The applica-
tion of quantitative analysis makes the study of human-land relationships more accurate and scientific, among 
which the most widely used is the logistic regression analysis method21. This approach is frequently conducted as 
a useful tool for archaeological investigations, not only providing an important decision support system to obtain 
usable information but also saving time and money, especially in large areas21. Based on the previous research, 
this study will construct a precise predictive model applicable to the mountain beacon sites by identifying the 
causal relationship between certain environmental characteristics, human activities and known sites.

Materials and methods
Study area.  The Wenzhou (温州) area was chosen as the study area, including the inner city of Wenzhou, 
as well as the counties and villages under its jurisdiction, with a total area of approximately 12,110 km222. Wen-
zhou is located in East China, southeast of Zhejiang Province, lower reaches of the Ou River, bordering the East 
China Sea to the east and Fujian Province to the south, which is one of the nationally famous historical and 
cultural cities (Fig. 1a). Being a coastal city, Wenzhou had been a key place for military defense throughout its 
history. Especially in the Ming Dynasty, Wenzhou was heavily infested by Japanese pirates with an extremely 
serious situation, so 58 beacons were built in Yueqing County, Rui’an County and Pingyang County along the 
coast of Wenzhou to prevent and resist enemies and were increased in the late Ming and Qing Dynasties23. By 
far, archaeologists have discovered 68 beacon sites in the Wenzhou area (Fig. 1b), most of which have fallen 
into disrepair. The materials used to build the beacon towers were all taken from nature, mostly made of clay 
and gravel, and rammed layer by layer; some were piled up with bricks and stones, with square, rectangular and 
round shapes. These beacon sites are historical evidence of Zhejiang coastal people’s bravery in fighting against 
Japanese pirates. Based on the known data, this study will simulate a predictive method applicable to Wenzhou’s 
mountain beacon sites.

Methodology.  The site selection of mountain beacon towers was not random, but was a result of logical 
decisions based on geographical considerations and factors related to human activity. Most of them were found 
on the mountaintops along the traffic arteries between the forts or on the high hills of the coastal peninsula, 
where were easy to look out. Moreover, due to the requirement of visual factors, beacon towers were placed to 
ensure the accessibility of sightlines. Considering the two factors of geography and vision, we proposed to adopt 
the superimposed method of logistic regression and GIS viewshed analysis to simulate beacon sites’ location 
preferences. Theoretically, this method can effectively improve the prediction accuracy and further narrow the 
possible scope of unknown beacon sites compared to the single logistic regression predictive method commonly 
used in the past. The working flow pursued the following steps (Fig. 2): (1) The historical construction charac-
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teristics and distribution features of known beacon sites were analyzed to screen out the natural and cultural 
factors affecting their positions in space; (2) logistic regression analysis was integrally conducted on the beacon 
sites, nonsites (a concept introduced to represent locations where sites were not found) and multiple independ-
ent variables, establishing a GIS calculation model for predicting the discovery probability of unknown sites in 
the given area; (3) the accuracy of the result was verified by the cross-validation method; and (4) GIS viewshed 
analysis was superimposed on the previous result to obtain the final prediction result of unknown beacon sites.

Data sources and extraction.  The data used to build the predictive model of mountain beacon sites consisted of 
two groups: the experimental samples (dependent variables) and the environmental factors (independent vari-
ables). First, 168 experimental samples in the survey area were required to study the probability of the depend-
ent variables, including 68 sites and 100 nonsites. The number of experimental samples depends on the size of 
the study area, usually making the spatial distribution density of sites and nonsites equal. The data of beacon 
sites were collected from the survey data of the Wenzhou Institute of Cultural Relics and Archaeology (Fig. 1b), 
and the nonsites were randomly introduced specifically for the predictive model. Conceptually, all the locations 
where sites were not found can be used as nonsites, so the "Create Random Points" tool of ArcGIS software was 
used to generate 100 random points as nonsites of the experimental samples. In this study, the experimental 
samples consisted of 68 discovered beacon sites, and 100 randomly acquired nonsites.

The independent variables related to the construction of the predictive model required to be screened out. 
For the independent variables, natural and cultural factors such as altitude, slope, distance, etc., that potentially 
influenced the spatial distribution of the sites, were integrated into the predictive model. The selection of inde-
pendent variables was mainly determined by the mode and features of beacon transmission during the Ming 
and Qing dynasties, combined with the distribution characteristics of existing sites.

Wenzhou is mostly mountainous, and the terrain generally shows the features of high inland and low coastal 
areas; hence, the topographical parameters were mainly considered for natural variables. The survey data showed 
that the discovered beacon sites were mainly located in the coastal area and on the top of the hill with a good 
view to facilitate the information transmission among beacon towers. In addition, considering the delivery of 
living supplies and smoke-burning materials, the locational selection of the beacon towers must also consider 
the easy access. Therefore, the altitude, slope, aspect and topographic relief, that may be linked to their locations, 
were taken as alternative independent variables for further screening.

Except for topographical factors, the distribution of beacon sites was also probably influenced by cultural 
factors related to human activity. For example, because the beacon tower relied on smoke to transmit, only the 
neighboring beacon tower or fort was set within its viewing range so that the information could be transmitted 
one by one until the soldiers of forts received it, so the distance from nearest beacon tower or fort was inevitably 
under consideration when constructing the beacon system. Similarly, due to the need for convenient access to 
materials and resources, the distance between beacon towers and main traffic routes might also be one of the 
factors to be measured. Therefore, the cultural variables considered in this study mainly included two variables, 
namely, the distance from traffic routes and the distance from the nearest beacon tower or fort.

In general, six alternative independent variables were selected in this study for further screening, and the 
relevant data could be extracted using GIS spatial analysis tools (Table 1). Variables related to natural factors, 
including altitude, slope, aspect and topographic relief, were extracted from the Digital Elevation Model (DEM) 
data of the Wenzhou area, provided by the Geospatial Data Cloud site, Computer Network Information Center, 
Chinese Academy of Sciences (http://​www.​gsclo​ud.​cn); variables linked to cultural factors, including the distance 

Figure 1.   Study area: (a) location of Wenzhou (provided by Ministry of Natural Resources of China, Approval 
number: GS(2019)1673); (b) distribution of beacon sites (generated by the authors using ArcGIS 10.3.1).

http://www.gscloud.cn
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Figure 2.   Working flow chart for the prediction of beacon sites in Wenzhou.

Table 1.   Alternative independent variables. Topographic relief and slope were the main two factors 
considered in the calculation of cost distance, and the equation used to calculate the cost distance was “cost 
distance = topographic relief × 0.4 + slope × 0.6”24.

Type Independent variables Data sources Spatial resolution (m) Coordinate system Calculation method

Natural factors

Altitude

DEM

28.07, 28.07
Geographic coordinate system: 
GCS_WGS_1984
Projected coordinate system: 
WGS_1984_UTM_Zone_50N

–

Slope ArcGIS → slope

Aspect ArcGIS → aspect

Topographic relief ArcGIS → block statistics

Cultural factors
Distance from traffic routes Routes of urgent delivery stations 

in the Ming Dynasty23 ArcGIS → cost distance

Distance from nearest beacon 
tower or fort

Beacon sites data, military forts 
data in the Ming Dynasty23 ArcGIS → near analysis
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from traffic routes and nearest beacon tower or fort, were derived from the historical literature23. By superimpos-
ing the vector data of traffic routes, beacon towers and forts data with DEM data, extracting through GIS analysis 
tools, the raster data of each alternative independent variable required in this study were obtained (Fig. 3).

Independent variables screening.  In the second stage, the alternative independent variables were screened by 
statistically analyzing the degree of correlation between beacon sites, nonsites and each alternative environmen-
tal variable, and those that are significantly correlated with the locational choice of beacon sites, were considered 
as the independent variables. For the five factors of altitude, slope, aspect, topographic relief and distance from 
traffic routes, superimposing the raster data with the distribution map, the attribute values of all the 68 beacon 
sites and 100 nonsites were extracted using the "Extract Multi Values to Points" tool of ArcGIS software. The 
distance from the nearest beacon tower or fort was calculated by the "Near Analysis" tool of ArcGIS software 
(Supplementary Table S1 and S2). The results obtained were analyzed by Bulked Segregant Analysis method25. If 
the data of an alternative independent variable showed obvious aggregation at the sites and random or opposite 
distribution at the nonsites, the factor was significantly associated with the locational choice of beacon sites and 
was screened as the independent variable of the study.

Logistic regression and modeling.  After identifying the dependent and independent variables, logistic regres-
sion analysis was carried out with the Statistical Product and Service Solutions (SPSS) software. Logistic regres-
sion is a nonlinear categorical statistical method used in regression analysis of qualitative variables, and later 
popularized and widely used in population statistics and prediction26. According to the differences in dependent 
variables, logistic regression can be divided into binary logistic regression and multinomial logistic regression. 
Binary logistic regression, in which the dependent variable can only take values 0 and 1, has the advantage of 
dealing with multiple types of independent variables such as classification, sequencing and distance fixing at 
the same time, which is suitable for analyzing complex variables and the interactions among them27. Multino-
mial logistic regression has three or more dependent variables, which can be regarded as several binary logistic 
regressions and is suitable for complex cases with multiple dependent variables28. In this study, the dependent 
variables were only nonsites and sites, i.e. 0 and 1, so the binary logistic regression method was adopted to quan-
titatively analyze the locational preferences of beacon sites in the Wenzhou area.

According to the rule of binary logistic regression modeling, the existing probabilities of beacon sites were 
translated using a sigmoid cost function to values in the range of [0, 1], as presented in Eq. (1)29.

where P is the probabilities of the existence of beacon sites; z is the linear combination, obtained from Eq. (2).

where α is a constant term, indicating the natural logarithm of the ratio when the independent variable takes 
the value of 0; xn refers to the independent variables affecting the distribution of sites; and βn is the regression 
coefficient of the logistic regression.

However, when the number of alternative independent variables is large, the variables may have a high 
correlativity, and some of them may not have a significant effect on the dependent variable. Hence, the target 
variables need to be screened for significance in the logistic regression analysis. The "Backward: LR" algorithm 
of SPSS software can automatically screen and eliminate variables with low significance relationships with the 
model and carry out iterative calculations to arrive at the ideal model parameters.

With that, a predictive model of the beacon sites was generated using the Map Algebra operation. Map algebra 
is a high level spatial modeling language that conducts mathematical operations on multiple elements of spatial 
scope30, and can be conducted by the “Map Algebra” tool in the ArcGIS software. Through Eq. (1), a locational 
probability map of the beacon sites in the Wenzhou area was obtained.

Model validation.  After establishing the predictive model, the validity and accuracy of the predictive model 
was evaluated. To meet this requirement, this study used the cross-validation method to evaluate the accuracy 
of the predictive model. Cross-validation is a statistical method based on the idea of data slicing, in which the 
whole dataset is split into several datasets according to the actual needs31. In this study, we divided the beacon 
site dataset into two groups, one of which was used as the training sample and the remaining as the validation 
sample. To ensure the spatial distribution density of training samples and nonsites equal, we selected 85% of sites 
as training samples in this study, that is, 58 sites were taken as training samples, and the remaining 10 sites were 
used as validation samples. Additionally, considering the homogeneity of the samples and further calculations, 
the sites in the uniformly distributed areas were selected as validation samples.

Viewshed analysis.  Having confirmed the validity of the predictive model, a further analysis was then per-
formed on this basis to precisely determine the prediction range. Due to the influence of visual factor, the beacon 
towers must be set up within the effective visual range of each other, so as to form one or more coherent informa-
tion flows and serve as a qualified enemy alerting system. Thus, the beacon towers must be in places that not only 
meet the requirements of terrain and resources but also ensure the safety and no obstruction of the sightline. 
Based on that, the "Viewshed" tool of ArcGIS software was used for superimposed analysis. The fundamental 
principle is as follows: assuming there are beacons A and B in a certain area and the sightline is obstructed, it can 
be concluded that there was a beacon C between A and B that has not yet been discovered. Then, by calculating 

(1)P =
e
z

1+ ez

(2)z = α + β1x1 + β2x2 + · · · .+ βnxn
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Figure 3.   Raster data of alternative independent variables: (a) altitude; (b) slope; (c) aspect; (d) topographic 
relief; (e) distance from traffic routes; (f) distance from nearest beacon tower or fort (generated by the authors 
using ArcGIS 10.3.1).
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the viewshed of beacons A and B and superimposing the overlapping area with the high probability area of the 
sites, we can obtain the possible existence area of beacon C.

Finally, the final prediction result was obtained by superimposing the viewshed analysis result on the distri-
bution probability map of the beacon sites.

Results and discussion
The calculations and analyses were conducted sequentially following the steps in Fig. 2. The statistical results of 
independent variables screening are shown in Table 2 and Fig. 4. Results showed that the beacon sites locations 
were preferred in terrain areas with altitude 0–300 m, slope 0–15°, and topographic relief 0–300 m, whereas 
showing no obvious preference for aspect; the distances from traffic routes are relatively close, mostly reachable 
within 10,000 m; and the distribution of beacon sites is relatively concentrated, mostly within 6000 m apart. While 
nonsites locations showed a random or opposite distribution pattern compared with sites. This suggested that the 
locations of beacon sites presented a greater correlation with altitude, slope, topographic relief, distance from 
traffic routes and nearest beacon tower or fort, while there was no obvious correlation with aspect. Therefore, in 
this study, altitude, slope, topographic relief, distance from traffic routes and distance from nearest beacon tower 
or fort were taken as independent variables in the predictive model of beacon sites.

With the aim of verifying the accuracy of the predictive model, this study divided beacon sites into two 
groups, ten sites for validation samples and 58 sites for experimental samples, as detailed in “Model validation”. 
Extracting data on altitude (X1), slope (X2), topographic relief (X3), distance from traffic routes (X4) and dis-
tance from nearest beacon tower or fort (X5) of the 58 beacon sites and 100 nonsites in the experimental samples 
(Supplementary Table S3), a binary logistic regression analysis was conducted (Table 3).

The calculation result indicated that although slope was one of the influencing factors of beacon tower dis-
tribution, the significance was not high in the model. Therefore, the final predictive model contained four inde-
pendent variables, namely, altitude (X1), topographic relief (X3), distance from traffic routes (X4) and distance 
from nearest beacon tower or fort (X5).

The final locational probability map of the beacon sites in the Wenzhou area generated using Eq. (1) and it 
was classified into three probability classes: low (0–0.75), high (0.75–0.95) and very high (0.95–1) (Fig. 5). The 
extraction results of the probability values corresponding to the 10 validation samples, are shown in Table 4; the 
probability values corresponding to the 100 nonsites are shown in Supplementary Table S4. The data showed that 
all the 10 validation samples with probability values above 0.95, which were in the very high probability zone, 
indicated that the predictive model of beacon sites established in this study had a high efficiency and could be 
used for further research.

Next, the viewshed analysis was conducted. Since the distribution of beacon towers in the northern area of 
Wenzhou was relatively simple, this study selected the beacon towers within the jurisdiction of Jinxiang Wei 
in the southern area as a case for analysis (Fig. 6). Jinxiang Wei was the highest-ranking fort in the southern 
area of Wenzhou, and the military mobilization and war command of other forts within this area were under 
its administration, which was the final collection point for all kinds of military information. There were seven 
known experimental beacon sites, two validation sites and one fort site in the study area. Taking each site point 
as the observation point, the visible conditions among the sites were calculated by viewshed analysis, and the 
statistical results are shown in Table 5.

Through the preliminary viewshed analysis, it was found that the distance between the two beacon towers con-
nected by sight is within 4 km, transmitting information to Jinxiang Wei from the southwest and southeast direc-
tions separately, which created a precise intelligence network. Among them, the Beishan beacon was within the 
visual area of Jinxiang Wei, and the Fenghuang beacon could also indirectly transmit information to Jinxiang Wei 
via the Beishan beacon. However, the transmission route between the Dayandun beacon and Jinxiang Wei and 
the transmission routes between the Lingtou beacon, Nanshan beacon and Beishan beacon were blocked so that 
the information from the Xiaoyandun beacon and Ma’anshan beacon could not be transmitted to Jinxiang Wei. 
Therefore, it was judged that other beacon towers that were not yet found might exist in areas A and B (Fig. 7).

The viewshed areas of Jinxiang Wei and Dayandun Beacon (Fig. 8a) and the viewshed areas of Nanshan Bea-
con, Lingtou Beacon and Beishan Beacon (Fig. 8b) were superimposed to obtain the possible existence areas of 
beacon sites in terms of visual factors.

By superimposing the viewshed analysis result on the distribution probability map of the beacon sites (Fig. 6), 
the final prediction result of beacon sites in the Jinxiang Wei area was obtained (Fig. 9a). To verify the accuracy 
of the final prediction result, we projected the validation samples of beacon sites onto the final probability map 
(Fig. 9b), and it could be seen that the actual beacon site locations basically matched the final prediction result, 
which demonstrated the practicability of the predictive method constructed in this study.

In addition, the following conclusions can be drawn from this study: (1) by comparing the final prediction 
result obtained after superimposing viewshed analysis (Fig. 9b) with the single logistic regression prediction 
result (Fig. 6), it was found that the predictive scope is reduced by more than 90%, which greatly improved the 
accuracy and predictive ability of site prediction and can provide decision-making guidance for archaeologi-
cal excavation work to a certain extent, thus effectively saving manpower and material resources, reducing the 
blindness of archaeological work, and yielding twice the result with half the effort; and (2) during the research 
process, the independent variables that have a significant influence on the establishment of the predictive model 
can be screened out through data extraction and statistical analysis, and all those variables have been regarded as 
important environmental factors that influence ancient humans’ residential choices by researchers in archaeo-
logical research. The results of GIS spatial analysis and logistic regression analysis suggested that the locational 
selection of beacon sites in Wenzhou was significantly influenced by traffic routes, followed by topographic relief 
and altitude, while slope did not have strong effects on site distribution. Moreover, the rules of siting for beacon 
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towers in ancient times could also be inferred: the ancient people attached great importance to building beacon 
towers in areas with wide vision and small topographic relief, not only could get a good view, easy to look out but 
also convenient for construction; additionally, they also preferred locations near transportation system, where 
enemy activities were frequent, to monitor their movements and to quickly transmit alerts to military forts for 
timely decision making and counterattack organization.

Table 2.   Beacon sites and nonsites distribution statistics.

Factors
Interval 
partition

Number 
of sites

Percentage of the 
total sites (%)

Number of 
nonsites

Percentage of the 
total nonsites (%)

Altitude (m)

0–100 21 30.88 17 17

100–200 23 33.82 10 10

200–300 15 22.06 13 13

300–400 6 8.82 11 11

400–500 2 2.94 8 8

500–600 0 0 7 7

600–700 1 1.47 17 17

 > 700 0 0 17 17

Slope (°)

0–5 11 16.18 9 9

5–10 27 39.71 12 12

10–15 20 29.41 17 17

15–20 5 7.35 21 21

20–25 2 2.94 11 11

25–30 3 4.41 14 14

 > 30 0 0 16 16

Aspect

Flat 0 0 3 3

North 4 5.88 17 17

Northeast 11 16.18 1 1

East 9 13.24 15 15

Southeast 10 14.71 10 10

South 9 13.24 18 18

Southwest 9 13.24 9 9

West 10 14.71 12 12

Northwest 6 8.82 15 15

Topographic relief (m)

0–100 28 41.18 17 17

100–200 17 25 9 9

200–300 14 20.59 14 14

300–400 6 8.82 11 11

400–500 2 2.94 7 7

500–600 0 0 8 8

600–700 1 1.47 16 16

 > 700 0 0 18 18

Distance from traffic routes (m)

0–2000 20 29.41 5 5

2000–4000 11 16.18 3 3

4000–6000 12 17.65 6 6

6000–8000 13 19.12 6 6

8000–10,000 8 11.76 3 3

10,000–15,000 4 5.88 9 9

15,000–20,000 0 0 10 10

 > 20,000 0 0 58 58

Distance from nearest beacon tower or 
fort (m)

0–2000 30 44.12 0 0

2000–4000 25 36.76 2 2

4000–6000 9 13.24 4 4

6000–8000 3 4.41 6 6

8000–10,000 1 1.47 6 6

10,000–15,000 0 0 7 7

15,000–20,000 0 0 12 12

 > 20,000 0 0 63 63
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Of course, the shortcomings of the method used in this study must be recognized: (1) the independent vari-
ables selected in this study are limited. The site selection of beacon towers might be closely related to military, 
politics, Fengshui, climate and other factors, which are difficult to extract quantitatively, so they are not consid-
ered influencing factors in this study; (2) there are some constraints in data acquisition. The research object was 
in ancient times, but ancient data could not be obtained, so modern data were used as a substitute; moreover, 
there were some human errors in data vectorization. If it is possible to obtain more accurate and reliable data, the 
prediction result will be more scientific and can further improve the reliability of the research; (3) the nonsites in 
the experimental samples come from the random points generated by ArcGIS software, among which are likely 
to be beacon sites waiting for excavation. When they act as nonsites in the predictive model, it will have a weak 
impact on the accuracy of the final prediction results. In addition, there might be some inevitable subjective 
factors when classifying the training and validation samples; and (4) there are certain limitations of the views-
hed analysis method, which is only applicable to the case in which the beginning and ending beacon sites of a 

Figure 4.   Beacon sites and nonsites distribution graphics.
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Table 3.   Predictive model parameters of beacon sites. β regression coefficient. S.E. standard error, Wald value 
used to test whether the independent variable has an impact on the dependent variable, df  degree of freedom, 
Sig. significance level, Exp(β) odds ratio32.

Variables β S.E. Wald df Sig Exp(β)

Step 1

X1 0.258051 0.103580 6.206711 1 0.012727 1.294404

X2 0.009176 0.043931 0.043627 1 0.834550 1.009218

X3 −0.252908 0.104060 5.906916 1 0.015082 0.776540

X4 −0.000343 0.000148 5.342546 1 0.020811 0.999657

X5 −0.000639 0.000169 14.214303 1 0.000163 0.999362

Constant 4.768720 1.462610 10.630323 1 0.001112 117.768459

Step 2

X1 0.258674 0.103840 6.205526 1 0.012735 1.295211

X3 −0.253382 0.104345 5.896675 1 0.015169 0.776171

X4 −0.000339 0.000147 5.303766 1 0.021279 0.999661

X5 −0.000640 0.000170 14.209285 1 0.000164 0.999361

Constant 4.851323 1.424890 11.591977 1 0.000662 127.909457

Figure 5.   Locational probability map of beacon sites in the Wenzhou area (generated by the authors using 
ArcGIS 10.3.1).

Table 4.   Probability values of the validation samples.

Validation samples 1 2 3 4 5 6 7 8 9 10

Probability values 0.992 0.999 0.999 0.995 0.999 0.987 0.952 0.999 0.999 0.999
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transmission route are known and the intermediate connection beacon site is missing. In contrast, it is impossible 
to make inferences by analyzing the viewshed of known beacon sites.

Nevertheless, the use of GIS and statistical methods has transformed archaeological research from qualita-
tive to quantitative analysis, and the quantification of data analysis has provided new perspectives for settlement 
archaeological research. The predictive method of Wenzhou’s beacon sites proposed in this study has a huge 
breakthrough in prediction accuracy and ability compared with previous predictive methods, which can nar-
row the possible area of the beacon sites to a smaller scope and establish a predictive model with more practical 
predictive ability.

Conclusions
In this study, 68 discovered beacon sites and 100 random nonsites in the Wenzhou area were taken as experi-
mental samples, which were divided into two parts: training samples and validation samples. Data extraction, 
statistical analysis and screening of each independent variable were carried out using GIS spatial analysis tools, 
and the distribution predictive model of beacon sites was established through logistic regression. On this basis, 
the viewshed analysis of the beacon sites was conducted according to their visual attributes to precisely deter-
mine the predictive scope, improve the accuracy and predictive ability of traditional prediction methods, and 
reduce the difficulty of archaeological work to the greatest extent possible. The results showed that the predictive 
method of beacon sites proposed in this study reduced the possible location scope by more than 90% and was 
proven to be scientific and reliable.

From the perspective of historical research, the predictive model can also be used to investigate the rela-
tionship between the beacon sites and various natural and cultural environmental parameters, revealing the 
deployment characteristics of mountain beacon towers and deepening the understanding of military heritage. 
In addition, for heritage management, the site predictive model has great potential for application. China has 
numerous cultural heritages, and even though three national relic surveys have been conducted, many sites are 
still missing. In the face of frequent infrastructure construction, finding ways to improve efficiency, save costs, 

Figure 6.   Viewshed analysis area (generated by the authors using ArcGIS 10.3.1).

Table 5.   Viewshed analysis results statistics of experimental sites. · means visible.

Sites Jinxiang Wei Fenghuang Beishan Lingtou Nanshan Ma’anshan Xiaoyandun Dayandun

Jinxiang Wei ·

Fenghuang ·

Beishan · ·

Lingtou · ·

Nanshan · ·

Ma’anshan · ·

Xiaoyandun ·

Dayandun ·
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and protect the sites, that have not yet been discovered and registered, is a serious problem. The site predictive 
model can be used to predict the probability of site discovery in unknown locations and assist in protection and 
management decisions. Moreover, regional systematic investigation for settlement morphology research has 
been widely carried out nationwide, which provides the basic conditions for the establishment of archaeological 
site predictive models in various places. Therefore, the application and promotion of archaeological predictive 
models in heritage conservation and infrastructure construction are not only necessary but also practical.

Figure 7.   Viewshed analysis (generated by the authors using ArcGIS 10.3.1).

Figure 8.   Viewshed analysis results: (a) the viewshed area of Jinxiang Wei and Dayandun Beacon; (b) the 
viewshed area of Nanshan Beacon, Lingtou Beacon and Beishan Beacon (generated by the authors using ArcGIS 
10.3.1).
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Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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