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Abstract

Can motor expertise be robustly predicted by the organization of frequency-specific

oscillatory brain networks? To answer this question, we recorded high-density elec-

troencephalography (EEG) in expert Tango dancers and naïves while viewing and

judging the correctness of Tango-specific movements and during resting. We calcu-

lated task-related and resting-state connectivity at different frequency-bands captur-

ing task performance (delta [δ], 1.5–4 Hz), error monitoring (theta [θ], 4–8 Hz), and

sensorimotor experience (mu [μ], 8–13 Hz), and derived topographical features using

graph analysis. These features, together with canonical expertise measures

(i.e., performance in action discrimination, time spent dancing Tango), were fed into a

data-driven computational learning analysis to test whether behavioral and brain sig-

natures robustly classified individuals depending on their expertise level. Unsurpris-

ingly, behavioral measures showed optimal classification (100%) between dancers

and naïves. When considering brain models, the task-based classification performed

well (�73%), with maximal discrimination afforded by theta-band connectivity, a hall-

mark signature of error processing. Interestingly, mu connectivity during rest out-

performed (100%) the task-based approach, matching the optimal classification of

behavioral measures and thus emerging as a potential trait-like marker of
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sensorimotor network tuning by intense training. Overall, our findings underscore the

power of fine-tuned oscillatory network signatures for capturing expertise-related

differences and their potential value in the neuroprognosis of learning outcomes.
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action observation, brain networks, graph theory, hdEEG, machine learning, motor expertise,
resting-state

1 | INTRODUCTION

From mirror neurons to extended action observation networks

(AONs), it is well-known that executing and observing others' actions

activates similar brain regions (Caspers, Zilles, Laird, & Eickhoff, 2010;

Hardwick, Caspers, Eickhoff, & Swinnen, 2018; Rizzolatti &

Craighero, 2004). Such sensorimotor activations are stronger for

actions within the observer's expert motor repertoire (Calvo-Merino,

Glaser, Grezes, Passingham, & Haggard, 2005; Calvo-Merino, Grezes,

Glaser, Passingham, & Haggard, 2006), likely reflecting anticipatory

resonant mechanisms rather than passive responses to visual stimuli

(Aglioti, Cesari, Romani, & Urgesi, 2008; Chen, Chang, Huang, &

Yen, 2020; Tomeo, Cesari, Aglioti, & Urgesi, 2013). This aligns with

current predictive accounts of action processing (Avenanti, Para-

campo, Annella, Tidoni, & Aglioti, 2018; Kilner, Friston, & Frith, 2007;

Paracampo, Montemurro, de Vega, & Avenanti, 2018; Urgen &

Saygin, 2020; Urgesi et al., 2010; Wilson & Knoblich, 2005),

suggesting that we use our sensorimotor system to predict other's

forthcoming actions. Yet, a crucial question remains unanswered: can

prior experience with perceived actions be robustly decoded from

brain activity? Here, we used a multi-feature approach considering

task-related and resting-state brain connectivity in critical frequency

bands (sensitive to task performance, error anticipation, and motor

expertise) and trained a machine learning classifier to evaluate

whether such signals could discriminate between expert Tango

dancers and naïves.

Focusing on system-level measures such as brain network con-

nectivity has many advantages. Given their uniqueness and stability

across brain states, individual patterns of functional connectivity can

be seen as trait-like markers of different cognitive and personality

aspects (van den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009). Network

fingerprints also differ in individuals depending on their level of motor

expertise (Amoruso et al., 2017; Muraskin et al., 2016; Pinho, de

Manzano, Fransson, Eriksson, & Ullen, 2014; Wang et al., 2016) and

other forms of individual experience (Birba et al., 2020), suggesting

that long-lasting training triggers plastic network reorganization. Nev-

ertheless, the role of neural networks as predictors of motor expertise

remains poorly understood. In particular, little is known about the role

of specific markers in expertise decoding, especially when compared

with signatures of domain-general processes. To bridge this gap, we

recorded high-density electroencephalography (hdEEG) signals (a) as

participants judged the correctness of Tango steps in naturalistic

videos and (b) while they underwent a resting-state condition.

In electroencephalography (EEG) research, error processing dur-

ing action observation is canonically indexed by mid-frontal theta (4–

8 Hz) modulations, with error magnitude being fine-graded mapped

by this activity (Pezzetta, Nicolardi, Tidoni, & Aglioti, 2018; Spinelli,

Tieri, Pavone, & Aglioti, 2018). On the other hand, action observation

has been linked to mu suppression (8–13 Hz) (Coll, Press, Hobson,

Catmur, & Bird, 2017; Debnath, Salo, Buzzell, Yoo, & Fox, 2019;

Pineda, 2005), an effect sensitive to expertise with observed move-

ments (Denis, Rowe, Williams, & Milne, 2017). Finally, more domain-

general functions across multiple tasks have been related to delta

activity (1.5–4 Hz) (Harmony, 2013), possibly indexing task engage-

ment and attention. Here, we capitalized on these EEG markers and

calculated graph-theory metrics of task-related and resting-state con-

nectivity in theta (θ), mu (μ), and delta (δ) to predict different compo-

nents of motor expertise. Overall, we sought to identify specific

network fingerprints of anticipatory error processing and sensorimo-

tor knowledge to decode expertise (while considering behavioral per-

formance as a canonical control predictor).

Based on previous evidence (Amoruso et al., 2014), we reasoned

that behavioral features would robustly classify individuals based on

their expertise. Furthermore, we anticipated that accurate classifica-

tion would also be yielded by expertise-sensitive brain network met-

rics. Specifically, we hypothesized that task-based classification would

reflect a mixture of expertise and domain-general brain processes,

while resting-state data would capture pure trait-like sensorimotor

expertise networks less vulnerable to potential confounds associated

to task-performance. In particular, we predicted that these selective

processes would be captured by specific oscillations, with theta

reflecting anticipatory error processing during action observation, mu

indexing sensorimotor expertise with Tango dancing, and delta involv-

ing task domain-general aspects. By testing these hypotheses, we

aimed to elucidate whether brain network signatures can predict dis-

tinct aspects of motor expertise and, thus, potentially contribute to

the neuroprognosis of learning outcomes (Gabrieli, Ghosh, &

Whitfield-Gabrieli, 2015).

2 | MATERIALS AND METHODS

2.1 | Participants

The study comprised 44 right-handed participants, as defined by the

Edinburgh Inventory (Oldfield, 1971), all from Argentina. Twenty-one
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were expert Tango dancers (M = 30.95 years old, SD = 5.7;

12 females) and 23 were naïve participants (M = 28.74 years old,

SD = 5.65; 12 females). The expert Tango dancers were recruited

from three top Tango Schools in Buenos Aires: DNI, Flor de Milonga,

and Divino Estudio del Abasto. Participants completed a standardized,

self-administered Tango expertise questionnaire (Amoruso

et al., 2014; Amoruso et al., 2017) with questions quantifying different

domains, such as Tango training, dance practice, and Tango teaching.

Key questions within the Tango training domain tapped on the

amount of intense practice time and monthly hours spent dancing

Tango—two reliable proxies of motor expertise as compared to daily

and weekly training hours, which can greatly vary across dancers

(Calmels, 2020). Immediately after the EEG recording session, partici-

pants also completed a debriefing questionnaire to evaluate their

motor expertise (i.e., frequency with which participants performed the

Tango figures observed during the task) and visual familiarity

(i.e., level of visual knowledge of the Tango figures observed during

the task). Importantly, on average, Tango dancers reported executing

the observed figures almost every day, while naïves reported never

having performed them. Similarly, dancers reported knowing all the

observed Tango figures, whereas naïves reported ignoring them all.

Thus, these measures further confirmed differences in motor and

visual expertise among dancers and naïves. Detailed information

about participants' expertise profiles and comparisons between

groups are shown in Table 1.

The two groups were matched for age, education, and sex. In

addition, we assessed dance-related relevant cognitive skills (Jola,

Abedian-Amiri, Kuppuswamy, Pollick, & Grosbras, 2012; Noguera,

Carmona, Rueda, Fernandez, & Cimadevilla, 2020), including executive

functions and empathy levels in both groups by means of a standard

frontal executive screening (Torralva, Roca, Gleichgerrcht, Lopez, &

Manes, 2009) and the Interpersonal Reactivity Index (Davis, 1980),

respectively. The groups' demographic and neurocognitive character-

istics are summarized in Table 2. All participants possessed normal or

corrected-to-normal vision and reported no history of neurological or

psychiatric disease. After receiving a complete description of the

study, participants provided written informed consent in agreement

with the Declaration of Helsinki and the Institutional Ethics'

Committee.

2.2 | EEG recordings and preprocessing

Figure 1 shows the experimental design and overall analysis pipeline.

HdEEG signals were recorded in a Faraday cage with a Biosemi Active

Two 128-channel 24-bit resolution system (Amsterdam, NLD), with

active electrodes, digitalized at 1024 Hz, and band-pass filtered

between 0.1 and 100 Hz. During recording, the reference was set as

default to link mastoids. Two bipolar derivations monitored vertical

and horizontal ocular movements. Data were obtained while partici-

pants performed a Tango dance-based action observation task

(Amoruso et al., 2014; Amoruso et al., 2017) and during a 10-min

eyes-closed resting period in which participants sat on a reclining

chair in a sound-attenuated room with a dim light.

After acquisition, signals were down-sampled off-line to 512 Hz

and re-referenced to the average of all electrodes. Then, the task-

related and resting-state recordings were segmented into 4-s trials.

Segments containing nonstereotyped artifacts and residual artifacts

larger than 100 μV were manually removed by visual inspection based

on their scalp topographies, time courses, and activation spectra using

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). Seg-

ments containing stereotyped artifacts (e.g., eye blinks, muscle activ-

ity) were detected and corrected by means of the Signal-Space

Projection (SSP) method (Uusitalo & Ilmoniemi, 1997). A minimum of

60 artifact-free segments per subject was retained for analysis. Impor-

tantly, no significant differences were observed (all p-values >.05)

between conditions or groups in terms of the number of trials used in

the task-related (experts: M = 103.43, SD = 32.26; naïves:

M = 101.14, SD = 33.45) and resting-state (experts: M = 109.45,

SD = 31.44; naïves: M = 113.17, SD = 27.06) analyses.

2.3 | Experimental stimuli and task procedure

Stimuli were naturalistic action videos (lasting �5,000 ms) showing a

couple of Tango dancers performing Tango Salon figures in a correct

or incorrect fashion. In the latter case, errors could be either gross or

subtle. Gross errors (e.g., stepping on the other's feet) were exagger-

ated disruptions that could be noticed by any person irrespective of

their experience with Tango dance. Subtle errors, on the other hand,

were mistakes representing step violations in the structure of the

figure (e.g., an incorrect close position of the feet) and thus

presupposed Tango knowledge for accurate recognition. Of note, we

used the same stimuli and action observation task originally reported

in Amoruso et al. (2014), where videos were statistically validated.

Briefly, in the pilot study, 10 professional Tango dancers (6 females,

mean age = 26.7, SD = 1.7) with a mean of �8.8 years of Tango

Sal�on (classic Tango dance style) training and 22 naïves (15 females,

mean age = 21.1, SD = 2.3) were asked to rate 330 original videos

depicting Tango steps. Participants were instructed to classify them

as “correct,” “masculine incorrect” or “feminine incorrect” by

selecting one of those possible options in a forced-choice question-

naire. In addition, using a 7-point Liker scale (1-totally correct to

7-totally incorrect), they rated the degree of correctness of each

video. Videos were selected based on the following criteria: high

accuracy (>80%) and high degree of correctness (<2) in both experts

and naïves for the congruent condition. The gross error condition

included those videos with high accuracy (>80%) and a very low

degree of correctness (> 5) in both groups. Finally, the subtle error

condition was built by selecting those videos with high accuracy

(>80%) and a moderate low degree of correctness (<4) only consider-

ing judgments from the Tango dancers group. This yielded 150 videos

(i.e., 50 per condition). A one-way ANOVA (F(4,14) = 1,193.9,

p <.001) on this selection further confirmed the appropriate manipu-

lation of action correctness, with congruent actions judged as being

more correctly performed than incongruent ones and, in this latter

case, with the subtle error condition judged more correct than the

gross one (all p-values <.001).
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The final 150 videos were presented twice for a total of 300 trials

(i.e., 100 per condition). Importantly, errors always involved leg/foot

actions and occurred �200 ms before video offset, the time at which

the last step to close the Tango figure began. When using this task in

Amoruso et al. (2014), we found expertise-related differences in an

ongoing wave indexing anticipatory activity (i.e., error anticipation)

starting �4,600 ms after video onset. Thus, we performed our task-

based analysis (see below) by selecting segments of �2,000 ms before

error onset, to include the timing in which those action prediction dif-

ferences were previously captured.

In a two-alternative forced-choice task, participants watched the

Tango steps and classified them into correct or incorrect as quickly

and accurately as possible. Performance in detecting gross and subtle

errors as well as correct video identification were further used as

behavioral features to feed the machine learning classifier (Table 3).

2.4 | Source reconstruction

We developed a source-based approach to connectivity. To estimate

the neural EEG sources, we selected 68 anatomical regions of interest

(ROI) derived from the Desikan Killiany atlas (Desikan et al., 2006),

implemented in Brainstorm software. Source activity was estimated

by using this toolbox's default brain anatomy, which consisted of the

segmented cortical surface (15,000 vertices) of the MNI/Colin27

brain. The head modeling was computed through the Open MEEG

Boundary Elements Method (BEM head model; Gramfort,

Papadopoulo, Olivi, & Clerc, 2010). Next, a noise covariance matrix

was calculated to estimate noise level in the recordings. The solution

space was constrained to the cerebral cortex, modeled as a three-

dimensional grid of 15,000 fixed dipoles oriented normally to the cor-

tical surface. Then, the inverse solution was estimated with the

weighted minimum norm estimation (wMNE; Hamalainen &

Ilmoniemi, 1994). Finally, we extracted the time series from the

68 ROIs as the average of all dipole's signals within each area of the

abovementioned atlas.

2.5 | EEG functional connectivity

The Imaginary part of Coherency (IC) was used to measure functional

connectivity between all 68 brain regions in the delta (1.5–4 Hz),

theta (4–8 Hz), and mu (8–13 Hz) rhythms. The use of IC was origi-

nally proposed by (Nolte et al., 2004) to remove the spuriousness cau-

sed by the volume conduction in EEG sensor-space coherence

analysis. The rationale behind this method is that “self-interactions”
caused by volume conduction are minimized, facilitating the interpre-

tation of this connectivity measure in terms of interactions within the

brain. IC is only sensitive to synchronizations of two processes which

are time-lagged to each other. If volume conduction does not cause a

time-lag, IC is hence insensitive to artifactual “self-interaction.” Thus,

using the IC, the zero-lag effect can be suppressed, because the real

part is the one mostly affected by this aspect.

Furthermore, to avoid problems related to volume conduction,

we first estimated the source-level (rather than sensor-level) activity

via wMNE (Shahbazi Avarvand et al., 2012). This allowed us to reduce

the effect of volume conduction together with the IC.

The IC was calculated with the following Equation (1):

TABLE 2 Demographic and cognitive profiles of Tango dancers and naïves

Experts (25) M(SD) Naïves (28) M(SD) p-value

Demographics Age (years) 30.95 (5.7) 28.74 (5.6) .203

Gender (M: F) 9:12 11:12 .74

Education (years) 18.38 (3.59) 17.95 (3.48) .693

IRI Perspective taking 27 (3.6) 25.13 (5.18) 3.606

Fantasy 23.62 (4.65) 23.96 (6.56) .845

Empathy 31.95 (4.01) 30.83 (4.2) .369

Personal distress 14.05 (3.35) 14.96 (4.06) .425

Executive functions IFS global score 26.5 (2.02) 26.43 (2.15) .918

Motor series 2.85 (0.35) 2.82 (0.65) .848

Conflicting instructions 2.95 (0.21) 2.91 (0.28) .615

Go/no go 2.9 (0.3) 2.95 (0.2) .508

Backward digits span 4.28 (0.9) 4.26 (1.21) .939

Verbal working memory 1.9 (0.3) 1.95 (1.06) .833

Spatial working memory 3.38 (0.66) 3.0 (0.8) .095

Abstraction capacity 2.78 (0.33) 2.91 (0.35) .233

Verbal inhibitory control 5.42 (0.81) 5.73 (0.61) .159

Note: Descriptive statistics and comparisons between groups. Mean (M), standard deviations (SD), and p-values for demographics, empathy, and executive

function scores obtained in experts and naïves.
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where Ixy(f ) is the imaginary coherence between a given paired-ROIs

for each frequency, Im is the imaginary part of the complex produc-

tion, Xk and Yk are the source-based spectrums from two ROIs, *

denotes the complex conjugate, and K is the number of 4 s length seg-

ments (Hsiao et al., 2013).

Adjacency matrices were built based on orthogonal minimal span-

ning trees (OMST) method (Dimitriadis, Antonakakis, Simos,

Fletcher, & Papanicolaou, 2017). OMST is a topological thresholding

technique with a novel proposed data-driven scheme, which attempts

to maximize the information flow over the network vs. the cost.

Briefly, OMST is based on the notion of sampling the full-weighted

F IGURE 1 Preprocessing, data analysis, and machine learning pipeline. (a) Samples and neuropsychological assessment. Tango dancers and
controls were matched for demographical variables (sex, age, education, and handedness). In addition, we also acquired measures of empathy and
executive functions. (b) Behavioral and hdEEG data acquisition. Electroencephalography (EEG) activity was recorded under two conditions (action
observation task and resting-state session). In the task, participants watched videos of correctly or incorrectly executed Tango figures and
classified them. After the task, they remained at rest for �10 m with their eyes closed. (c) Data processing and connectivity analysis. We
employed a source-based approach to connectivity. We estimated EEG sources using MNE and projected activity onto the 68 anatomical regions
of the Desikan Killiany atlas. Source-based whole-brain connectivity was calculated using the Imaginary part of Coherency (IC) in the delta
(δ = 1.5–4 Hz), theta (θ = 4-8 Hz), and mu (μ = 8–13 Hz) rhythms. Adjacency matrices were built based on orthogonal minimal spanning trees
(OMST) method. Finally, standard graph theory connectivity measures at the different frequency-bands in the task and rest conditions were
estimated and fed into machine learning classifiers. (d) Machine learning pipeline. After feature standardization, we used a k-fold validation grid
search scheme for hyper-parameter tuning to obtain trained XGBoost models. Then we tested our classification by employing the ROC curve,
confusion matrices and a feature importance analysis
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TABLE 3 Behavioral, task-based, and resting-state features

Features Category RFE approach

Motor and visual expertise

Hours spent by month dancing tango B ✓

Frequency in performing the observed

tango figure

B ✓

Familiarity with observed tango figures B ✓

Performance in tango figures classification

Detection of subtle errors in tango

steps

B ✓

Detection of gross errors in tango steps B ✓

Detection of correct tango steps B ✓

Overall performance in error detection B ✓

Neuropsychological scores

Perspective taking B

Fantasy B

Empathy B

Distress B

IRI total score B

Conflicting instructions B

Go-no go B

Digit span B

Verbal working memory B ✓

Spatial working memory B ✓

Abstraction capacity B ✓

Verbal inhibitory control B ✓

IFS total score B ✓

Task-based hdEEG connectivity measures

CPL for correct steps (δ θ μ) T

GE for correct steps (δ θ μ) T

C for correct steps (δ θ μ) T

LE for correct steps (δ θ μ) T

BC for correct steps (δ θ μ) T

PC for correct steps (δ θ μ) T

CPL for incorrect steps with gross

errors (δ θ μ)

T ✓ (θ)

GE for incorrect steps with gross errors

(δ θ μ)

T

C for incorrect steps with gross errors

(δ θ μ)

T

LE for incorrect steps with gross errors

(δ θ μ)

T ✓ (μ)

BC for incorrect steps with gross errors

(δ θ μ)

T

PC for incorrect steps with gross errors

(δ θ μ)

T

CPL for incorrect steps with subtle

errors (δ θ μ)

T ✓ (θ)

GE for incorrect steps with subtle

errors (δ θ μ)

T

T ✓ (μ)

(Continues)
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brain matrix over consecutive rounds of minimum spanning trees

(Stam, 2014) that are orthogonal to each other. With this iterative

approach, OMSTs and topologically filtering brain networks are

obtained by optimizing the global efficiency of the network con-

strained by the cost.

2.6 | Graph-theory analysis

Graph-theory metrics provide powerful tools for quantifying low-

dimensional properties at the network level (Bullmore &

Sporns, 2009). Beyond the overall improvement that these metrics

provide to understand brain network architecture, they are particu-

larly promising in informing the mechanisms underpinning motor

expertise (Calmels, 2020). Indeed, graph theory-based network

approaches have been proposed to facilitate the identification, inter-

pretation, and comparison of expertise-related connectivity patterns

across studies (Calmels, 2020).

Thus, to describe the architecture of participants' task-related and

resting-based functional brain networks, we used graph theory con-

nectivity features and estimated them by means of the BCT toolbox

(Rubinov & Sporns, 2010). Six measures were selected based on previ-

ous literature (Wang et al., 2016) exploring differences in the func-

tional network organization of motor experts (i.e., world class

gymnasts) and controls. Briefly, in this study, the features selected to

measure integration and segregation properties were the characteris-

tic path length, the global and local efficiency, and the clustering coef-

ficient. Of note, all these functional topographical measures showed

significant differences between experts and controls. In addition, we

added two centrality measures also previously used to capture

expertise-related network organization (Wang et al., 2013), namely,

betweenness centrality and participation coefficient. All six measures

were computed in the delta (1.5–4 Hz), theta (4–8 Hz), and mu (8–

13 Hz) frequency ranges. A detailed definition of each measure is

listed below.

1. Integration measures: “Characteristic path length” (CPL), which is

the average shortest path length between all pairs of nodes in the

network; and the “Global efficiency” (GE), which is related to the

previous one and is defined as the average inverse shortest path

length in the network. Both are measures of global connectedness,

and give an estimation of how efficiently information is integrated

across the network;

2. Segregation measures: “Clustering coefficient” (C), which quan-

tifies the number of connections that exist between the nearest

neighbors of a node as a ratio of the maximum number of possible

connections, providing information about the level of local con-

nectedness within a network; and “Local efficiency” (LE), which

reflects the GE computed in the neighborhood of the node; given

an estimation of how efficient the communication is between

neighbors of a node;

3. Centrality measures: “Betweenness centrality” (B), which measures

how many of the shortest paths between all other node pairs in

the network pass through a given node and basically shows which

nodes act like bridges between nodes in a network; and “Participa-
tion coefficient” (PC), an index of internetwork connections which

quantifies the diversity of a node's links across network communi-

ties, reflecting how well a node integrates information and coordi-

nates connectivity between communities.

These graph-derived metrics were computed for all participants

in both task-related and resting-state networks at each frequency

TABLE 3 (Continued)

Features Category RFE approach

C for incorrect steps with subtle errors

(δ θ μ)

LE for incorrect steps with subtle errors

(δ θ μ)

T

BC for incorrect steps with subtle

errors (δ θ μ)

T

PC for incorrect steps with subtle

errors (δ θ μ)

T

Resting-state hdEEG connectivity measures

CPL (δ θ μ) R ✓ (μ)

GE (δ θ μ) R

C (δ θ μ) R

LE (δ θ μ) R

BC (δ θ μ) R

PC (δ θ μ) R

Note: All original features included in our machine learning pipeline are shown. In addition, the optimal features selected by means of the recursive feature

elimination cross-validation (RFECV) approach included in the final models are highlighted with a tick. B, behavioral; R, resting-state; T, task-related.
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band, for a total of 54 and 18 features, respectively. These features

were further entered in the recursive feature elimination cross-

validation (RFECV) pipeline of the machine learning classification,

resulting in the selection of four optimal task-related connectivity

metrics and one optimal resting-state connectivity metric (Table 3).

2.7 | Machine learning analysis

We used a supervised machine learning classification approach to

evaluate whether behavioral and brain signatures derived from task-

based and resting-state connectivity could successfully decode indi-

viduals according to their level of motor expertise in Tango dancing.

Specifically, we tested three classifiers—each trained with a distinct

set of features (i.e., behavioral, task-related, and resting-state features,

respectively)—, and evaluated their performance in decoding motor

expertise based on individual differences. A complete list of the fea-

tures fed into each classifier is shown in Table 3.

Following state-of-the-art machine-learning analysis guidelines

(Poldrack, Huckins, & Varoquaux, 2020), we split the dataset into

training (75%) and test (25%) subsets using random partition, to fur-

ther evaluate for model generalizability without employing the testing

subset during the validation phase. We standardized features via z-

score (i.e., so that each feature had a mean centered around zero and

standard deviation of one). Within the training sample, we first ran

preliminary classifiers by considering the entire feature sets (i.e., all

behavioral, task-related, and rest-derived features were fed into each

of the three classifiers, respectively). During this phase, parameters

for the classifiers were optimized by a grid search function and, fol-

lowing best practices (Poldrack et al., 2020), we employed a k-fold

cross-validation procedure (k = 10) to evaluate the models. Second,

we used recursive feature elimination cross-validation (RFECV,

k = 10) to eliminate redundant features and avoid potential overfitting

problems (Saeys, Inza, & Larranaga, 2007).

In all cases, we used the Extreme Gradient Boosting (XGBoost)

algorithm (Chen & Guestrin, 2016), which creates and combines indi-

vidually weak but complementary strong classifiers, to produce a

robust estimator. XGBoost provides parallel computation tree boo-

sting for fast and accurate predictions, and regularized boosting to

reduce overfitting and improve generalization (Torlay, Perrone-

Bertolotti, Thomas, & Baciu, 2017). XGBoost was implemented using

the Scikit-learn (v. 0.22.1) machine learning library on Python.

In keeping with current guidelines to report ML results (Uddin,

Khan, Hossain, & Moni, 2019), classification accuracy values for the

all-feature and feature-reduction approaches in the behavioral,

task-related, and resting-state models were calculated together

with the area under the curve (AUC) of the receiver operating char-

acteristic (ROC) curve. Confusion matrices capturing the sensitivity

and specificity of each classification were also calculated to esti-

mate which model performed better. Finally, to establish which fea-

tures were most relevant in each final classification, we employed

the feature importance technique built into the XGBoost ML

algorithm.

2.8 | Prediction of task-performance and expertise
differences based on brain activity: A multiple
regression approach

Finally, to further estimate the robustness and specificity of oscillatory

topographical features in predicting error processing and motor exper-

tise, we ran multiple regression analyses to evaluate two different

brain models, one based on task-related activity and the other based

on resting-state activity. For the task-related model, we entered as

the dependent variable the performance in error detection. For the

resting-state model, we used the hours spent by month in dancing

Tango, since this is one of the best proxies to tackle motor expertise.

Predictors in each model constituted the three most important fea-

tures in the delta, theta, and mu rhythms identified by our all-features

classifiers. This analysis allowed us to disentangle whether the fea-

tures captured by our machine learning approach in the different fre-

quency bands were specifically associated with behavioral measures

in error processing and motor experience in Tango dancing, as origi-

nally hypothesized.

Specifically, we reasoned that if theta activity is involved in error

monitoring during action observation (Pezzetta et al., 2018; Spinelli

et al., 2018), then the contribution of this predictor to the total varia-

tion explained in the model should be greater. In a similar vein, since

mu-rhythm is a hallmark of motor expertise (Denis et al., 2017), we

expected that this predictor should be the one mostly contributing to

explain motor expertise variability. We followed standard procedures

for assessing multicollinearity and confirmed that tolerance (all values

<1) and variance inflation factors (all <1.06) were low, indicating that

multicollinearity did not affect our statistical analysis (see Table 4).

3 | RESULTS

3.1 | Decoding expertise with behavioral and
oscillatory network features

3.1.1 | Skill-related behavioral features

The machine learning classification between Tango dancers and

naïves that included all 20 behavioral features yielded 100% accuracy.

The ROC curve showed an AUC of 0.1, with 100% precision and

100% recall. When applying the feature-reduction approach, behav-

ioral data yielded an optimal number of 12 features with equal levels

of accuracy and ROC-AUC as in the all-features approach. The confu-

sion matrix in both cases showed a balanced profile between false

positives and false negatives, with a precision of 100% and a recall of

100%. Among the 12 features selected by the RFECV approach, the

most important features in classifying individuals according to their

level of expertise were performance in detecting gross errors, familiar-

ity with observed Tango steps, and hours spent by month in dancing

Tango. To a lesser extent, frequency in performing the observed

Tango steps and overall performance in error detection also showed

relevance (Figure 2a).
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3.1.2 | Task-related brain networks

Classification based on all 54 task-based connectivity features yielded

72.73% accuracy. The ROC curve showed an AUC of 0.71, with

85.7% precision and 75% recall. The RFECV approach revealed an

optimal number of four features, with classification showing equal

levels of accuracy, ROC-AUC, precision, and recall as those exhibited

by the all-features approach. The most important features included

the CPL in theta for the gross and subtle error conditions, the C in mu

for the subtle error condition, and the LE in mu for the gross error

condition (Figure 2b). See Figure 3a for spatial topography distribution

of brain network organization showing maximal strength difference

between groups (Tango dancers > naïves) in δ, θ, and μ.

3.1.3 | Resting-state brain networks

Finally, classification using all 18 resting-state connectivity features

reached 100% accuracy. The ROC curve showed an AUC of 0.1, with

100% precision and 100% recall. After RFECV, only one optimal

TABLE 4 Multiple regression analysis results

Coefficients B SE Beta t-value p-value

Collinearity statistics

Tolerance VIF

Task model CPL incorrect steps with gross errors θ �0.107 0.024 �.58 �4.36 <.0001 0.91 1.09

CPL correct steps δ 0.012 0.027 .06 0.45 .65 0.99 1.01

CPL incorrect steps with gross errors μ �0.002 0.02 �.01 �0.12 .9 0.91 1.09

Rest model CPL μ 0.08 0.006 .9 12.75 <.0001 0.95 1.05

B δ �0.01 0.02 �.03 �0.47 .64 0.97 1.03

B θ �0.004 0.01 �.03 �0.41 .68 0.94 1.05

Note: Unstandardized and standardized coefficient values and significance levels for the task-based and resting-state models together with measures of

collinearity.

p-values marked with bold indicate statistically significant results.

F IGURE 2 Machine learning results. Classification analysis (Tango dancers vs. Naïves) based on behavioral (a), task (b), and rest (c) functional
connectivity features. On the left side, we plot the ROC curve and area under the curve (AUC) for each model. In the center, we provide the
confusion matrix for each classifier. On the right side, we list the main features in order of importance for both classification analysis, with the
approach including all the features (ALL) and the one including only those selected (SEL) based on the Recursive Feature Elimination (RFE)
approach. B, betweenness centrality; C, clustering coefficient; CPL, characteristic path length; GE, global efficiency; LE, local efficiency; PC,
participation coefficient; δ: delta (1.5–4 Hz); θ: theta (4–8 Hz); μ: mu (8–13 Hz)
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feature was selected, namely CPL in mu, with classification showing

equal levels of accuracy and ROC-AUC as in the all-features approach

(Figure 2a). The confusion matrix in both cases (i.e., all and selected

features) showed a balanced profile between false positives and false

negatives, with a precision of 100% and a recall of 100% (Figure 2c).

3.2 | Fine-tuned oscillatory networks predict
motor expertise

We ran a multiple regression analysis to estimate the robustness and

specificity of the selected oscillatory properties of brain networks in

F IGURE 3 Task-related and resting-state network differences between Tango dancers and naïves and multiple regression results. (a) Spatial
distribution of the brain network nodes showing maximal strength difference between groups (Tango dancers > naïves) in delta (δ = 1.5–4 Hz in

gray), theta (θ = 4–8 Hz in red), and mu (μ = 8–13 Hz in blue) rhythms. For visualization purposes, critical nodes have been defined as those
scoring 1 SD above the mean of the strength difference in each condition and frequency band. Node size is proportional to the strength
difference between groups. (b) Individual coefficient plot for the main effect of theta CPL on action error discrimination performance, controlling
for all other predictors. (c) Individual coefficient plot for the main effect of mu CPL on the amount of time spent in dancing Tango per month,
controlling for all other predictors. Please note, that the top-ranked graph feature in the ML approach (i.e., CPL) only provides one single score per
participant (i.e., and not a score per brain region, which is a necessary requisite to plot neural networks). Thus, we used strength to visualize the
networks, as this metric provides a more general estimate of the degree of functional connectivity of the whole network
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predicting expertise. Briefly, we were interested in exploring whether

the top-ranked features highlighted by our all-features machine learn-

ing approach, based on task-related and resting-state data, were spe-

cifically associated with behavioral measures of error detection and

motor experience in Tango dancing.

Overall, the task-based model explained a significant proportion

of error detection variability (adjusted R2 = 30%; F = 7.04; p <.0001).

In particular, theta connectivity (Beta = �.58, p <.0001) significantly

predicted error processing (see Figure 3b), while delta (Beta = .06,

p = .64) and mu (Beta = �.01, p = .9) connectivity did not.

On the other hand, the resting-state model explained a large pro-

portion of variability in Tango motor expertise (adjusted R2 = 79%;

F = 56.04; p <.0001). Only the top-ranked mu connectivity feature

was a significant predictor of motor expertise (Beta = .9, p <.0001,

see Figure 3c), with theta (Beta = �0.03, p = .68) and delta

(Beta = �.03, p = .64) features showing nonsignificant regression

coefficients. See Table 4 for further details.

4 | DISCUSSION

Can motor expertise be finely decoded by brain network organization

in specific frequency bands? To answer this question, we

implemented a data-driven multi-feature approach considering task-

related and resting-state connectivity features associated to task-per-

formance, error processing, and sensorimotor expertise and tested

their power in classifying individuals with different levels of Tango

expertise.

Unsurprisingly, behavioral measures showed an excellent classifi-

cation (100%) between dancers and naïves. When considering brain

network signatures, task connectivity measures were also good pre-

dictors, although to a lesser extent (�73%). The most discriminative

feature during error anticipation was theta connectivity, a hallmark

signature of error processing. Perhaps more strikingly, resting-state

connectivity in mu, an index of sensorimotor engagement, was as

strong as behavioral features in predicting motor expertise, suggesting

that prior knowledge of skilled actions can be sharply captured as a

trait-like fingerprint. Finally, the regression analysis confirmed the

one-to-one associations between behavior and brain oscillations, with

theta and mu connectivity predicting performance in anticipatory

error detection and time spent in Tango dancing, respectively. Alto-

gether, these findings underscore the power of oscillatory network

measures in decoding fine-grade signatures of expertise, highlighting

the potential role of EEG markers in capturing neurodiversity for

predicting skilled action acquisition.

4.1 | Neurocognitive decoding of expertise

Behavioral results robustly classified individuals (100%). The most

important features were anticipatory detection of gross errors,

monthly hours spent dancing Tango, and familiarity with Tango steps.

This finding was not surprising given that these questionnaire-based

measures were originally intended to estimate Tango expertise

(Amoruso et al., 2014), with participant's performance reflecting a

direct validation of our experimental design. Indeed, gross inconsis-

tencies in Tango steps were better detected by experts than naïves

(�90% and �66%, respectively). Furthermore, while skilled partici-

pants reported >40 hr per month devoted to Tango dancing, naïves

reported 0 hr. Additionally, dancers reported being familiarized with

all steps shown in the videos, while naïves did not. This proxy measure

of familiarity aimed at controlling for a match between the style

danced by the participants and the one used as stimuli, namely, Tango

Salon. Thus, the robust classification yielded in the behavioral model

validates our design and reflects that individuals were reliably allo-

cated into one or other group depending on their expertise level.

On the other hand, neuropsychological features reflecting empa-

thy and executive functions did not distinguish among individuals.

While previous evidence indicates that expert dancers can show dif-

ferential behavioral and physiological sensitivity to others' affective

body movement (Christensen, Gomila, Gaigg, Sivarajah, & Calvo-

Merino, 2016), this nonreplicated result may reflect the lack of signifi-

cant between-group differences in their profiles (i.e., individuals from

both groups were balanced in terms of empathic and executive abili-

ties). Indeed, when selecting the optimal features by means of RFECV,

neuropsychological variables were removed from the model, indicat-

ing their weak/irrelevant role in between-group classification.

4.2 | Brain network metrics sensitive to expertise

Neurophysiological evidence (Pezzetta et al., 2018; Spinelli

et al., 2018) suggests that theta activity constitutes a hallmark signa-

ture of error processing during action observation. Consistent with

this evidence, we found that task-related theta connectivity features

were those better capturing individual differences in error processing.

The most important feature was CPL for gross error anticipation.

These errors constitute exaggerated disruptions in Tango steps more

easily noticeable than subtle ones and, likely, more accurately antici-

pated based on ongoing kinematics. Indeed, in our previous study

(Amoruso et al., 2014), anticipatory ongoing responses for gross errors

started earlier in fronto-central channels and showed higher ampli-

tudes than subtle ones.

At the network level, areas showing maximal theta strength dif-

ference between groups were the medial frontal and anterior cingu-

late cortex, which have been linked to the observation and prediction

of other's erroneous actions (Alexander & Brown, 2011; de Bruijn, de

Lange, von Cramon, & Ullsperger, 2009; van Schie, Mars, Coles, &

Bekkering, 2004).

We also predicted that sensorimotor expertise, indexed by mu-

rhythms, would discriminate individuals during action observation.

This rhythm is modulated by participant's expertise with dance (Orgs,

Dombrowski, Heil, & Jansen-Osmann, 2008) and sport (Denis

et al., 2017), with skilled participants showing greater mu-

desynchronization while anticipating known actions. Consistent with

this view, mu features were those showing higher importance after
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theta ones. In this case, maximal mu strength differences were local-

ized in classical AON nodes including the inferior parietal, precentral

gyrus, and IFG (Caspers et al., 2010; Rizzolatti & Craighero, 2004).

Finally, delta connectivity features did not show relevance in the

reduced-features approach (and only a marginal one when using all

features). Since this rhythm in involved in domain-general aspects of

task-performance (i.e., attentional demands; Harmony, 2013), this

finding possibly suggests that all participants, independently of their

expertise level, were similarly engaged during the task.

Even though the task-based classifier yielded a good accuracy

rate, its performance was lower than the resting-state classifier (see

below), potentially due to the heterogeneous combination of pro-

cesses captured by task-related networks.

On the other hand, the resting-state classifier proved to be as

robust as the behavioral one (100%). While the all-features classifica-

tion underscored two top-ranked mu attributes, the RFECV

highlighted one unique mu feature (CPL), which offered the best dis-

crimination between dancers and naïves. This suggests that mu-

rhythm can successfully capture individual differences in sensorimotor

experience even when participants are resting, highlighting its role as

a trait-like marker of motor expertise. Nevertheless, it is also true that

since we did not control for other sensorimotor experiences in the

participants (e.g., sports practicing), we cannot completely rule out

that this latter aspect may have influenced our results.

In keeping with EEG-fMRI resting-state evidence (Yin, Liu, &

Ding, 2016), areas showing maximal mu strength difference were

observed in classical sensorimotor regions and social cognition areas

(e.g., STS).

The graph-measure showing higher predictive value in task and

rest approaches was CPL, with higher scores for experts than naïves.

This finding aligns well with evidence from other motor domains

(Wang et al., 2016), showing that world-class gymnasts exhibit longer

CPL than controls. Longer CPL indicates that neural information trans-

fer proves more effortful (i.e., greater processing cost). This suggests

that as individuals become skilled in a given action, increased connec-

tions between various brain areas/system may take place, thus requir-

ing more steps while integrating meaningful information.

Furthermore, for those network parameters showing significant

between-group differences, Wang et al. computed the ROC-AUC to

determine which of them better distinguished among groups. In line

with our results, the parameter showing best performance was CPL

(AUC = 0.77).

Importantly, the regression analysis provided robust complemen-

tary evidence by showing that the oscillatory features that were most

discriminative of individuals in the task and rest models (namely, CPL

in theta and mu) were also the most predictive of performance and

sensorimotor expertise, respectively.

These findings also support a predictive coding view of action

processing (Amoruso, Finisguerra, & Urgesi, 2016; Kilner et al., 2007;

Urgen & Miller, 2015) in which prior sensorimotor knowledge is used

to predict other's actions based on observed movement kinematics.

Indeed, task-based network connectivity was derived from those

EEG-segments in which participants were anticipating the unfolding

of Tango steps based on ongoing kinematic information from dancers'

feet. Our results suggest that this anticipatory resonance mechanism,

known to be fine-tuned in motor experts (Aglioti et al., 2008), can be

sharply captured by distinct network signatures, with theta connectiv-

ity tracking individual differences in error anticipation and mu connec-

tivity fine-grained differences in the observers' motor system.

Furthermore, given the contextual nature of the experimental

design (i.e., body coordination between couples and their movements

unfolding in time), we suggests that participants were able to antici-

pate action errors based not only on their previous motor experience

but also on the contextual information provided by the Tango step

sequence being observed. This is compatible with a predictive coding

framework highlighting that actions are not performed in isolation but

rather context-embedded, and thus for a role of contextual cues in

shaping predictive process via establishing which motor intentions

likely underpin an observed action (Amoruso & Finisguerra, 2019;

Amoruso, Finisguerra, & Urgesi, 2018; Amoruso & Urgesi, 2016; Baez,

Garcia, & Ibanez, 2017; Betti, Finisguerra, Amoruso, & Urgesi, 2021;

Ibanez & Manes, 2012; Kilner, 2011; Maranesi, Livi, Fogassi,

Rizzolatti, & Bonini, 2014).

4.3 | Limitations

The present study is not without limitations. First, our sample size

was rather small, although not smaller than those reported in similar

EEG studies using oscillatory features for binary classification of indi-

viduals varying in their learning style (Jawed, Amin, Malik, &

Faye, 2019) and other traits (Stevens & Zabelina, 2020). A recent

state-of-the-art comparison of classification algorithms (Zhang, Liu,

Zhang, & Almpanidis, 2017) has shown that XGBoost, the algorithm

implemented here, can be effective with small and large training sets,

outperforming in all cases other more popular classifiers. Our findings

were consistent across analyses (all-features vs. reduced-features

approaches), with the number of selected attributes being consider-

ably fewer than the number of samples/observations. Furthermore,

by using a grid-search approach, we tuned critical hyperparameters to

control for potential overfitting (e.g., restricting the maximum depth

of trees to low values of 3 and making the model conservative via

high gamma values of 2). Thus, although future studies with larger

sample sizes are needed to strengthen our conclusions, these consid-

erations likely suggest that our findings were not biased by our “small

data” approach.
Second, the order of EEG recordings was not counterbalanced

across participants—that is, all participants completed the action

observation task first and the resting-state session afterward. Thus,

we cannot completely rule out the potential effect of reentrant-

reverberant visual information of action stimuli in the resting-state

networks. This issue should be clarified by future research assessing

resting-state connectivity before and after action observation.

Third, our results are circumscribed to Tango dancing. However,

generalizability is a key requisite of robust brain markers and future

studies should test the predictive power of our models not only in an
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independent larger sample of participants, but also in other motor

domains, including other dance styles and sports.

Finally, the present study does not address the relative perfor-

mance and predictive power of different classification approaches

(e.g., ML in comparison with more simple logistic regression methods).

While this aspect goes beyond the scope of the study, we believe that

using a ML framework has several advantages. For instance, ML

requires minimal assumptions and proves more robust than paramet-

ric approaches regarding data heterogeneity (Makridakis, Spiliotis, &

Assimakopoulos, 2018; Poldrack et al., 2020). Importantly, classifica-

tion can be performed even in a set of variables with nonlinear inter-

actions whereas logistic regression can only handle linear solutions

(Bzdok, Altman, & Krzywinski, 2018; Bzdok, Krzywinski, &

Altman, 2017). Combining ML with progressive feature elimination

can identify main predictors, enhance classification, and provide a top

assortment of features to classify outcomes (Montavon, Samek, &

Müller, 2018; Nicholls et al., 2020). Indeed, by using an XGBoost ML

approach combined with RFECV, we were able to identify the main

behavioral and neurophysiological contributors explaining individual

differences in motor expertise with a high predictive value, which was

actually the main goal of this work. Nevertheless, future studies better

suited to compare different classification approaches, should test this

interpretation in deep.

5 | CONCLUSIONS

Our findings show that motor expertise can be decoded at a fine-

grained level from network organization in specific frequency bands,

with theta and mu connectivity indexing anticipatory error processing

and sensorimotor expertise, respectively. Strikingly, participants' level

of Tango expertise was predicted by resting-state connectivity in mu

with similar maximum power than behavioral measures, suggesting

that this brain rhythm serves as a trait-like fingerprint of network

reorganization triggered by long-lasting training. Promisingly, we show

that EEG represents an affordable robust method to develop oscilla-

tory markers for the evaluation of learning/training outcomes in

healthy participants and, as a potential clinical avenue, in the prospec-

tive detection of motor-related disorders.
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